//===-- Attributes.cpp - Implement AttributesList -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // \file // \brief This file implements the Attribute, AttributeImpl, AttrBuilder, // AttributeSetImpl, and AttributeSet classes. // //===----------------------------------------------------------------------===// #include "llvm/IR/Attributes.h" #include "AttributeImpl.h" #include "LLVMContextImpl.h" #include "llvm/ADT/StringExtras.h" #include "llvm/IR/Type.h" #include "llvm/Support/Atomic.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/Mutex.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; //===----------------------------------------------------------------------===// // Attribute Construction Methods //===----------------------------------------------------------------------===// Attribute Attribute::get(LLVMContext &Context, Attribute::AttrKind Kind, uint64_t Val) { LLVMContextImpl *pImpl = Context.pImpl; FoldingSetNodeID ID; ID.AddInteger(Kind); if (Val) ID.AddInteger(Val); void *InsertPoint; AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint); if (!PA) { // If we didn't find any existing attributes of the same shape then create a // new one and insert it. PA = !Val ? new AttributeImpl(Context, Kind) : new AttributeImpl(Context, Kind, Val); pImpl->AttrsSet.InsertNode(PA, InsertPoint); } // Return the Attribute that we found or created. return Attribute(PA); } Attribute Attribute::get(LLVMContext &Context, StringRef Kind, StringRef Val) { LLVMContextImpl *pImpl = Context.pImpl; FoldingSetNodeID ID; ID.AddString(Kind); if (!Val.empty()) ID.AddString(Val); void *InsertPoint; AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint); if (!PA) { // If we didn't find any existing attributes of the same shape then create a // new one and insert it. PA = new AttributeImpl(Context, Kind, Val); pImpl->AttrsSet.InsertNode(PA, InsertPoint); } // Return the Attribute that we found or created. return Attribute(PA); } Attribute Attribute::getWithAlignment(LLVMContext &Context, uint64_t Align) { assert(isPowerOf2_32(Align) && "Alignment must be a power of two."); assert(Align <= 0x40000000 && "Alignment too large."); return get(Context, Alignment, Align); } Attribute Attribute::getWithStackAlignment(LLVMContext &Context, uint64_t Align) { assert(isPowerOf2_32(Align) && "Alignment must be a power of two."); assert(Align <= 0x100 && "Alignment too large."); return get(Context, StackAlignment, Align); } //===----------------------------------------------------------------------===// // Attribute Accessor Methods //===----------------------------------------------------------------------===// bool Attribute::isEnumAttribute() const { return pImpl && pImpl->isEnumAttribute(); } bool Attribute::isAlignAttribute() const { return pImpl && pImpl->isAlignAttribute(); } bool Attribute::isStringAttribute() const { return pImpl && pImpl->isStringAttribute(); } Attribute::AttrKind Attribute::getKindAsEnum() const { assert((isEnumAttribute() || isAlignAttribute()) && "Invalid attribute type to get the kind as an enum!"); return pImpl ? pImpl->getKindAsEnum() : None; } uint64_t Attribute::getValueAsInt() const { assert(isAlignAttribute() && "Expected the attribute to be an alignment attribute!"); return pImpl ? pImpl->getValueAsInt() : 0; } StringRef Attribute::getKindAsString() const { assert(isStringAttribute() && "Invalid attribute type to get the kind as a string!"); return pImpl ? pImpl->getKindAsString() : StringRef(); } StringRef Attribute::getValueAsString() const { assert(isStringAttribute() && "Invalid attribute type to get the value as a string!"); return pImpl ? pImpl->getValueAsString() : StringRef(); } bool Attribute::hasAttribute(AttrKind Kind) const { return (pImpl && pImpl->hasAttribute(Kind)) || (!pImpl && Kind == None); } bool Attribute::hasAttribute(StringRef Kind) const { if (!isStringAttribute()) return false; return pImpl && pImpl->hasAttribute(Kind); } /// This returns the alignment field of an attribute as a byte alignment value. unsigned Attribute::getAlignment() const { assert(hasAttribute(Attribute::Alignment) && "Trying to get alignment from non-alignment attribute!"); return pImpl->getValueAsInt(); } /// This returns the stack alignment field of an attribute as a byte alignment /// value. unsigned Attribute::getStackAlignment() const { assert(hasAttribute(Attribute::StackAlignment) && "Trying to get alignment from non-alignment attribute!"); return pImpl->getValueAsInt(); } std::string Attribute::getAsString() const { if (!pImpl) return ""; if (hasAttribute(Attribute::AddressSafety)) return "address_safety"; if (hasAttribute(Attribute::AlwaysInline)) return "alwaysinline"; if (hasAttribute(Attribute::ByVal)) return "byval"; if (hasAttribute(Attribute::InlineHint)) return "inlinehint"; if (hasAttribute(Attribute::InReg)) return "inreg"; if (hasAttribute(Attribute::MinSize)) return "minsize"; if (hasAttribute(Attribute::Naked)) return "naked"; if (hasAttribute(Attribute::Nest)) return "nest"; if (hasAttribute(Attribute::NoAlias)) return "noalias"; if (hasAttribute(Attribute::NoCapture)) return "nocapture"; if (hasAttribute(Attribute::NoDuplicate)) return "noduplicate"; if (hasAttribute(Attribute::NoImplicitFloat)) return "noimplicitfloat"; if (hasAttribute(Attribute::NoInline)) return "noinline"; if (hasAttribute(Attribute::NonLazyBind)) return "nonlazybind"; if (hasAttribute(Attribute::NoRedZone)) return "noredzone"; if (hasAttribute(Attribute::NoReturn)) return "noreturn"; if (hasAttribute(Attribute::NoUnwind)) return "nounwind"; if (hasAttribute(Attribute::OptimizeForSize)) return "optsize"; if (hasAttribute(Attribute::ReadNone)) return "readnone"; if (hasAttribute(Attribute::ReadOnly)) return "readonly"; if (hasAttribute(Attribute::ReturnsTwice)) return "returns_twice"; if (hasAttribute(Attribute::SExt)) return "signext"; if (hasAttribute(Attribute::StackProtect)) return "ssp"; if (hasAttribute(Attribute::StackProtectReq)) return "sspreq"; if (hasAttribute(Attribute::StackProtectStrong)) return "sspstrong"; if (hasAttribute(Attribute::StructRet)) return "sret"; if (hasAttribute(Attribute::UWTable)) return "uwtable"; if (hasAttribute(Attribute::ZExt)) return "zeroext"; // FIXME: These should be output like this: // // align=4 // alignstack=8 // if (hasAttribute(Attribute::Alignment)) { std::string Result; Result += "align "; Result += utostr(getValueAsInt()); return Result; } if (hasAttribute(Attribute::StackAlignment)) { std::string Result; Result += "alignstack("; Result += utostr(getValueAsInt()); Result += ")"; return Result; } // Convert target-dependent attributes to strings of the form: // // "kind" // "kind" = "value" // "kind" = ( "value1" "value2" "value3" ) // if (isStringAttribute()) { std::string Result; Result += '\"' + getKindAsString().str() + '"'; StringRef Val = pImpl->getValueAsString(); if (Val.empty()) return Result; Result += " = "; Result += '\"' + Val.str() + '"'; return Result; } llvm_unreachable("Unknown attribute"); } bool Attribute::operator<(Attribute A) const { if (!pImpl && !A.pImpl) return false; if (!pImpl) return true; if (!A.pImpl) return false; return *pImpl < *A.pImpl; } //===----------------------------------------------------------------------===// // AttributeImpl Definition //===----------------------------------------------------------------------===// AttributeImpl::AttributeImpl(LLVMContext &C, Attribute::AttrKind Kind) : Context(C), Entry(new EnumAttributeEntry(Kind)) {} AttributeImpl::AttributeImpl(LLVMContext &C, Attribute::AttrKind Kind, unsigned Align) : Context(C) { assert((Kind == Attribute::Alignment || Kind == Attribute::StackAlignment) && "Wrong kind for alignment attribute!"); Entry = new AlignAttributeEntry(Kind, Align); } AttributeImpl::AttributeImpl(LLVMContext &C, StringRef Kind, StringRef Val) : Context(C), Entry(new StringAttributeEntry(Kind, Val)) {} AttributeImpl::~AttributeImpl() { delete Entry; } bool AttributeImpl::isEnumAttribute() const { return isa(Entry); } bool AttributeImpl::isAlignAttribute() const { return isa(Entry); } bool AttributeImpl::isStringAttribute() const { return isa(Entry); } bool AttributeImpl::hasAttribute(Attribute::AttrKind A) const { if (isStringAttribute()) return false; return getKindAsEnum() == A; } bool AttributeImpl::hasAttribute(StringRef Kind) const { if (!isStringAttribute()) return false; return getKindAsString() == Kind; } Attribute::AttrKind AttributeImpl::getKindAsEnum() const { if (EnumAttributeEntry *E = dyn_cast(Entry)) return E->getEnumKind(); return cast(Entry)->getEnumKind(); } uint64_t AttributeImpl::getValueAsInt() const { return cast(Entry)->getAlignment(); } StringRef AttributeImpl::getKindAsString() const { return cast(Entry)->getStringKind(); } StringRef AttributeImpl::getValueAsString() const { return cast(Entry)->getStringValue(); } bool AttributeImpl::operator<(const AttributeImpl &AI) const { // This sorts the attributes with Attribute::AttrKinds coming first (sorted // relative to their enum value) and then strings. if (isEnumAttribute()) if (AI.isAlignAttribute() || AI.isEnumAttribute()) return getKindAsEnum() < AI.getKindAsEnum(); if (isAlignAttribute()) { if (!AI.isStringAttribute() && getKindAsEnum() < AI.getKindAsEnum()) return true; if (AI.isAlignAttribute()) return getValueAsInt() < AI.getValueAsInt(); } if (isStringAttribute()) { if (!AI.isStringAttribute()) return false; if (getKindAsString() < AI.getKindAsString()) return true; if (getKindAsString() == AI.getKindAsString()) return getValueAsString() < AI.getValueAsString(); } return false; } uint64_t AttributeImpl::getAttrMask(Attribute::AttrKind Val) { // FIXME: Remove this. switch (Val) { case Attribute::EndAttrKinds: case Attribute::AttrKindEmptyKey: case Attribute::AttrKindTombstoneKey: llvm_unreachable("Synthetic enumerators which should never get here"); case Attribute::None: return 0; case Attribute::ZExt: return 1 << 0; case Attribute::SExt: return 1 << 1; case Attribute::NoReturn: return 1 << 2; case Attribute::InReg: return 1 << 3; case Attribute::StructRet: return 1 << 4; case Attribute::NoUnwind: return 1 << 5; case Attribute::NoAlias: return 1 << 6; case Attribute::ByVal: return 1 << 7; case Attribute::Nest: return 1 << 8; case Attribute::ReadNone: return 1 << 9; case Attribute::ReadOnly: return 1 << 10; case Attribute::NoInline: return 1 << 11; case Attribute::AlwaysInline: return 1 << 12; case Attribute::OptimizeForSize: return 1 << 13; case Attribute::StackProtect: return 1 << 14; case Attribute::StackProtectReq: return 1 << 15; case Attribute::Alignment: return 31 << 16; case Attribute::NoCapture: return 1 << 21; case Attribute::NoRedZone: return 1 << 22; case Attribute::NoImplicitFloat: return 1 << 23; case Attribute::Naked: return 1 << 24; case Attribute::InlineHint: return 1 << 25; case Attribute::StackAlignment: return 7 << 26; case Attribute::ReturnsTwice: return 1 << 29; case Attribute::UWTable: return 1 << 30; case Attribute::NonLazyBind: return 1U << 31; case Attribute::AddressSafety: return 1ULL << 32; case Attribute::MinSize: return 1ULL << 33; case Attribute::NoDuplicate: return 1ULL << 34; case Attribute::StackProtectStrong: return 1ULL << 35; } llvm_unreachable("Unsupported attribute type"); } //===----------------------------------------------------------------------===// // AttributeSetNode Definition //===----------------------------------------------------------------------===// AttributeSetNode *AttributeSetNode::get(LLVMContext &C, ArrayRef Attrs) { if (Attrs.empty()) return 0; // Otherwise, build a key to look up the existing attributes. LLVMContextImpl *pImpl = C.pImpl; FoldingSetNodeID ID; SmallVector SortedAttrs(Attrs.begin(), Attrs.end()); std::sort(SortedAttrs.begin(), SortedAttrs.end()); for (SmallVectorImpl::iterator I = SortedAttrs.begin(), E = SortedAttrs.end(); I != E; ++I) I->Profile(ID); void *InsertPoint; AttributeSetNode *PA = pImpl->AttrsSetNodes.FindNodeOrInsertPos(ID, InsertPoint); // If we didn't find any existing attributes of the same shape then create a // new one and insert it. if (!PA) { PA = new AttributeSetNode(SortedAttrs); pImpl->AttrsSetNodes.InsertNode(PA, InsertPoint); } // Return the AttributesListNode that we found or created. return PA; } bool AttributeSetNode::hasAttribute(Attribute::AttrKind Kind) const { for (SmallVectorImpl::const_iterator I = AttrList.begin(), E = AttrList.end(); I != E; ++I) if (I->hasAttribute(Kind)) return true; return false; } unsigned AttributeSetNode::getAlignment() const { for (SmallVectorImpl::const_iterator I = AttrList.begin(), E = AttrList.end(); I != E; ++I) if (I->hasAttribute(Attribute::Alignment)) return I->getAlignment(); return 0; } unsigned AttributeSetNode::getStackAlignment() const { for (SmallVectorImpl::const_iterator I = AttrList.begin(), E = AttrList.end(); I != E; ++I) if (I->hasAttribute(Attribute::StackAlignment)) return I->getStackAlignment(); return 0; } std::string AttributeSetNode::getAsString() const { std::string Str = ""; for (SmallVectorImpl::const_iterator I = AttrList.begin(), E = AttrList.end(); I != E; ) { Str += I->getAsString(); if (++I != E) Str += " "; } return Str; } //===----------------------------------------------------------------------===// // AttributeSetImpl Definition //===----------------------------------------------------------------------===// uint64_t AttributeSetImpl::Raw(uint64_t Index) const { for (unsigned I = 0, E = getNumAttributes(); I != E; ++I) { if (getSlotIndex(I) != Index) continue; const AttributeSetNode *ASN = AttrNodes[I].second; uint64_t Mask = 0; for (AttributeSetNode::const_iterator II = ASN->begin(), IE = ASN->end(); II != IE; ++II) { Attribute Attr = *II; // This cannot handle string attributes. if (Attr.isStringAttribute()) continue; Attribute::AttrKind Kind = Attr.getKindAsEnum(); if (Kind == Attribute::Alignment) Mask |= (Log2_32(ASN->getAlignment()) + 1) << 16; else if (Kind == Attribute::StackAlignment) Mask |= (Log2_32(ASN->getStackAlignment()) + 1) << 26; else Mask |= AttributeImpl::getAttrMask(Kind); } return Mask; } return 0; } //===----------------------------------------------------------------------===// // AttributeSet Construction and Mutation Methods //===----------------------------------------------------------------------===// AttributeSet AttributeSet::getImpl(LLVMContext &C, ArrayRef > Attrs) { LLVMContextImpl *pImpl = C.pImpl; FoldingSetNodeID ID; AttributeSetImpl::Profile(ID, Attrs); void *InsertPoint; AttributeSetImpl *PA = pImpl->AttrsLists.FindNodeOrInsertPos(ID, InsertPoint); // If we didn't find any existing attributes of the same shape then // create a new one and insert it. if (!PA) { PA = new AttributeSetImpl(C, Attrs); pImpl->AttrsLists.InsertNode(PA, InsertPoint); } // Return the AttributesList that we found or created. return AttributeSet(PA); } AttributeSet AttributeSet::get(LLVMContext &C, ArrayRef > Attrs){ // If there are no attributes then return a null AttributesList pointer. if (Attrs.empty()) return AttributeSet(); #ifndef NDEBUG for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { assert((!i || Attrs[i-1].first <= Attrs[i].first) && "Misordered Attributes list!"); assert(!Attrs[i].second.hasAttribute(Attribute::None) && "Pointless attribute!"); } #endif // Create a vector if (unsigned, AttributeSetNode*) pairs from the attributes // list. SmallVector, 8> AttrPairVec; for (ArrayRef >::iterator I = Attrs.begin(), E = Attrs.end(); I != E; ) { unsigned Index = I->first; SmallVector AttrVec; while (I != E && I->first == Index) { AttrVec.push_back(I->second); ++I; } AttrPairVec.push_back(std::make_pair(Index, AttributeSetNode::get(C, AttrVec))); } return getImpl(C, AttrPairVec); } AttributeSet AttributeSet::get(LLVMContext &C, ArrayRef > Attrs) { // If there are no attributes then return a null AttributesList pointer. if (Attrs.empty()) return AttributeSet(); return getImpl(C, Attrs); } AttributeSet AttributeSet::get(LLVMContext &C, unsigned Idx, AttrBuilder &B) { if (!B.hasAttributes()) return AttributeSet(); // Add target-independent attributes. SmallVector, 8> Attrs; for (AttrBuilder::iterator I = B.begin(), E = B.end(); I != E; ++I) { Attribute::AttrKind Kind = *I; if (Kind == Attribute::Alignment) Attrs.push_back(std::make_pair(Idx, Attribute:: getWithAlignment(C, B.getAlignment()))); else if (Kind == Attribute::StackAlignment) Attrs.push_back(std::make_pair(Idx, Attribute:: getWithStackAlignment(C, B.getStackAlignment()))); else Attrs.push_back(std::make_pair(Idx, Attribute::get(C, Kind))); } // Add target-dependent (string) attributes. for (AttrBuilder::td_iterator I = B.td_begin(), E = B.td_end(); I != E; ++I) Attrs.push_back(std::make_pair(Idx, Attribute::get(C, I->first,I->second))); return get(C, Attrs); } AttributeSet AttributeSet::get(LLVMContext &C, unsigned Idx, ArrayRef Kind) { SmallVector, 8> Attrs; for (ArrayRef::iterator I = Kind.begin(), E = Kind.end(); I != E; ++I) Attrs.push_back(std::make_pair(Idx, Attribute::get(C, *I))); return get(C, Attrs); } AttributeSet AttributeSet::get(LLVMContext &C, ArrayRef Attrs) { if (Attrs.empty()) return AttributeSet(); SmallVector, 8> AttrNodeVec; for (unsigned I = 0, E = Attrs.size(); I != E; ++I) { AttributeSet AS = Attrs[I]; if (!AS.pImpl) continue; AttrNodeVec.append(AS.pImpl->AttrNodes.begin(), AS.pImpl->AttrNodes.end()); } return getImpl(C, AttrNodeVec); } AttributeSet AttributeSet::addAttribute(LLVMContext &C, unsigned Idx, Attribute::AttrKind Attr) const { return addAttributes(C, Idx, AttributeSet::get(C, Idx, Attr)); } AttributeSet AttributeSet::addAttributes(LLVMContext &C, unsigned Idx, AttributeSet Attrs) const { if (!pImpl) return Attrs; if (!Attrs.pImpl) return *this; #ifndef NDEBUG // FIXME it is not obvious how this should work for alignment. For now, say // we can't change a known alignment. unsigned OldAlign = getParamAlignment(Idx); unsigned NewAlign = Attrs.getParamAlignment(Idx); assert((!OldAlign || !NewAlign || OldAlign == NewAlign) && "Attempt to change alignment!"); #endif // Add the attribute slots before the one we're trying to add. SmallVector AttrSet; uint64_t NumAttrs = pImpl->getNumAttributes(); AttributeSet AS; uint64_t LastIndex = 0; for (unsigned I = 0, E = NumAttrs; I != E; ++I) { if (getSlotIndex(I) >= Idx) { if (getSlotIndex(I) == Idx) AS = getSlotAttributes(LastIndex++); break; } LastIndex = I + 1; AttrSet.push_back(getSlotAttributes(I)); } // Now add the attribute into the correct slot. There may already be an // AttributeSet there. AttrBuilder B(AS, Idx); for (unsigned I = 0, E = Attrs.pImpl->getNumAttributes(); I != E; ++I) if (Attrs.getSlotIndex(I) == Idx) { for (AttributeSetImpl::const_iterator II = Attrs.pImpl->begin(I), IE = Attrs.pImpl->end(I); II != IE; ++II) B.addAttribute(*II); break; } AttrSet.push_back(AttributeSet::get(C, Idx, B)); // Add the remaining attribute slots. for (unsigned I = LastIndex, E = NumAttrs; I < E; ++I) AttrSet.push_back(getSlotAttributes(I)); return get(C, AttrSet); } AttributeSet AttributeSet::removeAttribute(LLVMContext &C, unsigned Idx, Attribute::AttrKind Attr) const { return removeAttributes(C, Idx, AttributeSet::get(C, Idx, Attr)); } AttributeSet AttributeSet::removeAttributes(LLVMContext &C, unsigned Idx, AttributeSet Attrs) const { if (!pImpl) return AttributeSet(); if (!Attrs.pImpl) return *this; #ifndef NDEBUG // FIXME it is not obvious how this should work for alignment. // For now, say we can't pass in alignment, which no current use does. assert(!Attrs.hasAttribute(Idx, Attribute::Alignment) && "Attempt to change alignment!"); #endif // Add the attribute slots before the one we're trying to add. SmallVector AttrSet; uint64_t NumAttrs = pImpl->getNumAttributes(); AttributeSet AS; uint64_t LastIndex = 0; for (unsigned I = 0, E = NumAttrs; I != E; ++I) { if (getSlotIndex(I) >= Idx) { if (getSlotIndex(I) == Idx) AS = getSlotAttributes(LastIndex++); break; } LastIndex = I + 1; AttrSet.push_back(getSlotAttributes(I)); } // Now remove the attribute from the correct slot. There may already be an // AttributeSet there. AttrBuilder B(AS, Idx); for (unsigned I = 0, E = Attrs.pImpl->getNumAttributes(); I != E; ++I) if (Attrs.getSlotIndex(I) == Idx) { B.removeAttributes(Attrs.pImpl->getSlotAttributes(I), Idx); break; } AttrSet.push_back(AttributeSet::get(C, Idx, B)); // Add the remaining attribute slots. for (unsigned I = LastIndex, E = NumAttrs; I < E; ++I) AttrSet.push_back(getSlotAttributes(I)); return get(C, AttrSet); } //===----------------------------------------------------------------------===// // AttributeSet Accessor Methods //===----------------------------------------------------------------------===// LLVMContext &AttributeSet::getContext() const { return pImpl->getContext(); } AttributeSet AttributeSet::getParamAttributes(unsigned Idx) const { return pImpl && hasAttributes(Idx) ? AttributeSet::get(pImpl->getContext(), ArrayRef >( std::make_pair(Idx, getAttributes(Idx)))) : AttributeSet(); } AttributeSet AttributeSet::getRetAttributes() const { return pImpl && hasAttributes(ReturnIndex) ? AttributeSet::get(pImpl->getContext(), ArrayRef >( std::make_pair(ReturnIndex, getAttributes(ReturnIndex)))) : AttributeSet(); } AttributeSet AttributeSet::getFnAttributes() const { return pImpl && hasAttributes(FunctionIndex) ? AttributeSet::get(pImpl->getContext(), ArrayRef >( std::make_pair(FunctionIndex, getAttributes(FunctionIndex)))) : AttributeSet(); } bool AttributeSet::hasAttribute(unsigned Index, Attribute::AttrKind Kind) const{ AttributeSetNode *ASN = getAttributes(Index); return ASN ? ASN->hasAttribute(Kind) : false; } bool AttributeSet::hasAttributes(unsigned Index) const { AttributeSetNode *ASN = getAttributes(Index); return ASN ? ASN->hasAttributes() : false; } /// \brief Return true if the specified attribute is set for at least one /// parameter or for the return value. bool AttributeSet::hasAttrSomewhere(Attribute::AttrKind Attr) const { if (pImpl == 0) return false; for (unsigned I = 0, E = pImpl->getNumAttributes(); I != E; ++I) for (AttributeSetImpl::const_iterator II = pImpl->begin(I), IE = pImpl->end(I); II != IE; ++II) if (II->hasAttribute(Attr)) return true; return false; } unsigned AttributeSet::getParamAlignment(unsigned Index) const { AttributeSetNode *ASN = getAttributes(Index); return ASN ? ASN->getAlignment() : 0; } unsigned AttributeSet::getStackAlignment(unsigned Index) const { AttributeSetNode *ASN = getAttributes(Index); return ASN ? ASN->getStackAlignment() : 0; } std::string AttributeSet::getAsString(unsigned Index) const { AttributeSetNode *ASN = getAttributes(Index); return ASN ? ASN->getAsString() : std::string(""); } /// \brief The attributes for the specified index are returned. AttributeSetNode *AttributeSet::getAttributes(unsigned Idx) const { if (!pImpl) return 0; // Loop through to find the attribute node we want. for (unsigned I = 0, E = pImpl->getNumAttributes(); I != E; ++I) if (pImpl->getSlotIndex(I) == Idx) return pImpl->getSlotNode(I); return 0; } AttributeSet::iterator AttributeSet::begin(unsigned Idx) const { if (!pImpl) return ArrayRef().begin(); return pImpl->begin(Idx); } AttributeSet::iterator AttributeSet::end(unsigned Idx) const { if (!pImpl) return ArrayRef().end(); return pImpl->end(Idx); } //===----------------------------------------------------------------------===// // AttributeSet Introspection Methods //===----------------------------------------------------------------------===// /// \brief Return the number of slots used in this attribute list. This is the /// number of arguments that have an attribute set on them (including the /// function itself). unsigned AttributeSet::getNumSlots() const { return pImpl ? pImpl->getNumAttributes() : 0; } uint64_t AttributeSet::getSlotIndex(unsigned Slot) const { assert(pImpl && Slot < pImpl->getNumAttributes() && "Slot # out of range!"); return pImpl->getSlotIndex(Slot); } AttributeSet AttributeSet::getSlotAttributes(unsigned Slot) const { assert(pImpl && Slot < pImpl->getNumAttributes() && "Slot # out of range!"); return pImpl->getSlotAttributes(Slot); } uint64_t AttributeSet::Raw(unsigned Index) const { // FIXME: Remove this. return pImpl ? pImpl->Raw(Index) : 0; } void AttributeSet::dump() const { dbgs() << "PAL[\n"; for (unsigned i = 0, e = getNumSlots(); i < e; ++i) { uint64_t Index = getSlotIndex(i); dbgs() << " { "; if (Index == ~0U) dbgs() << "~0U"; else dbgs() << Index; dbgs() << " => " << getAsString(Index) << " }\n"; } dbgs() << "]\n"; } //===----------------------------------------------------------------------===// // AttrBuilder Method Implementations //===----------------------------------------------------------------------===// AttrBuilder::AttrBuilder(AttributeSet AS, unsigned Idx) : Alignment(0), StackAlignment(0) { AttributeSetImpl *pImpl = AS.pImpl; if (!pImpl) return; for (unsigned I = 0, E = pImpl->getNumAttributes(); I != E; ++I) { if (pImpl->getSlotIndex(I) != Idx) continue; for (AttributeSetImpl::const_iterator II = pImpl->begin(I), IE = pImpl->end(I); II != IE; ++II) addAttribute(*II); break; } } void AttrBuilder::clear() { Attrs.clear(); Alignment = StackAlignment = 0; } AttrBuilder &AttrBuilder::addAttribute(Attribute::AttrKind Val) { assert(Val != Attribute::Alignment && Val != Attribute::StackAlignment && "Adding alignment attribute without adding alignment value!"); Attrs.insert(Val); return *this; } AttrBuilder &AttrBuilder::addAttribute(Attribute Attr) { if (Attr.isStringAttribute()) { addAttribute(Attr.getKindAsString(), Attr.getValueAsString()); return *this; } Attribute::AttrKind Kind = Attr.getKindAsEnum(); Attrs.insert(Kind); if (Kind == Attribute::Alignment) Alignment = Attr.getAlignment(); else if (Kind == Attribute::StackAlignment) StackAlignment = Attr.getStackAlignment(); return *this; } AttrBuilder &AttrBuilder::addAttribute(StringRef A, StringRef V) { TargetDepAttrs[A] = V; return *this; } AttrBuilder &AttrBuilder::removeAttribute(Attribute::AttrKind Val) { Attrs.erase(Val); if (Val == Attribute::Alignment) Alignment = 0; else if (Val == Attribute::StackAlignment) StackAlignment = 0; return *this; } AttrBuilder &AttrBuilder::removeAttributes(AttributeSet A, uint64_t Index) { unsigned Idx = ~0U; for (unsigned I = 0, E = A.getNumSlots(); I != E; ++I) if (A.getSlotIndex(I) == Index) { Idx = I; break; } assert(Idx != ~0U && "Couldn't find index in AttributeSet!"); for (AttributeSet::iterator I = A.begin(Idx), E = A.end(Idx); I != E; ++I) { // FIXME: Support string attributes. Attribute::AttrKind Kind = I->getKindAsEnum(); Attrs.erase(Kind); if (Kind == Attribute::Alignment) Alignment = 0; else if (Kind == Attribute::StackAlignment) StackAlignment = 0; } return *this; } AttrBuilder &AttrBuilder::removeAttribute(StringRef A) { std::map::iterator I = TargetDepAttrs.find(A); if (I != TargetDepAttrs.end()) TargetDepAttrs.erase(I); return *this; } AttrBuilder &AttrBuilder::addAlignmentAttr(unsigned Align) { if (Align == 0) return *this; assert(isPowerOf2_32(Align) && "Alignment must be a power of two."); assert(Align <= 0x40000000 && "Alignment too large."); Attrs.insert(Attribute::Alignment); Alignment = Align; return *this; } AttrBuilder &AttrBuilder::addStackAlignmentAttr(unsigned Align) { // Default alignment, allow the target to define how to align it. if (Align == 0) return *this; assert(isPowerOf2_32(Align) && "Alignment must be a power of two."); assert(Align <= 0x100 && "Alignment too large."); Attrs.insert(Attribute::StackAlignment); StackAlignment = Align; return *this; } AttrBuilder &AttrBuilder::merge(const AttrBuilder &B) { // FIXME: What if both have alignments, but they don't match?! if (!Alignment) Alignment = B.Alignment; if (!StackAlignment) StackAlignment = B.StackAlignment; Attrs.insert(B.Attrs.begin(), B.Attrs.end()); for (td_const_iterator I = B.TargetDepAttrs.begin(), E = B.TargetDepAttrs.end(); I != E; ++I) TargetDepAttrs[I->first] = I->second; return *this; } bool AttrBuilder::contains(Attribute::AttrKind A) const { return Attrs.count(A); } bool AttrBuilder::contains(StringRef A) const { return TargetDepAttrs.find(A) != TargetDepAttrs.end(); } bool AttrBuilder::hasAttributes() const { return !Attrs.empty() || !TargetDepAttrs.empty(); } bool AttrBuilder::hasAttributes(AttributeSet A, uint64_t Index) const { unsigned Idx = ~0U; for (unsigned I = 0, E = A.getNumSlots(); I != E; ++I) if (A.getSlotIndex(I) == Index) { Idx = I; break; } assert(Idx != ~0U && "Couldn't find the index!"); for (AttributeSet::iterator I = A.begin(Idx), E = A.end(Idx); I != E; ++I) // FIXME: Support string attributes. if (Attrs.count(I->getKindAsEnum())) return true; return false; } bool AttrBuilder::hasAlignmentAttr() const { return Alignment != 0; } bool AttrBuilder::operator==(const AttrBuilder &B) { for (DenseSet::iterator I = Attrs.begin(), E = Attrs.end(); I != E; ++I) if (!B.Attrs.count(*I)) return false; for (td_const_iterator I = TargetDepAttrs.begin(), E = TargetDepAttrs.end(); I != E; ++I) if (B.TargetDepAttrs.find(I->first) == B.TargetDepAttrs.end()) return false; return Alignment == B.Alignment && StackAlignment == B.StackAlignment; } AttrBuilder &AttrBuilder::addRawValue(uint64_t Val) { // FIXME: Remove this in 4.0. if (!Val) return *this; for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; I = Attribute::AttrKind(I + 1)) { if (uint64_t A = (Val & AttributeImpl::getAttrMask(I))) { Attrs.insert(I); if (I == Attribute::Alignment) Alignment = 1ULL << ((A >> 16) - 1); else if (I == Attribute::StackAlignment) StackAlignment = 1ULL << ((A >> 26)-1); } } return *this; } //===----------------------------------------------------------------------===// // AttributeFuncs Function Defintions //===----------------------------------------------------------------------===// /// \brief Which attributes cannot be applied to a type. AttributeSet AttributeFuncs::typeIncompatible(Type *Ty, uint64_t Index) { AttrBuilder Incompatible; if (!Ty->isIntegerTy()) // Attribute that only apply to integers. Incompatible.addAttribute(Attribute::SExt) .addAttribute(Attribute::ZExt); if (!Ty->isPointerTy()) // Attribute that only apply to pointers. Incompatible.addAttribute(Attribute::ByVal) .addAttribute(Attribute::Nest) .addAttribute(Attribute::NoAlias) .addAttribute(Attribute::NoCapture) .addAttribute(Attribute::StructRet); return AttributeSet::get(Ty->getContext(), Index, Incompatible); }