//===-- Attributes.cpp - Implement AttributesList -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // \file // \brief This file implements the Attribute, AttributeImpl, AttrBuilder, // AttributeSetImpl, and AttributeSet classes. // //===----------------------------------------------------------------------===// #include "llvm/IR/Attributes.h" #include "AttributeImpl.h" #include "LLVMContextImpl.h" #include "llvm/ADT/StringExtras.h" #include "llvm/IR/Type.h" #include "llvm/Support/Atomic.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/Mutex.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; //===----------------------------------------------------------------------===// // Attribute Construction Methods //===----------------------------------------------------------------------===// Attribute Attribute::get(LLVMContext &Context, AttrKind Kind) { AttrBuilder B; return Attribute::get(Context, B.addAttribute(Kind)); } Attribute Attribute::get(LLVMContext &Context, AttrBuilder &B) { // If there are no attributes, return an empty Attribute class. if (!B.hasAttributes()) return Attribute(); assert(std::distance(B.begin(), B.end()) == 1 && "The Attribute object should represent one attribute only!"); // Otherwise, build a key to look up the existing attributes. LLVMContextImpl *pImpl = Context.pImpl; FoldingSetNodeID ID; ConstantInt *CI = ConstantInt::get(Type::getInt64Ty(Context), B.Raw()); ID.AddPointer(CI); void *InsertPoint; AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint); if (!PA) { // If we didn't find any existing attributes of the same shape then create a // new one and insert it. PA = new AttributeImpl(Context, CI); pImpl->AttrsSet.InsertNode(PA, InsertPoint); } // Return the AttributesList that we found or created. return Attribute(PA); } Attribute Attribute::getWithAlignment(LLVMContext &Context, uint64_t Align) { AttrBuilder B; return get(Context, B.addAlignmentAttr(Align)); } Attribute Attribute::getWithStackAlignment(LLVMContext &Context, uint64_t Align) { AttrBuilder B; return get(Context, B.addStackAlignmentAttr(Align)); } //===----------------------------------------------------------------------===// // Attribute Accessor Methods //===----------------------------------------------------------------------===// bool Attribute::hasAttribute(AttrKind Val) const { return pImpl && pImpl->hasAttribute(Val); } bool Attribute::hasAttributes() const { return pImpl && pImpl->hasAttributes(); } Constant *Attribute::getAttributeKind() const { return pImpl ? pImpl->getAttributeKind() : 0; } ArrayRef Attribute::getAttributeValues() const { return pImpl ? pImpl->getAttributeValues() : ArrayRef(); } /// This returns the alignment field of an attribute as a byte alignment value. unsigned Attribute::getAlignment() const { if (!hasAttribute(Attribute::Alignment)) return 0; return pImpl->getAlignment(); } /// This returns the stack alignment field of an attribute as a byte alignment /// value. unsigned Attribute::getStackAlignment() const { if (!hasAttribute(Attribute::StackAlignment)) return 0; return pImpl->getStackAlignment(); } std::string Attribute::getAsString() const { if (hasAttribute(Attribute::ZExt)) return "zeroext"; if (hasAttribute(Attribute::SExt)) return "signext"; if (hasAttribute(Attribute::NoReturn)) return "noreturn"; if (hasAttribute(Attribute::NoUnwind)) return "nounwind"; if (hasAttribute(Attribute::UWTable)) return "uwtable"; if (hasAttribute(Attribute::ReturnsTwice)) return "returns_twice"; if (hasAttribute(Attribute::InReg)) return "inreg"; if (hasAttribute(Attribute::NoAlias)) return "noalias"; if (hasAttribute(Attribute::NoCapture)) return "nocapture"; if (hasAttribute(Attribute::StructRet)) return "sret"; if (hasAttribute(Attribute::ByVal)) return "byval"; if (hasAttribute(Attribute::Nest)) return "nest"; if (hasAttribute(Attribute::ReadNone)) return "readnone"; if (hasAttribute(Attribute::ReadOnly)) return "readonly"; if (hasAttribute(Attribute::OptimizeForSize)) return "optsize"; if (hasAttribute(Attribute::NoInline)) return "noinline"; if (hasAttribute(Attribute::InlineHint)) return "inlinehint"; if (hasAttribute(Attribute::AlwaysInline)) return "alwaysinline"; if (hasAttribute(Attribute::StackProtect)) return "ssp"; if (hasAttribute(Attribute::StackProtectReq)) return "sspreq"; if (hasAttribute(Attribute::StackProtectStrong)) return "sspstrong"; if (hasAttribute(Attribute::NoRedZone)) return "noredzone"; if (hasAttribute(Attribute::NoImplicitFloat)) return "noimplicitfloat"; if (hasAttribute(Attribute::Naked)) return "naked"; if (hasAttribute(Attribute::NonLazyBind)) return "nonlazybind"; if (hasAttribute(Attribute::AddressSafety)) return "address_safety"; if (hasAttribute(Attribute::MinSize)) return "minsize"; if (hasAttribute(Attribute::StackAlignment)) { std::string Result; Result += "alignstack("; Result += utostr(getStackAlignment()); Result += ")"; return Result; } if (hasAttribute(Attribute::Alignment)) { std::string Result; Result += "align "; Result += utostr(getAlignment()); Result += ""; return Result; } if (hasAttribute(Attribute::NoDuplicate)) return "noduplicate"; llvm_unreachable("Unknown attribute"); } bool Attribute::operator==(AttrKind K) const { return pImpl && *pImpl == K; } bool Attribute::operator!=(AttrKind K) const { return !(*this == K); } bool Attribute::operator<(Attribute A) const { if (!pImpl && !A.pImpl) return false; if (!pImpl) return true; if (!A.pImpl) return false; return *pImpl < *A.pImpl; } uint64_t Attribute::Raw() const { return pImpl ? pImpl->Raw() : 0; } //===----------------------------------------------------------------------===// // AttributeImpl Definition //===----------------------------------------------------------------------===// AttributeImpl::AttributeImpl(LLVMContext &C, Attribute::AttrKind kind) : Context(C) { Kind = ConstantInt::get(Type::getInt64Ty(C), kind); } AttributeImpl::AttributeImpl(LLVMContext &C, Attribute::AttrKind kind, ArrayRef values) : Context(C) { Kind = ConstantInt::get(Type::getInt64Ty(C), kind); Vals.reserve(values.size()); Vals.append(values.begin(), values.end()); } AttributeImpl::AttributeImpl(LLVMContext &C, StringRef kind) : Context(C) { Kind = ConstantDataArray::getString(C, kind); } bool AttributeImpl::hasAttribute(Attribute::AttrKind A) const { return (Raw() & getAttrMask(A)) != 0; } bool AttributeImpl::hasAttributes() const { return Raw() != 0; } uint64_t AttributeImpl::getAlignment() const { uint64_t Mask = Raw() & getAttrMask(Attribute::Alignment); return 1ULL << ((Mask >> 16) - 1); } uint64_t AttributeImpl::getStackAlignment() const { uint64_t Mask = Raw() & getAttrMask(Attribute::StackAlignment); return 1ULL << ((Mask >> 26) - 1); } bool AttributeImpl::operator==(Attribute::AttrKind kind) const { if (ConstantInt *CI = dyn_cast(Kind)) return CI->getZExtValue() == kind; return false; } bool AttributeImpl::operator!=(Attribute::AttrKind kind) const { return !(*this == kind); } bool AttributeImpl::operator==(StringRef kind) const { if (ConstantDataArray *CDA = dyn_cast(Kind)) if (CDA->isString()) return CDA->getAsString() == kind; return false; } bool AttributeImpl::operator!=(StringRef kind) const { return !(*this == kind); } bool AttributeImpl::operator<(const AttributeImpl &AI) const { if (!Kind && !AI.Kind) return false; if (!Kind && AI.Kind) return true; if (Kind && !AI.Kind) return false; ConstantInt *ThisCI = dyn_cast(Kind); ConstantInt *ThatCI = dyn_cast(AI.Kind); ConstantDataArray *ThisCDA = dyn_cast(Kind); ConstantDataArray *ThatCDA = dyn_cast(AI.Kind); if (ThisCI && ThatCI) return ThisCI->getZExtValue() < ThatCI->getZExtValue(); if (ThisCI && ThatCDA) return true; if (ThisCDA && ThatCI) return false; return ThisCDA->getAsString() < ThatCDA->getAsString(); } uint64_t AttributeImpl::Raw() const { // FIXME: Remove this. return cast(Kind)->getZExtValue(); } uint64_t AttributeImpl::getAttrMask(Attribute::AttrKind Val) { // FIXME: Remove this. switch (Val) { case Attribute::EndAttrKinds: case Attribute::AttrKindEmptyKey: case Attribute::AttrKindTombstoneKey: llvm_unreachable("Synthetic enumerators which should never get here"); case Attribute::None: return 0; case Attribute::ZExt: return 1 << 0; case Attribute::SExt: return 1 << 1; case Attribute::NoReturn: return 1 << 2; case Attribute::InReg: return 1 << 3; case Attribute::StructRet: return 1 << 4; case Attribute::NoUnwind: return 1 << 5; case Attribute::NoAlias: return 1 << 6; case Attribute::ByVal: return 1 << 7; case Attribute::Nest: return 1 << 8; case Attribute::ReadNone: return 1 << 9; case Attribute::ReadOnly: return 1 << 10; case Attribute::NoInline: return 1 << 11; case Attribute::AlwaysInline: return 1 << 12; case Attribute::OptimizeForSize: return 1 << 13; case Attribute::StackProtect: return 1 << 14; case Attribute::StackProtectReq: return 1 << 15; case Attribute::Alignment: return 31 << 16; case Attribute::NoCapture: return 1 << 21; case Attribute::NoRedZone: return 1 << 22; case Attribute::NoImplicitFloat: return 1 << 23; case Attribute::Naked: return 1 << 24; case Attribute::InlineHint: return 1 << 25; case Attribute::StackAlignment: return 7 << 26; case Attribute::ReturnsTwice: return 1 << 29; case Attribute::UWTable: return 1 << 30; case Attribute::NonLazyBind: return 1U << 31; case Attribute::AddressSafety: return 1ULL << 32; case Attribute::MinSize: return 1ULL << 33; case Attribute::NoDuplicate: return 1ULL << 34; case Attribute::StackProtectStrong: return 1ULL << 35; } llvm_unreachable("Unsupported attribute type"); } //===----------------------------------------------------------------------===// // AttributeSetNode Definition //===----------------------------------------------------------------------===// AttributeSetNode *AttributeSetNode::get(LLVMContext &C, ArrayRef Attrs) { if (Attrs.empty()) return 0; // Otherwise, build a key to look up the existing attributes. LLVMContextImpl *pImpl = C.pImpl; FoldingSetNodeID ID; SmallVector SortedAttrs(Attrs.begin(), Attrs.end()); std::sort(SortedAttrs.begin(), SortedAttrs.end()); for (SmallVectorImpl::iterator I = SortedAttrs.begin(), E = SortedAttrs.end(); I != E; ++I) I->Profile(ID); void *InsertPoint; AttributeSetNode *PA = pImpl->AttrsSetNodes.FindNodeOrInsertPos(ID, InsertPoint); // If we didn't find any existing attributes of the same shape then create a // new one and insert it. if (!PA) { PA = new AttributeSetNode(SortedAttrs); pImpl->AttrsSetNodes.InsertNode(PA, InsertPoint); } // Return the AttributesListNode that we found or created. return PA; } bool AttributeSetNode::hasAttribute(Attribute::AttrKind Kind) const { for (SmallVectorImpl::const_iterator I = AttrList.begin(), E = AttrList.end(); I != E; ++I) if (I->hasAttribute(Kind)) return true; return false; } unsigned AttributeSetNode::getAlignment() const { for (SmallVectorImpl::const_iterator I = AttrList.begin(), E = AttrList.end(); I != E; ++I) if (I->hasAttribute(Attribute::Alignment)) return I->getAlignment(); return 0; } unsigned AttributeSetNode::getStackAlignment() const { for (SmallVectorImpl::const_iterator I = AttrList.begin(), E = AttrList.end(); I != E; ++I) if (I->hasAttribute(Attribute::StackAlignment)) return I->getStackAlignment(); return 0; } std::string AttributeSetNode::getAsString() const { std::string Str = ""; for (SmallVectorImpl::const_iterator I = AttrList.begin(), E = AttrList.end(); I != E; ++I) { if (I != AttrList.begin()) Str += " "; Str += I->getAsString(); } return Str; } //===----------------------------------------------------------------------===// // AttributeSetImpl Definition //===----------------------------------------------------------------------===// uint64_t AttributeSetImpl::Raw(uint64_t Index) const { for (unsigned I = 0, E = getNumAttributes(); I != E; ++I) { if (getSlotIndex(I) != Index) continue; const AttributeSetNode *ASN = AttrNodes[I].second; AttrBuilder B; for (AttributeSetNode::const_iterator II = ASN->begin(), IE = ASN->end(); II != IE; ++II) B.addAttributes(*II); return B.Raw(); } return 0; } //===----------------------------------------------------------------------===// // AttributeSet Construction and Mutation Methods //===----------------------------------------------------------------------===// AttributeSet AttributeSet::getImpl(LLVMContext &C, ArrayRef > Attrs) { LLVMContextImpl *pImpl = C.pImpl; FoldingSetNodeID ID; AttributeSetImpl::Profile(ID, Attrs); void *InsertPoint; AttributeSetImpl *PA = pImpl->AttrsLists.FindNodeOrInsertPos(ID, InsertPoint); // If we didn't find any existing attributes of the same shape then // create a new one and insert it. if (!PA) { PA = new AttributeSetImpl(C, Attrs); pImpl->AttrsLists.InsertNode(PA, InsertPoint); } // Return the AttributesList that we found or created. return AttributeSet(PA); } AttributeSet AttributeSet::get(LLVMContext &C, ArrayRef > Attrs){ // If there are no attributes then return a null AttributesList pointer. if (Attrs.empty()) return AttributeSet(); #ifndef NDEBUG for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { assert((!i || Attrs[i-1].first <= Attrs[i].first) && "Misordered Attributes list!"); assert(Attrs[i].second.hasAttributes() && "Pointless attribute!"); } #endif // Create a vector if (unsigned, AttributeSetNode*) pairs from the attributes // list. SmallVector, 8> AttrPairVec; for (ArrayRef >::iterator I = Attrs.begin(), E = Attrs.end(); I != E; ) { unsigned Index = I->first; SmallVector AttrVec; while (I != E && I->first == Index) { AttrVec.push_back(I->second); ++I; } AttrPairVec.push_back(std::make_pair(Index, AttributeSetNode::get(C, AttrVec))); } return getImpl(C, AttrPairVec); } AttributeSet AttributeSet::get(LLVMContext &C, ArrayRef > Attrs) { // If there are no attributes then return a null AttributesList pointer. if (Attrs.empty()) return AttributeSet(); return getImpl(C, Attrs); } AttributeSet AttributeSet::get(LLVMContext &C, unsigned Idx, AttrBuilder &B) { if (!B.hasAttributes()) return AttributeSet(); SmallVector, 8> Attrs; for (AttrBuilder::iterator I = B.begin(), E = B.end(); I != E; ++I) { Attribute::AttrKind Kind = *I; if (Kind == Attribute::Alignment) Attrs.push_back(std::make_pair(Idx, Attribute:: getWithAlignment(C, B.getAlignment()))); else if (Kind == Attribute::StackAlignment) Attrs.push_back(std::make_pair(Idx, Attribute:: getWithStackAlignment(C, B.getStackAlignment()))); else Attrs.push_back(std::make_pair(Idx, Attribute::get(C, Kind))); } return get(C, Attrs); } AttributeSet AttributeSet::get(LLVMContext &C, unsigned Idx, ArrayRef Kind) { SmallVector, 8> Attrs; for (ArrayRef::iterator I = Kind.begin(), E = Kind.end(); I != E; ++I) Attrs.push_back(std::make_pair(Idx, Attribute::get(C, *I))); return get(C, Attrs); } AttributeSet AttributeSet::get(LLVMContext &C, ArrayRef Attrs) { if (Attrs.empty()) return AttributeSet(); SmallVector, 8> AttrNodeVec; for (unsigned I = 0, E = Attrs.size(); I != E; ++I) { AttributeSet AS = Attrs[I]; if (!AS.pImpl) continue; AttrNodeVec.append(AS.pImpl->AttrNodes.begin(), AS.pImpl->AttrNodes.end()); } return getImpl(C, AttrNodeVec); } AttributeSet AttributeSet::addAttribute(LLVMContext &C, unsigned Idx, Attribute::AttrKind Attr) const { return addAttributes(C, Idx, AttributeSet::get(C, Idx, Attr)); } AttributeSet AttributeSet::addAttributes(LLVMContext &C, unsigned Idx, AttributeSet Attrs) const { if (!pImpl) return Attrs; if (!Attrs.pImpl) return *this; #ifndef NDEBUG // FIXME it is not obvious how this should work for alignment. For now, say // we can't change a known alignment. unsigned OldAlign = getParamAlignment(Idx); unsigned NewAlign = Attrs.getParamAlignment(Idx); assert((!OldAlign || !NewAlign || OldAlign == NewAlign) && "Attempt to change alignment!"); #endif // Add the attribute slots before the one we're trying to add. SmallVector AttrSet; uint64_t NumAttrs = pImpl->getNumAttributes(); AttributeSet AS; uint64_t LastIndex = 0; for (unsigned I = 0, E = NumAttrs; I != E; ++I) { if (getSlotIndex(I) >= Idx) { if (getSlotIndex(I) == Idx) AS = getSlotAttributes(LastIndex++); break; } LastIndex = I + 1; AttrSet.push_back(getSlotAttributes(I)); } // Now add the attribute into the correct slot. There may already be an // AttributeSet there. AttrBuilder B(AS, Idx); for (unsigned I = 0, E = Attrs.pImpl->getNumAttributes(); I != E; ++I) if (Attrs.getSlotIndex(I) == Idx) { for (AttributeSetImpl::const_iterator II = Attrs.pImpl->begin(I), IE = Attrs.pImpl->end(I); II != IE; ++II) B.addAttributes(*II); break; } AttrSet.push_back(AttributeSet::get(C, Idx, B)); // Add the remaining attribute slots. for (unsigned I = LastIndex, E = NumAttrs; I < E; ++I) AttrSet.push_back(getSlotAttributes(I)); return get(C, AttrSet); } AttributeSet AttributeSet::removeAttribute(LLVMContext &C, unsigned Idx, Attribute::AttrKind Attr) const { return removeAttributes(C, Idx, AttributeSet::get(C, Idx, Attr)); } AttributeSet AttributeSet::removeAttributes(LLVMContext &C, unsigned Idx, AttributeSet Attrs) const { if (!pImpl) return AttributeSet(); if (!Attrs.pImpl) return *this; #ifndef NDEBUG // FIXME it is not obvious how this should work for alignment. // For now, say we can't pass in alignment, which no current use does. assert(!Attrs.hasAttribute(Idx, Attribute::Alignment) && "Attempt to change alignment!"); #endif // Add the attribute slots before the one we're trying to add. SmallVector AttrSet; uint64_t NumAttrs = pImpl->getNumAttributes(); AttributeSet AS; uint64_t LastIndex = 0; for (unsigned I = 0, E = NumAttrs; I != E; ++I) { if (getSlotIndex(I) >= Idx) { if (getSlotIndex(I) == Idx) AS = getSlotAttributes(LastIndex++); break; } LastIndex = I + 1; AttrSet.push_back(getSlotAttributes(I)); } // Now remove the attribute from the correct slot. There may already be an // AttributeSet there. AttrBuilder B(AS, Idx); for (unsigned I = 0, E = Attrs.pImpl->getNumAttributes(); I != E; ++I) if (Attrs.getSlotIndex(I) == Idx) { B.removeAttributes(Attrs.pImpl->getSlotAttributes(I), Idx); break; } AttrSet.push_back(AttributeSet::get(C, Idx, B)); // Add the remaining attribute slots. for (unsigned I = LastIndex, E = NumAttrs; I < E; ++I) AttrSet.push_back(getSlotAttributes(I)); return get(C, AttrSet); } //===----------------------------------------------------------------------===// // AttributeSet Accessor Methods //===----------------------------------------------------------------------===// AttributeSet AttributeSet::getParamAttributes(unsigned Idx) const { return pImpl && hasAttributes(Idx) ? AttributeSet::get(pImpl->getContext(), ArrayRef >( std::make_pair(Idx, getAttributes(Idx)))) : AttributeSet(); } AttributeSet AttributeSet::getRetAttributes() const { return pImpl && hasAttributes(ReturnIndex) ? AttributeSet::get(pImpl->getContext(), ArrayRef >( std::make_pair(ReturnIndex, getAttributes(ReturnIndex)))) : AttributeSet(); } AttributeSet AttributeSet::getFnAttributes() const { return pImpl && hasAttributes(FunctionIndex) ? AttributeSet::get(pImpl->getContext(), ArrayRef >( std::make_pair(FunctionIndex, getAttributes(FunctionIndex)))) : AttributeSet(); } bool AttributeSet::hasAttribute(unsigned Index, Attribute::AttrKind Kind) const{ AttributeSetNode *ASN = getAttributes(Index); return ASN ? ASN->hasAttribute(Kind) : false; } bool AttributeSet::hasAttributes(unsigned Index) const { AttributeSetNode *ASN = getAttributes(Index); return ASN ? ASN->hasAttributes() : false; } /// \brief Return true if the specified attribute is set for at least one /// parameter or for the return value. bool AttributeSet::hasAttrSomewhere(Attribute::AttrKind Attr) const { if (pImpl == 0) return false; for (unsigned I = 0, E = pImpl->getNumAttributes(); I != E; ++I) for (AttributeSetImpl::const_iterator II = pImpl->begin(I), IE = pImpl->end(I); II != IE; ++II) if (II->hasAttribute(Attr)) return true; return false; } unsigned AttributeSet::getParamAlignment(unsigned Index) const { AttributeSetNode *ASN = getAttributes(Index); return ASN ? ASN->getAlignment() : 0; } unsigned AttributeSet::getStackAlignment(unsigned Index) const { AttributeSetNode *ASN = getAttributes(Index); return ASN ? ASN->getStackAlignment() : 0; } std::string AttributeSet::getAsString(unsigned Index) const { AttributeSetNode *ASN = getAttributes(Index); return ASN ? ASN->getAsString() : std::string(""); } /// \brief The attributes for the specified index are returned. AttributeSetNode *AttributeSet::getAttributes(unsigned Idx) const { if (!pImpl) return 0; // Loop through to find the attribute node we want. for (unsigned I = 0, E = pImpl->getNumAttributes(); I != E; ++I) if (pImpl->getSlotIndex(I) == Idx) return pImpl->getSlotNode(I); return 0; } //===----------------------------------------------------------------------===// // AttributeSet Introspection Methods //===----------------------------------------------------------------------===// /// \brief Return the number of slots used in this attribute list. This is the /// number of arguments that have an attribute set on them (including the /// function itself). unsigned AttributeSet::getNumSlots() const { return pImpl ? pImpl->getNumAttributes() : 0; } uint64_t AttributeSet::getSlotIndex(unsigned Slot) const { assert(pImpl && Slot < pImpl->getNumAttributes() && "Slot # out of range!"); return pImpl->getSlotIndex(Slot); } AttributeSet AttributeSet::getSlotAttributes(unsigned Slot) const { assert(pImpl && Slot < pImpl->getNumAttributes() && "Slot # out of range!"); return pImpl->getSlotAttributes(Slot); } uint64_t AttributeSet::Raw(unsigned Index) const { // FIXME: Remove this. return pImpl ? pImpl->Raw(Index) : 0; } void AttributeSet::dump() const { dbgs() << "PAL[\n"; for (unsigned i = 0, e = getNumSlots(); i < e; ++i) { uint64_t Index = getSlotIndex(i); dbgs() << " { "; if (Index == ~0U) dbgs() << "~0U"; else dbgs() << Index; dbgs() << " => " << getAsString(Index) << " }\n"; } dbgs() << "]\n"; } //===----------------------------------------------------------------------===// // AttrBuilder Method Implementations //===----------------------------------------------------------------------===// AttrBuilder::AttrBuilder(AttributeSet AS, unsigned Idx) : Alignment(0), StackAlignment(0) { AttributeSetImpl *pImpl = AS.pImpl; if (!pImpl) return; for (unsigned I = 0, E = pImpl->getNumAttributes(); I != E; ++I) { if (pImpl->getSlotIndex(I) != Idx) continue; for (AttributeSetImpl::const_iterator II = pImpl->begin(I), IE = pImpl->end(I); II != IE; ++II) addAttributes(*II); break; } } void AttrBuilder::clear() { Attrs.clear(); Alignment = StackAlignment = 0; } AttrBuilder &AttrBuilder::addAttribute(Attribute::AttrKind Val) { Attrs.insert(Val); return *this; } AttrBuilder &AttrBuilder::removeAttribute(Attribute::AttrKind Val) { Attrs.erase(Val); if (Val == Attribute::Alignment) Alignment = 0; else if (Val == Attribute::StackAlignment) StackAlignment = 0; return *this; } AttrBuilder &AttrBuilder::addAttributes(Attribute Attr) { uint64_t Mask = Attr.Raw(); for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; I = Attribute::AttrKind(I + 1)) if ((Mask & AttributeImpl::getAttrMask(I)) != 0) Attrs.insert(I); if (Attr.getAlignment()) Alignment = Attr.getAlignment(); if (Attr.getStackAlignment()) StackAlignment = Attr.getStackAlignment(); return *this; } AttrBuilder &AttrBuilder::removeAttributes(AttributeSet A, uint64_t Index) { uint64_t Mask = A.Raw(Index); for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; I = Attribute::AttrKind(I + 1)) { if (Mask & AttributeImpl::getAttrMask(I)) { Attrs.erase(I); if (I == Attribute::Alignment) Alignment = 0; else if (I == Attribute::StackAlignment) StackAlignment = 0; } } return *this; } AttrBuilder &AttrBuilder::addAlignmentAttr(unsigned Align) { if (Align == 0) return *this; assert(isPowerOf2_32(Align) && "Alignment must be a power of two."); assert(Align <= 0x40000000 && "Alignment too large."); Attrs.insert(Attribute::Alignment); Alignment = Align; return *this; } AttrBuilder &AttrBuilder::addStackAlignmentAttr(unsigned Align) { // Default alignment, allow the target to define how to align it. if (Align == 0) return *this; assert(isPowerOf2_32(Align) && "Alignment must be a power of two."); assert(Align <= 0x100 && "Alignment too large."); Attrs.insert(Attribute::StackAlignment); StackAlignment = Align; return *this; } bool AttrBuilder::contains(Attribute::AttrKind A) const { return Attrs.count(A); } bool AttrBuilder::hasAttributes() const { return !Attrs.empty(); } bool AttrBuilder::hasAttributes(AttributeSet A, uint64_t Index) const { return Raw() & A.Raw(Index); } bool AttrBuilder::hasAlignmentAttr() const { return Alignment != 0; } bool AttrBuilder::operator==(const AttrBuilder &B) { SmallVector This(Attrs.begin(), Attrs.end()); SmallVector That(B.Attrs.begin(), B.Attrs.end()); return This == That; } AttrBuilder &AttrBuilder::addRawValue(uint64_t Val) { if (!Val) return *this; for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; I = Attribute::AttrKind(I + 1)) { if (uint64_t A = (Val & AttributeImpl::getAttrMask(I))) { Attrs.insert(I); if (I == Attribute::Alignment) Alignment = 1ULL << ((A >> 16) - 1); else if (I == Attribute::StackAlignment) StackAlignment = 1ULL << ((A >> 26)-1); } } return *this; } uint64_t AttrBuilder::Raw() const { uint64_t Mask = 0; for (DenseSet::const_iterator I = Attrs.begin(), E = Attrs.end(); I != E; ++I) { Attribute::AttrKind Kind = *I; if (Kind == Attribute::Alignment) Mask |= (Log2_32(Alignment) + 1) << 16; else if (Kind == Attribute::StackAlignment) Mask |= (Log2_32(StackAlignment) + 1) << 26; else Mask |= AttributeImpl::getAttrMask(Kind); } return Mask; } //===----------------------------------------------------------------------===// // AttributeFuncs Function Defintions //===----------------------------------------------------------------------===// AttributeSet AttributeFuncs::typeIncompatible(Type *Ty, uint64_t Index) { AttrBuilder Incompatible; if (!Ty->isIntegerTy()) // Attribute that only apply to integers. Incompatible.addAttribute(Attribute::SExt) .addAttribute(Attribute::ZExt); if (!Ty->isPointerTy()) // Attribute that only apply to pointers. Incompatible.addAttribute(Attribute::ByVal) .addAttribute(Attribute::Nest) .addAttribute(Attribute::NoAlias) .addAttribute(Attribute::NoCapture) .addAttribute(Attribute::StructRet); return AttributeSet::get(Ty->getContext(), Index, Incompatible); } /// \brief This returns an integer containing an encoding of all the LLVM /// attributes found in the given attribute bitset. Any change to this encoding /// is a breaking change to bitcode compatibility. /// N.B. This should be used only by the bitcode reader! uint64_t AttributeFuncs::encodeLLVMAttributesForBitcode(AttributeSet Attrs, unsigned Index) { // FIXME: It doesn't make sense to store the alignment information as an // expanded out value, we should store it as a log2 value. However, we can't // just change that here without breaking bitcode compatibility. If this ever // becomes a problem in practice, we should introduce new tag numbers in the // bitcode file and have those tags use a more efficiently encoded alignment // field. // Store the alignment in the bitcode as a 16-bit raw value instead of a 5-bit // log2 encoded value. Shift the bits above the alignment up by 11 bits. uint64_t EncodedAttrs = Attrs.Raw(Index) & 0xffff; if (Attrs.hasAttribute(Index, Attribute::Alignment)) EncodedAttrs |= Attrs.getParamAlignment(Index) << 16; EncodedAttrs |= (Attrs.Raw(Index) & (0xffffULL << 21)) << 11; return EncodedAttrs; } /// \brief This fills an AttrBuilder object with the LLVM attributes that have /// been decoded from the given integer. This function must stay in sync with /// 'encodeLLVMAttributesForBitcode'. /// N.B. This should be used only by the bitcode reader! void AttributeFuncs::decodeLLVMAttributesForBitcode(LLVMContext &C, AttrBuilder &B, uint64_t EncodedAttrs) { // The alignment is stored as a 16-bit raw value from bits 31--16. We shift // the bits above 31 down by 11 bits. unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; assert((!Alignment || isPowerOf2_32(Alignment)) && "Alignment must be a power of two."); if (Alignment) B.addAlignmentAttr(Alignment); B.addRawValue(((EncodedAttrs & (0xffffULL << 32)) >> 11) | (EncodedAttrs & 0xffff)); }