//===-- AArch64AsmPrinter.cpp - Print machine code to an AArch64 .s file --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to GAS-format AArch64 assembly language. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "asm-printer" #include "AArch64AsmPrinter.h" #include "InstPrinter/AArch64InstPrinter.h" #include "llvm/DebugInfo.h" #include "llvm/ADT/SmallString.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineModuleInfoImpls.h" #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Target/Mangler.h" using namespace llvm; MachineLocation AArch64AsmPrinter::getDebugValueLocation(const MachineInstr *MI) const { // See emitFrameIndexDebugValue in InstrInfo for where this instruction is // expected to be created. assert(MI->getNumOperands() == 4 && MI->getOperand(0).isReg() && MI->getOperand(1).isImm() && "unexpected custom DBG_VALUE"); return MachineLocation(MI->getOperand(0).getReg(), MI->getOperand(1).getImm()); } /// Try to print a floating-point register as if it belonged to a specified /// register-class. For example the inline asm operand modifier "b" requires its /// argument to be printed as "bN". static bool printModifiedFPRAsmOperand(const MachineOperand &MO, const TargetRegisterInfo *TRI, const TargetRegisterClass &RegClass, raw_ostream &O) { if (!MO.isReg()) return true; for (MCRegAliasIterator AR(MO.getReg(), TRI, true); AR.isValid(); ++AR) { if (RegClass.contains(*AR)) { O << AArch64InstPrinter::getRegisterName(*AR); return false; } } return true; } /// Implements the 'w' and 'x' inline asm operand modifiers, which print a GPR /// with the obvious type and an immediate 0 as either wzr or xzr. static bool printModifiedGPRAsmOperand(const MachineOperand &MO, const TargetRegisterInfo *TRI, const TargetRegisterClass &RegClass, raw_ostream &O) { char Prefix = &RegClass == &AArch64::GPR32RegClass ? 'w' : 'x'; if (MO.isImm() && MO.getImm() == 0) { O << Prefix << "zr"; return false; } else if (MO.isReg()) { if (MO.getReg() == AArch64::XSP || MO.getReg() == AArch64::WSP) { O << (Prefix == 'x' ? "sp" : "wsp"); return false; } for (MCRegAliasIterator AR(MO.getReg(), TRI, true); AR.isValid(); ++AR) { if (RegClass.contains(*AR)) { O << AArch64InstPrinter::getRegisterName(*AR); return false; } } } return true; } bool AArch64AsmPrinter::printSymbolicAddress(const MachineOperand &MO, bool PrintImmediatePrefix, StringRef Suffix, raw_ostream &O) { StringRef Name; StringRef Modifier; switch (MO.getType()) { default: llvm_unreachable("Unexpected operand for symbolic address constraint"); case MachineOperand::MO_GlobalAddress: Name = Mang->getSymbol(MO.getGlobal())->getName(); // Global variables may be accessed either via a GOT or in various fun and // interesting TLS-model specific ways. Set the prefix modifier as // appropriate here. if (const GlobalVariable *GV = dyn_cast(MO.getGlobal())) { Reloc::Model RelocM = TM.getRelocationModel(); if (GV->isThreadLocal()) { switch (TM.getTLSModel(GV)) { case TLSModel::GeneralDynamic: Modifier = "tlsdesc"; break; case TLSModel::LocalDynamic: Modifier = "dtprel"; break; case TLSModel::InitialExec: Modifier = "gottprel"; break; case TLSModel::LocalExec: Modifier = "tprel"; break; } } else if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) { Modifier = "got"; } } break; case MachineOperand::MO_BlockAddress: Name = GetBlockAddressSymbol(MO.getBlockAddress())->getName(); break; case MachineOperand::MO_ExternalSymbol: Name = MO.getSymbolName(); break; case MachineOperand::MO_ConstantPoolIndex: Name = GetCPISymbol(MO.getIndex())->getName(); break; } // Some instructions (notably ADRP) don't take the # prefix for // immediates. Only print it if asked to. if (PrintImmediatePrefix) O << '#'; // Only need the joining "_" if both the prefix and the suffix are // non-null. This little block simply takes care of the four possibly // combinations involved there. if (Modifier == "" && Suffix == "") O << Name; else if (Modifier == "" && Suffix != "") O << ":" << Suffix << ':' << Name; else if (Modifier != "" && Suffix == "") O << ":" << Modifier << ':' << Name; else O << ":" << Modifier << '_' << Suffix << ':' << Name; return false; } bool AArch64AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, unsigned AsmVariant, const char *ExtraCode, raw_ostream &O) { const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo(); if (!ExtraCode || !ExtraCode[0]) { // There's actually no operand modifier, which leads to a slightly eclectic // set of behaviour which we have to handle here. const MachineOperand &MO = MI->getOperand(OpNum); switch (MO.getType()) { default: llvm_unreachable("Unexpected operand for inline assembly"); case MachineOperand::MO_Register: // GCC prints the unmodified operand of a 'w' constraint as the vector // register. Technically, we could allocate the argument as a VPR128, but // that leads to extremely dodgy copies being generated to get the data // there. if (printModifiedFPRAsmOperand(MO, TRI, AArch64::VPR128RegClass, O)) O << AArch64InstPrinter::getRegisterName(MO.getReg()); break; case MachineOperand::MO_Immediate: O << '#' << MO.getImm(); break; case MachineOperand::MO_FPImmediate: assert(MO.getFPImm()->isExactlyValue(0.0) && "Only FP 0.0 expected"); O << "#0.0"; break; case MachineOperand::MO_BlockAddress: case MachineOperand::MO_ConstantPoolIndex: case MachineOperand::MO_GlobalAddress: case MachineOperand::MO_ExternalSymbol: return printSymbolicAddress(MO, false, "", O); } return false; } // We have a real modifier to handle. switch(ExtraCode[0]) { default: // See if this is a generic operand return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O); case 'c': // Don't print "#" before an immediate operand. if (!MI->getOperand(OpNum).isImm()) return true; O << MI->getOperand(OpNum).getImm(); return false; case 'w': // Output 32-bit general register operand, constant zero as wzr, or stack // pointer as wsp. Ignored when used with other operand types. return printModifiedGPRAsmOperand(MI->getOperand(OpNum), TRI, AArch64::GPR32RegClass, O); case 'x': // Output 64-bit general register operand, constant zero as xzr, or stack // pointer as sp. Ignored when used with other operand types. return printModifiedGPRAsmOperand(MI->getOperand(OpNum), TRI, AArch64::GPR64RegClass, O); case 'H': // Output higher numbered of a 64-bit general register pair case 'Q': // Output least significant register of a 64-bit general register pair case 'R': // Output most significant register of a 64-bit general register pair // FIXME note: these three operand modifiers will require, to some extent, // adding a paired GPR64 register class. Initial investigation suggests that // assertions are hit unless it has a type and is made legal for that type // in ISelLowering. After that step is made, the number of modifications // needed explodes (operation legality, calling conventions, stores, reg // copies ...). llvm_unreachable("FIXME: Unimplemented register pairs"); case 'b': // Output 8-bit FP/SIMD scalar register operand, prefixed with b. return printModifiedFPRAsmOperand(MI->getOperand(OpNum), TRI, AArch64::FPR8RegClass, O); case 'h': // Output 16-bit FP/SIMD scalar register operand, prefixed with h. return printModifiedFPRAsmOperand(MI->getOperand(OpNum), TRI, AArch64::FPR16RegClass, O); case 's': // Output 32-bit FP/SIMD scalar register operand, prefixed with s. return printModifiedFPRAsmOperand(MI->getOperand(OpNum), TRI, AArch64::FPR32RegClass, O); case 'd': // Output 64-bit FP/SIMD scalar register operand, prefixed with d. return printModifiedFPRAsmOperand(MI->getOperand(OpNum), TRI, AArch64::FPR64RegClass, O); case 'q': // Output 128-bit FP/SIMD scalar register operand, prefixed with q. return printModifiedFPRAsmOperand(MI->getOperand(OpNum), TRI, AArch64::FPR128RegClass, O); case 'A': // Output symbolic address with appropriate relocation modifier (also // suitable for ADRP). return printSymbolicAddress(MI->getOperand(OpNum), false, "", O); case 'L': // Output bits 11:0 of symbolic address with appropriate :lo12: relocation // modifier. return printSymbolicAddress(MI->getOperand(OpNum), true, "lo12", O); case 'G': // Output bits 23:12 of symbolic address with appropriate :hi12: relocation // modifier (currently only for TLS local exec). return printSymbolicAddress(MI->getOperand(OpNum), true, "hi12", O); } } bool AArch64AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNum, unsigned AsmVariant, const char *ExtraCode, raw_ostream &O) { // Currently both the memory constraints (m and Q) behave the same and amount // to the address as a single register. In future, we may allow "m" to provide // both a base and an offset. const MachineOperand &MO = MI->getOperand(OpNum); assert(MO.isReg() && "unexpected inline assembly memory operand"); O << '[' << AArch64InstPrinter::getRegisterName(MO.getReg()) << ']'; return false; } void AArch64AsmPrinter::PrintDebugValueComment(const MachineInstr *MI, raw_ostream &OS) { unsigned NOps = MI->getNumOperands(); assert(NOps==4); OS << '\t' << MAI->getCommentString() << "DEBUG_VALUE: "; // cast away const; DIetc do not take const operands for some reason. DIVariable V(const_cast(MI->getOperand(NOps-1).getMetadata())); OS << V.getName(); OS << " <- "; // Frame address. Currently handles register +- offset only. assert(MI->getOperand(0).isReg() && MI->getOperand(1).isImm()); OS << '[' << AArch64InstPrinter::getRegisterName(MI->getOperand(0).getReg()); OS << '+' << MI->getOperand(1).getImm(); OS << ']'; OS << "+" << MI->getOperand(NOps - 2).getImm(); } #include "AArch64GenMCPseudoLowering.inc" void AArch64AsmPrinter::EmitInstruction(const MachineInstr *MI) { // Do any auto-generated pseudo lowerings. if (emitPseudoExpansionLowering(OutStreamer, MI)) return; switch (MI->getOpcode()) { case AArch64::CONSTPOOL_ENTRY: { unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); OutStreamer.EmitLabel(GetCPISymbol(LabelId)); const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; if (MCPE.isMachineConstantPoolEntry()) EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); else EmitGlobalConstant(MCPE.Val.ConstVal); return; } case AArch64::DBG_VALUE: { if (isVerbose() && OutStreamer.hasRawTextSupport()) { SmallString<128> TmpStr; raw_svector_ostream OS(TmpStr); PrintDebugValueComment(MI, OS); OutStreamer.EmitRawText(StringRef(OS.str())); } return; } } MCInst TmpInst; LowerAArch64MachineInstrToMCInst(MI, TmpInst, *this); OutStreamer.EmitInstruction(TmpInst); } void AArch64AsmPrinter::EmitEndOfAsmFile(Module &M) { if (Subtarget->isTargetELF()) { const TargetLoweringObjectFileELF &TLOFELF = static_cast(getObjFileLowering()); MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo(); // Output stubs for external and common global variables. MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); if (!Stubs.empty()) { OutStreamer.SwitchSection(TLOFELF.getDataRelSection()); const DataLayout *TD = TM.getDataLayout(); for (unsigned i = 0, e = Stubs.size(); i != e; ++i) { OutStreamer.EmitLabel(Stubs[i].first); OutStreamer.EmitSymbolValue(Stubs[i].second.getPointer(), TD->getPointerSize(0), 0); } Stubs.clear(); } } } bool AArch64AsmPrinter::runOnMachineFunction(MachineFunction &MF) { MCP = MF.getConstantPool(); return AsmPrinter::runOnMachineFunction(MF); } // Force static initialization. extern "C" void LLVMInitializeAArch64AsmPrinter() { RegisterAsmPrinter X(TheAArch64Target); }