//===- LoopDependenceAnalysis.cpp - LDA Implementation ----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This is the (beginning) of an implementation of a loop dependence analysis // framework, which is used to detect dependences in memory accesses in loops. // // Please note that this is work in progress and the interface is subject to // change. // // TODO: adapt as implementation progresses. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "lda" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/LoopDependenceAnalysis.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Instructions.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Target/TargetData.h" using namespace llvm; LoopPass *llvm::createLoopDependenceAnalysisPass() { return new LoopDependenceAnalysis(); } static RegisterPass R("lda", "Loop Dependence Analysis", false, true); char LoopDependenceAnalysis::ID = 0; //===----------------------------------------------------------------------===// // Utility Functions //===----------------------------------------------------------------------===// static inline bool IsMemRefInstr(const Value *V) { const Instruction *I = dyn_cast(V); return I && (I->mayReadFromMemory() || I->mayWriteToMemory()); } static void GetMemRefInstrs( const Loop *L, SmallVectorImpl &memrefs) { for (Loop::block_iterator b = L->block_begin(), be = L->block_end(); b != be; ++b) for (BasicBlock::iterator i = (*b)->begin(), ie = (*b)->end(); i != ie; ++i) if (IsMemRefInstr(i)) memrefs.push_back(i); } static bool IsLoadOrStoreInst(Value *I) { return isa(I) || isa(I); } static Value *GetPointerOperand(Value *I) { if (LoadInst *i = dyn_cast(I)) return i->getPointerOperand(); if (StoreInst *i = dyn_cast(I)) return i->getPointerOperand(); LLVM_UNREACHABLE("Value is no load or store instruction!"); // Never reached. return 0; } //===----------------------------------------------------------------------===// // Dependence Testing //===----------------------------------------------------------------------===// bool LoopDependenceAnalysis::isDependencePair(const Value *x, const Value *y) const { return IsMemRefInstr(x) && IsMemRefInstr(y) && (cast(x)->mayWriteToMemory() || cast(y)->mayWriteToMemory()); } bool LoopDependenceAnalysis::depends(Value *src, Value *dst) { assert(isDependencePair(src, dst) && "Values form no dependence pair!"); DOUT << "== LDA test ==\n" << *src << *dst; // We only analyse loads and stores; for possible memory accesses by e.g. // free, call, or invoke instructions we conservatively assume dependence. if (!IsLoadOrStoreInst(src) || !IsLoadOrStoreInst(dst)) return true; Value *srcPtr = GetPointerOperand(src); Value *dstPtr = GetPointerOperand(dst); const Value *srcObj = srcPtr->getUnderlyingObject(); const Value *dstObj = dstPtr->getUnderlyingObject(); AliasAnalysis::AliasResult alias = AA->alias( srcObj, AA->getTargetData().getTypeStoreSize(srcObj->getType()), dstObj, AA->getTargetData().getTypeStoreSize(dstObj->getType())); // If we don't know whether or not the two objects alias, assume dependence. if (alias == AliasAnalysis::MayAlias) return true; // If the objects noalias, they are distinct, accesses are independent. if (alias == AliasAnalysis::NoAlias) return false; // TODO: the underlying objects MustAlias, test for dependence // We couldn't establish a more precise result, so we have to conservatively // assume full dependence. return true; } //===----------------------------------------------------------------------===// // LoopDependenceAnalysis Implementation //===----------------------------------------------------------------------===// bool LoopDependenceAnalysis::runOnLoop(Loop *L, LPPassManager &) { this->L = L; AA = &getAnalysis(); SE = &getAnalysis(); return false; } void LoopDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequiredTransitive(); AU.addRequiredTransitive(); } static void PrintLoopInfo( raw_ostream &OS, LoopDependenceAnalysis *LDA, const Loop *L) { if (!L->empty()) return; // ignore non-innermost loops SmallVector memrefs; GetMemRefInstrs(L, memrefs); OS << "Loop at depth " << L->getLoopDepth() << ", header block: "; WriteAsOperand(OS, L->getHeader(), false); OS << "\n"; OS << " Load/store instructions: " << memrefs.size() << "\n"; for (SmallVector::const_iterator x = memrefs.begin(), end = memrefs.end(); x != end; ++x) OS << "\t" << (x - memrefs.begin()) << ": " << **x; OS << " Pairwise dependence results:\n"; for (SmallVector::const_iterator x = memrefs.begin(), end = memrefs.end(); x != end; ++x) for (SmallVector::const_iterator y = x + 1; y != end; ++y) if (LDA->isDependencePair(*x, *y)) OS << "\t" << (x - memrefs.begin()) << "," << (y - memrefs.begin()) << ": " << (LDA->depends(*x, *y) ? "dependent" : "independent") << "\n"; } void LoopDependenceAnalysis::print(raw_ostream &OS, const Module*) const { // TODO: doc why const_cast is safe PrintLoopInfo(OS, const_cast(this), this->L); } void LoopDependenceAnalysis::print(std::ostream &OS, const Module *M) const { raw_os_ostream os(OS); print(os, M); }