//===- ARMInstrFormats.td - ARM Instruction Formats ----------*- tablegen -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // // ARM Instruction Format Definitions. // // Format specifies the encoding used by the instruction. This is part of the // ad-hoc solution used to emit machine instruction encodings by our machine // code emitter. class Format val> { bits<6> Value = val; } def Pseudo : Format<0>; def MulFrm : Format<1>; def BrFrm : Format<2>; def BrMiscFrm : Format<3>; def DPFrm : Format<4>; def DPSoRegFrm : Format<5>; def LdFrm : Format<6>; def StFrm : Format<7>; def LdMiscFrm : Format<8>; def StMiscFrm : Format<9>; def LdStMulFrm : Format<10>; def LdStExFrm : Format<11>; def ArithMiscFrm : Format<12>; def SatFrm : Format<13>; def ExtFrm : Format<14>; def VFPUnaryFrm : Format<15>; def VFPBinaryFrm : Format<16>; def VFPConv1Frm : Format<17>; def VFPConv2Frm : Format<18>; def VFPConv3Frm : Format<19>; def VFPConv4Frm : Format<20>; def VFPConv5Frm : Format<21>; def VFPLdStFrm : Format<22>; def VFPLdStMulFrm : Format<23>; def VFPMiscFrm : Format<24>; def ThumbFrm : Format<25>; def MiscFrm : Format<26>; def NGetLnFrm : Format<27>; def NSetLnFrm : Format<28>; def NDupFrm : Format<29>; def NLdStFrm : Format<30>; def N1RegModImmFrm: Format<31>; def N2RegFrm : Format<32>; def NVCVTFrm : Format<33>; def NVDupLnFrm : Format<34>; def N2RegVShLFrm : Format<35>; def N2RegVShRFrm : Format<36>; def N3RegFrm : Format<37>; def N3RegVShFrm : Format<38>; def NVExtFrm : Format<39>; def NVMulSLFrm : Format<40>; def NVTBLFrm : Format<41>; // Misc flags. // The instruction has an Rn register operand. // UnaryDP - Indicates this is a unary data processing instruction, i.e. // it doesn't have a Rn operand. class UnaryDP { bit isUnaryDataProc = 1; } // Xform16Bit - Indicates this Thumb2 instruction may be transformed into // a 16-bit Thumb instruction if certain conditions are met. class Xform16Bit { bit canXformTo16Bit = 1; } //===----------------------------------------------------------------------===// // ARM Instruction flags. These need to match ARMBaseInstrInfo.h. // // FIXME: Once the JIT is MC-ized, these can go away. // Addressing mode. class AddrMode val> { bits<5> Value = val; } def AddrModeNone : AddrMode<0>; def AddrMode1 : AddrMode<1>; def AddrMode2 : AddrMode<2>; def AddrMode3 : AddrMode<3>; def AddrMode4 : AddrMode<4>; def AddrMode5 : AddrMode<5>; def AddrMode6 : AddrMode<6>; def AddrModeT1_1 : AddrMode<7>; def AddrModeT1_2 : AddrMode<8>; def AddrModeT1_4 : AddrMode<9>; def AddrModeT1_s : AddrMode<10>; def AddrModeT2_i12 : AddrMode<11>; def AddrModeT2_i8 : AddrMode<12>; def AddrModeT2_so : AddrMode<13>; def AddrModeT2_pc : AddrMode<14>; def AddrModeT2_i8s4 : AddrMode<15>; def AddrMode_i12 : AddrMode<16>; // Instruction size. class SizeFlagVal val> { bits<3> Value = val; } def SizeInvalid : SizeFlagVal<0>; // Unset. def SizeSpecial : SizeFlagVal<1>; // Pseudo or special. def Size8Bytes : SizeFlagVal<2>; def Size4Bytes : SizeFlagVal<3>; def Size2Bytes : SizeFlagVal<4>; // Load / store index mode. class IndexMode val> { bits<2> Value = val; } def IndexModeNone : IndexMode<0>; def IndexModePre : IndexMode<1>; def IndexModePost : IndexMode<2>; def IndexModeUpd : IndexMode<3>; // Instruction execution domain. class Domain val> { bits<2> Value = val; } def GenericDomain : Domain<0>; def VFPDomain : Domain<1>; // Instructions in VFP domain only def NeonDomain : Domain<2>; // Instructions in Neon domain only def VFPNeonDomain : Domain<3>; // Instructions in both VFP & Neon domains //===----------------------------------------------------------------------===// // ARM special operands. // def CondCodeOperand : AsmOperandClass { let Name = "CondCode"; let SuperClasses = []; } def CCOutOperand : AsmOperandClass { let Name = "CCOut"; let SuperClasses = []; } // ARM Predicate operand. Default to 14 = always (AL). Second part is CC // register whose default is 0 (no register). def pred : PredicateOperand { let PrintMethod = "printPredicateOperand"; let ParserMatchClass = CondCodeOperand; } // Conditional code result for instructions whose 's' bit is set, e.g. subs. def cc_out : OptionalDefOperand { let EncoderMethod = "getCCOutOpValue"; let PrintMethod = "printSBitModifierOperand"; let ParserMatchClass = CCOutOperand; } // Same as cc_out except it defaults to setting CPSR. def s_cc_out : OptionalDefOperand { let EncoderMethod = "getCCOutOpValue"; let PrintMethod = "printSBitModifierOperand"; let ParserMatchClass = CCOutOperand; } // ARM special operands for disassembly only. // def setend_op : Operand { let PrintMethod = "printSetendOperand"; } def cps_opt : Operand { let PrintMethod = "printCPSOptionOperand"; } def msr_mask : Operand { let PrintMethod = "printMSRMaskOperand"; } // A8.6.117, A8.6.118. Different instructions are generated for #0 and #-0. // The neg_zero operand translates -0 to -1, -1 to -2, ..., etc. def neg_zero : Operand { let PrintMethod = "printNegZeroOperand"; } //===----------------------------------------------------------------------===// // ARM Instruction templates. // class InstTemplate : Instruction { let Namespace = "ARM"; AddrMode AM = am; SizeFlagVal SZ = sz; IndexMode IM = im; bits<2> IndexModeBits = IM.Value; Format F = f; bits<6> Form = F.Value; Domain D = d; bit isUnaryDataProc = 0; bit canXformTo16Bit = 0; // If this is a pseudo instruction, mark it isCodeGenOnly. let isCodeGenOnly = !eq(!cast(f), "Pseudo"); // The layout of TSFlags should be kept in sync with ARMBaseInstrInfo.h. let TSFlags{4-0} = AM.Value; let TSFlags{7-5} = SZ.Value; let TSFlags{9-8} = IndexModeBits; let TSFlags{15-10} = Form; let TSFlags{16} = isUnaryDataProc; let TSFlags{17} = canXformTo16Bit; let TSFlags{19-18} = D.Value; let Constraints = cstr; let Itinerary = itin; } class Encoding { field bits<32> Inst; } class InstARM : InstTemplate, Encoding; // This Encoding-less class is used by Thumb1 to specify the encoding bits later // on by adding flavors to specific instructions. class InstThumb : InstTemplate; class PseudoInst pattern> // FIXME: This really should derive from InstTemplate instead, as pseudos // don't need encoding information. TableGen doesn't like that // currently. Need to figure out why and fix it. : InstARM { let OutOperandList = oops; let InOperandList = iops; let Pattern = pattern; } // PseudoInst that's ARM-mode only. class ARMPseudoInst pattern> : PseudoInst { let SZ = sz; list Predicates = [IsARM]; } // PseudoInst that's Thumb-mode only. class tPseudoInst pattern> : PseudoInst { let SZ = sz; list Predicates = [IsThumb]; } // PseudoInst that's Thumb2-mode only. class t2PseudoInst pattern> : PseudoInst { let SZ = sz; list Predicates = [IsThumb2]; } // Almost all ARM instructions are predicable. class I pattern> : InstARM { bits<4> p; let Inst{31-28} = p; let OutOperandList = oops; let InOperandList = !con(iops, (ins pred:$p)); let AsmString = !strconcat(opc, "${p}", asm); let Pattern = pattern; list Predicates = [IsARM]; } // A few are not predicable class InoP pattern> : InstARM { let OutOperandList = oops; let InOperandList = iops; let AsmString = !strconcat(opc, asm); let Pattern = pattern; let isPredicable = 0; list Predicates = [IsARM]; } // Same as I except it can optionally modify CPSR. Note it's modeled as an input // operand since by default it's a zero register. It will become an implicit def // once it's "flipped". class sI pattern> : InstARM { bits<4> p; // Predicate operand bits<1> s; // condition-code set flag ('1' if the insn should set the flags) let Inst{31-28} = p; let Inst{20} = s; let OutOperandList = oops; let InOperandList = !con(iops, (ins pred:$p, cc_out:$s)); let AsmString = !strconcat(opc, "${s}${p}", asm); let Pattern = pattern; list Predicates = [IsARM]; } // Special cases class XI pattern> : InstARM { let OutOperandList = oops; let InOperandList = iops; let AsmString = asm; let Pattern = pattern; list Predicates = [IsARM]; } class AI pattern> : I; class AsI pattern> : sI; class AXI pattern> : XI; class AInoP pattern> : InoP; // Ctrl flow instructions class ABI opcod, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : I { let Inst{27-24} = opcod; } class ABXI opcod, dag oops, dag iops, InstrItinClass itin, string asm, list pattern> : XI { let Inst{27-24} = opcod; } // BR_JT instructions class JTI pattern> : XI; // Atomic load/store instructions class AIldrex opcod, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : I { bits<4> Rt; bits<4> Rn; let Inst{27-23} = 0b00011; let Inst{22-21} = opcod; let Inst{20} = 1; let Inst{19-16} = Rn; let Inst{15-12} = Rt; let Inst{11-0} = 0b111110011111; } class AIstrex opcod, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : I { bits<4> Rd; bits<4> Rt; bits<4> Rn; let Inst{27-23} = 0b00011; let Inst{22-21} = opcod; let Inst{20} = 0; let Inst{19-16} = Rn; let Inst{15-12} = Rd; let Inst{11-4} = 0b11111001; let Inst{3-0} = Rt; } class AIswp pattern> : AI { bits<4> Rt; bits<4> Rt2; bits<4> Rn; let Inst{27-23} = 0b00010; let Inst{22} = b; let Inst{21-20} = 0b00; let Inst{19-16} = Rn; let Inst{15-12} = Rt; let Inst{11-4} = 0b00001001; let Inst{3-0} = Rt2; } // addrmode1 instructions class AI1 opcod, dag oops, dag iops, Format f, InstrItinClass itin, string opc, string asm, list pattern> : I { let Inst{24-21} = opcod; let Inst{27-26} = 0b00; } class AsI1 opcod, dag oops, dag iops, Format f, InstrItinClass itin, string opc, string asm, list pattern> : sI { let Inst{24-21} = opcod; let Inst{27-26} = 0b00; } class AXI1 opcod, dag oops, dag iops, Format f, InstrItinClass itin, string asm, list pattern> : XI { let Inst{24-21} = opcod; let Inst{27-26} = 0b00; } // loads // LDR/LDRB/STR/STRB/... class AI2ldst op, bit isLd, bit isByte, dag oops, dag iops, AddrMode am, Format f, InstrItinClass itin, string opc, string asm, list pattern> : I { let Inst{27-25} = op; let Inst{24} = 1; // 24 == P // 23 == U let Inst{22} = isByte; let Inst{21} = 0; // 21 == W let Inst{20} = isLd; } // Indexed load/stores class AI2ldstidx pattern> : I { bits<4> Rt; let Inst{27-26} = 0b01; let Inst{24} = isPre; // P bit let Inst{22} = isByte; // B bit let Inst{21} = isPre; // W bit let Inst{20} = isLd; // L bit let Inst{15-12} = Rt; } class AI2stridx pattern> : AI2ldstidx<0, isByte, isPre, oops, iops, im, f, itin, opc, asm, cstr, pattern> { // AM2 store w/ two operands: (GPR, am2offset) // {13} 1 == Rm, 0 == imm12 // {12} isAdd // {11-0} imm12/Rm bits<14> offset; bits<4> Rn; let Inst{25} = offset{13}; let Inst{23} = offset{12}; let Inst{19-16} = Rn; let Inst{11-0} = offset{11-0}; } // addrmode3 instructions class AI3ld op, bit op20, dag oops, dag iops, Format f, InstrItinClass itin, string opc, string asm, list pattern> : I { bits<14> addr; bits<4> Rt; let Inst{27-25} = 0b000; let Inst{24} = 1; // P bit let Inst{23} = addr{8}; // U bit let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm let Inst{21} = 0; // W bit let Inst{20} = op20; // L bit let Inst{19-16} = addr{12-9}; // Rn let Inst{15-12} = Rt; // Rt let Inst{11-8} = addr{7-4}; // imm7_4/zero let Inst{7-4} = op; let Inst{3-0} = addr{3-0}; // imm3_0/Rm } class AI3ldstidx op, bit op20, bit isLd, bit isPre, dag oops, dag iops, IndexMode im, Format f, InstrItinClass itin, string opc, string asm, string cstr, list pattern> : I { bits<4> Rt; let Inst{27-25} = 0b000; let Inst{24} = isPre; // P bit let Inst{21} = isPre; // W bit let Inst{20} = op20; // L bit let Inst{15-12} = Rt; // Rt let Inst{7-4} = op; } class AI3stridx op, bit isByte, bit isPre, dag oops, dag iops, IndexMode im, Format f, InstrItinClass itin, string opc, string asm, string cstr, list pattern> : AI2ldstidx<0, isByte, isPre, oops, iops, im, f, itin, opc, asm, cstr, pattern> { // AM3 store w/ two operands: (GPR, am3offset) bits<14> offset; bits<4> Rt; bits<4> Rn; let Inst{27-25} = 0b000; let Inst{23} = offset{8}; let Inst{22} = offset{9}; let Inst{19-16} = Rn; let Inst{15-12} = Rt; // Rt let Inst{11-8} = offset{7-4}; // imm7_4/zero let Inst{7-4} = op; let Inst{3-0} = offset{3-0}; // imm3_0/Rm } // stores class AI3str op, dag oops, dag iops, Format f, InstrItinClass itin, string opc, string asm, list pattern> : I { bits<14> addr; bits<4> Rt; let Inst{27-25} = 0b000; let Inst{24} = 1; // P bit let Inst{23} = addr{8}; // U bit let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm let Inst{21} = 0; // W bit let Inst{20} = 0; // L bit let Inst{19-16} = addr{12-9}; // Rn let Inst{15-12} = Rt; // Rt let Inst{11-8} = addr{7-4}; // imm7_4/zero let Inst{7-4} = op; let Inst{3-0} = addr{3-0}; // imm3_0/Rm } // Pre-indexed stores class AI3sthpr pattern> : I { let Inst{4} = 1; let Inst{5} = 1; // H bit let Inst{6} = 0; // S bit let Inst{7} = 1; let Inst{20} = 0; // L bit let Inst{21} = 1; // W bit let Inst{24} = 1; // P bit let Inst{27-25} = 0b000; } class AI3stdpr pattern> : I { let Inst{4} = 1; let Inst{5} = 1; // H bit let Inst{6} = 1; // S bit let Inst{7} = 1; let Inst{20} = 0; // L bit let Inst{21} = 1; // W bit let Inst{24} = 1; // P bit let Inst{27-25} = 0b000; } // Post-indexed stores class AI3sthpo pattern> : I { let Inst{4} = 1; let Inst{5} = 1; // H bit let Inst{6} = 0; // S bit let Inst{7} = 1; let Inst{20} = 0; // L bit let Inst{21} = 0; // W bit let Inst{24} = 0; // P bit let Inst{27-25} = 0b000; } class AI3stdpo pattern> : I { let Inst{4} = 1; let Inst{5} = 1; // H bit let Inst{6} = 1; // S bit let Inst{7} = 1; let Inst{20} = 0; // L bit let Inst{21} = 0; // W bit let Inst{24} = 0; // P bit let Inst{27-25} = 0b000; } // addrmode4 instructions class AXI4 pattern> : XI { bits<4> p; bits<16> regs; bits<4> Rn; let Inst{31-28} = p; let Inst{27-25} = 0b100; let Inst{22} = 0; // S bit let Inst{19-16} = Rn; let Inst{15-0} = regs; } // Unsigned multiply, multiply-accumulate instructions. class AMul1I opcod, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : I { let Inst{7-4} = 0b1001; let Inst{20} = 0; // S bit let Inst{27-21} = opcod; } class AsMul1I opcod, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : sI { let Inst{7-4} = 0b1001; let Inst{27-21} = opcod; } // Most significant word multiply class AMul2I opcod, bits<4> opc7_4, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : I { bits<4> Rd; bits<4> Rn; bits<4> Rm; let Inst{7-4} = opc7_4; let Inst{20} = 1; let Inst{27-21} = opcod; let Inst{19-16} = Rd; let Inst{11-8} = Rm; let Inst{3-0} = Rn; } // MSW multiple w/ Ra operand class AMul2Ia opcod, bits<4> opc7_4, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : AMul2I { bits<4> Ra; let Inst{15-12} = Ra; } // SMUL / SMULW / SMLA / SMLAW class AMulxyIbase opcod, bits<2> bit6_5, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : I { bits<4> Rn; bits<4> Rm; let Inst{4} = 0; let Inst{7} = 1; let Inst{20} = 0; let Inst{27-21} = opcod; let Inst{6-5} = bit6_5; let Inst{11-8} = Rm; let Inst{3-0} = Rn; } class AMulxyI opcod, bits<2> bit6_5, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : AMulxyIbase { bits<4> Rd; let Inst{19-16} = Rd; } // AMulxyI with Ra operand class AMulxyIa opcod, bits<2> bit6_5, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : AMulxyI { bits<4> Ra; let Inst{15-12} = Ra; } // SMLAL* class AMulxyI64 opcod, bits<2> bit6_5, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : AMulxyIbase { bits<4> RdLo; bits<4> RdHi; let Inst{19-16} = RdHi; let Inst{15-12} = RdLo; } // Extend instructions. class AExtI opcod, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : I { // All AExtI instructions have Rd and Rm register operands. bits<4> Rd; bits<4> Rm; let Inst{15-12} = Rd; let Inst{3-0} = Rm; let Inst{7-4} = 0b0111; let Inst{9-8} = 0b00; let Inst{27-20} = opcod; } // Misc Arithmetic instructions. class AMiscA1I opcod, bits<4> opc7_4, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : I { bits<4> Rd; bits<4> Rm; let Inst{27-20} = opcod; let Inst{19-16} = 0b1111; let Inst{15-12} = Rd; let Inst{11-8} = 0b1111; let Inst{7-4} = opc7_4; let Inst{3-0} = Rm; } // PKH instructions class APKHI opcod, bit tb, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : I { bits<4> Rd; bits<4> Rn; bits<4> Rm; bits<8> sh; let Inst{27-20} = opcod; let Inst{19-16} = Rn; let Inst{15-12} = Rd; let Inst{11-7} = sh{7-3}; let Inst{6} = tb; let Inst{5-4} = 0b01; let Inst{3-0} = Rm; } //===----------------------------------------------------------------------===// // ARMPat - Same as Pat<>, but requires that the compiler be in ARM mode. class ARMPat : Pat { list Predicates = [IsARM]; } class ARMV5TEPat : Pat { list Predicates = [IsARM, HasV5TE]; } class ARMV6Pat : Pat { list Predicates = [IsARM, HasV6]; } //===----------------------------------------------------------------------===// // Thumb Instruction Format Definitions. // class ThumbI pattern> : InstThumb { let OutOperandList = oops; let InOperandList = iops; let AsmString = asm; let Pattern = pattern; list Predicates = [IsThumb]; } // TI - Thumb instruction. class TI pattern> : ThumbI; // Two-address instructions class TIt pattern> : ThumbI; // tBL, tBX 32-bit instructions class TIx2 opcod1, bits<2> opcod2, bit opcod3, dag oops, dag iops, InstrItinClass itin, string asm, list pattern> : ThumbI, Encoding { let Inst{31-27} = opcod1; let Inst{15-14} = opcod2; let Inst{12} = opcod3; } // Move to/from coprocessor instructions class T1Cop pattern> : ThumbI, Encoding, Requires<[IsThumb, HasV6]> { let Inst{31-28} = 0b1110; } // BR_JT instructions class TJTI pattern> : ThumbI; // Thumb1 only class Thumb1I pattern> : InstThumb { let OutOperandList = oops; let InOperandList = iops; let AsmString = asm; let Pattern = pattern; list Predicates = [IsThumb, IsThumb1Only]; } class T1I pattern> : Thumb1I; class T1Ix2 pattern> : Thumb1I; // Two-address instructions class T1It pattern> : Thumb1I; // Thumb1 instruction that can either be predicated or set CPSR. class Thumb1sI pattern> : InstThumb { let OutOperandList = !con(oops, (outs s_cc_out:$s)); let InOperandList = !con(iops, (ins pred:$p)); let AsmString = !strconcat(opc, "${s}${p}", asm); let Pattern = pattern; list Predicates = [IsThumb, IsThumb1Only]; } class T1sI pattern> : Thumb1sI; // Two-address instructions class T1sIt pattern> : Thumb1sI; // Thumb1 instruction that can be predicated. class Thumb1pI pattern> : InstThumb { let OutOperandList = oops; let InOperandList = !con(iops, (ins pred:$p)); let AsmString = !strconcat(opc, "${p}", asm); let Pattern = pattern; list Predicates = [IsThumb, IsThumb1Only]; } class T1pI pattern> : Thumb1pI; // Two-address instructions class T1pIt pattern> : Thumb1pI; class T1pIs pattern> : Thumb1pI; class Encoding16 : Encoding { let Inst{31-16} = 0x0000; } // A6.2 16-bit Thumb instruction encoding class T1Encoding opcode> : Encoding16 { let Inst{15-10} = opcode; } // A6.2.1 Shift (immediate), add, subtract, move, and compare encoding. class T1General opcode> : Encoding16 { let Inst{15-14} = 0b00; let Inst{13-9} = opcode; } // A6.2.2 Data-processing encoding. class T1DataProcessing opcode> : Encoding16 { let Inst{15-10} = 0b010000; let Inst{9-6} = opcode; } // A6.2.3 Special data instructions and branch and exchange encoding. class T1Special opcode> : Encoding16 { let Inst{15-10} = 0b010001; let Inst{9-6} = opcode; } // A6.2.4 Load/store single data item encoding. class T1LoadStore opA, bits<3> opB> : Encoding16 { let Inst{15-12} = opA; let Inst{11-9} = opB; } class T1LdStSP opB> : T1LoadStore<0b1001, opB>; // SP relative // Helper classes to encode Thumb1 loads and stores. For immediates, the // following bits are used for "opA" (see A6.2.4): // // 0b0110 => Immediate, 4 bytes // 0b1000 => Immediate, 2 bytes // 0b0111 => Immediate, 1 byte class T1pILdStEncode opcode, dag oops, dag iops, AddrMode am, InstrItinClass itin, string opc, string asm, list pattern> : Thumb1pI, T1LoadStore<0b0101, opcode> { bits<3> Rt; bits<8> addr; let Inst{8-6} = addr{5-3}; // Rm let Inst{5-3} = addr{2-0}; // Rn let Inst{2-0} = Rt; } class T1pILdStEncodeImm opA, bit opB, dag oops, dag iops, AddrMode am, InstrItinClass itin, string opc, string asm, list pattern> : Thumb1pI, T1LoadStore { bits<3> Rt; bits<8> addr; let Inst{10-6} = addr{7-3}; // imm5 let Inst{5-3} = addr{2-0}; // Rn let Inst{2-0} = Rt; } // A6.2.5 Miscellaneous 16-bit instructions encoding. class T1Misc opcode> : Encoding16 { let Inst{15-12} = 0b1011; let Inst{11-5} = opcode; } // Thumb2I - Thumb2 instruction. Almost all Thumb2 instructions are predicable. class Thumb2I pattern> : InstARM { let OutOperandList = oops; let InOperandList = !con(iops, (ins pred:$p)); let AsmString = !strconcat(opc, "${p}", asm); let Pattern = pattern; list Predicates = [IsThumb2]; } // Same as Thumb2I except it can optionally modify CPSR. Note it's modeled as an // input operand since by default it's a zero register. It will become an // implicit def once it's "flipped". // // FIXME: This uses unified syntax so {s} comes before {p}. We should make it // more consistent. class Thumb2sI pattern> : InstARM { bits<1> s; // condition-code set flag ('1' if the insn should set the flags) let Inst{20} = s; let OutOperandList = oops; let InOperandList = !con(iops, (ins pred:$p, cc_out:$s)); let AsmString = !strconcat(opc, "${s}${p}", asm); let Pattern = pattern; list Predicates = [IsThumb2]; } // Special cases class Thumb2XI pattern> : InstARM { let OutOperandList = oops; let InOperandList = iops; let AsmString = asm; let Pattern = pattern; list Predicates = [IsThumb2]; } class ThumbXI pattern> : InstARM { let OutOperandList = oops; let InOperandList = iops; let AsmString = asm; let Pattern = pattern; list Predicates = [IsThumb, IsThumb1Only]; } class T2I pattern> : Thumb2I; class T2Ii12 pattern> : Thumb2I; class T2Ii8 pattern> : Thumb2I; class T2Iso pattern> : Thumb2I; class T2Ipc pattern> : Thumb2I; class T2Ii8s4 pattern> : Thumb2I { bits<4> Rt; bits<4> Rt2; bits<13> addr; let Inst{31-25} = 0b1110100; let Inst{24} = P; let Inst{23} = addr{8}; let Inst{22} = 1; let Inst{21} = W; let Inst{20} = isLoad; let Inst{19-16} = addr{12-9}; let Inst{15-12} = Rt{3-0}; let Inst{11-8} = Rt2{3-0}; let Inst{7-0} = addr{7-0}; } class T2sI pattern> : Thumb2sI; class T2XI pattern> : Thumb2XI; class T2JTI pattern> : Thumb2XI; // Move to/from coprocessor instructions class T2Cop pattern> : T2XI, Requires<[IsThumb2, HasV6]> { let Inst{31-28} = 0b1111; } // Two-address instructions class T2XIt pattern> : Thumb2XI; // T2Iidxldst - Thumb2 indexed load / store instructions. class T2Iidxldst opcod, bit load, bit pre, dag oops, dag iops, AddrMode am, IndexMode im, InstrItinClass itin, string opc, string asm, string cstr, list pattern> : InstARM { let OutOperandList = oops; let InOperandList = !con(iops, (ins pred:$p)); let AsmString = !strconcat(opc, "${p}", asm); let Pattern = pattern; list Predicates = [IsThumb2]; let Inst{31-27} = 0b11111; let Inst{26-25} = 0b00; let Inst{24} = signed; let Inst{23} = 0; let Inst{22-21} = opcod; let Inst{20} = load; let Inst{11} = 1; // (P, W) = (1, 1) Pre-indexed or (0, 1) Post-indexed let Inst{10} = pre; // The P bit. let Inst{8} = 1; // The W bit. bits<9> addr; let Inst{7-0} = addr{7-0}; let Inst{9} = addr{8}; // Sign bit bits<4> Rt; bits<4> Rn; let Inst{15-12} = Rt{3-0}; let Inst{19-16} = Rn{3-0}; } // Tv5Pat - Same as Pat<>, but requires V5T Thumb mode. class Tv5Pat : Pat { list Predicates = [IsThumb, IsThumb1Only, HasV5T]; } // T1Pat - Same as Pat<>, but requires that the compiler be in Thumb1 mode. class T1Pat : Pat { list Predicates = [IsThumb, IsThumb1Only]; } // T2Pat - Same as Pat<>, but requires that the compiler be in Thumb2 mode. class T2Pat : Pat { list Predicates = [IsThumb2]; } //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ARM VFP Instruction templates. // // Almost all VFP instructions are predicable. class VFPI pattern> : InstARM { bits<4> p; let Inst{31-28} = p; let OutOperandList = oops; let InOperandList = !con(iops, (ins pred:$p)); let AsmString = !strconcat(opc, "${p}", asm); let Pattern = pattern; let PostEncoderMethod = "VFPThumb2PostEncoder"; list Predicates = [HasVFP2]; } // Special cases class VFPXI pattern> : InstARM { bits<4> p; let Inst{31-28} = p; let OutOperandList = oops; let InOperandList = iops; let AsmString = asm; let Pattern = pattern; let PostEncoderMethod = "VFPThumb2PostEncoder"; list Predicates = [HasVFP2]; } class VFPAI pattern> : VFPI { let PostEncoderMethod = "VFPThumb2PostEncoder"; } // ARM VFP addrmode5 loads and stores class ADI5 opcod1, bits<2> opcod2, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : VFPI { // Instruction operands. bits<5> Dd; bits<13> addr; // Encode instruction operands. let Inst{23} = addr{8}; // U (add = (U == '1')) let Inst{22} = Dd{4}; let Inst{19-16} = addr{12-9}; // Rn let Inst{15-12} = Dd{3-0}; let Inst{7-0} = addr{7-0}; // imm8 // TODO: Mark the instructions with the appropriate subtarget info. let Inst{27-24} = opcod1; let Inst{21-20} = opcod2; let Inst{11-9} = 0b101; let Inst{8} = 1; // Double precision // 64-bit loads & stores operate on both NEON and VFP pipelines. let D = VFPNeonDomain; } class ASI5 opcod1, bits<2> opcod2, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : VFPI { // Instruction operands. bits<5> Sd; bits<13> addr; // Encode instruction operands. let Inst{23} = addr{8}; // U (add = (U == '1')) let Inst{22} = Sd{0}; let Inst{19-16} = addr{12-9}; // Rn let Inst{15-12} = Sd{4-1}; let Inst{7-0} = addr{7-0}; // imm8 // TODO: Mark the instructions with the appropriate subtarget info. let Inst{27-24} = opcod1; let Inst{21-20} = opcod2; let Inst{11-9} = 0b101; let Inst{8} = 0; // Single precision } // VFP Load / store multiple pseudo instructions. class PseudoVFPLdStM pattern> : InstARM { let OutOperandList = oops; let InOperandList = !con(iops, (ins pred:$p)); let Pattern = pattern; list Predicates = [HasVFP2]; } // Load / store multiple class AXDI4 pattern> : VFPXI { // Instruction operands. bits<4> Rn; bits<13> regs; // Encode instruction operands. let Inst{19-16} = Rn; let Inst{22} = regs{12}; let Inst{15-12} = regs{11-8}; let Inst{7-0} = regs{7-0}; // TODO: Mark the instructions with the appropriate subtarget info. let Inst{27-25} = 0b110; let Inst{11-9} = 0b101; let Inst{8} = 1; // Double precision // 64-bit loads & stores operate on both NEON and VFP pipelines. let D = VFPNeonDomain; } class AXSI4 pattern> : VFPXI { // Instruction operands. bits<4> Rn; bits<13> regs; // Encode instruction operands. let Inst{19-16} = Rn; let Inst{22} = regs{8}; let Inst{15-12} = regs{12-9}; let Inst{7-0} = regs{7-0}; // TODO: Mark the instructions with the appropriate subtarget info. let Inst{27-25} = 0b110; let Inst{11-9} = 0b101; let Inst{8} = 0; // Single precision } // Double precision, unary class ADuI opcod1, bits<2> opcod2, bits<4> opcod3, bits<2> opcod4, bit opcod5, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : VFPAI { // Instruction operands. bits<5> Dd; bits<5> Dm; // Encode instruction operands. let Inst{3-0} = Dm{3-0}; let Inst{5} = Dm{4}; let Inst{15-12} = Dd{3-0}; let Inst{22} = Dd{4}; let Inst{27-23} = opcod1; let Inst{21-20} = opcod2; let Inst{19-16} = opcod3; let Inst{11-9} = 0b101; let Inst{8} = 1; // Double precision let Inst{7-6} = opcod4; let Inst{4} = opcod5; } // Double precision, binary class ADbI opcod1, bits<2> opcod2, bit op6, bit op4, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : VFPAI { // Instruction operands. bits<5> Dd; bits<5> Dn; bits<5> Dm; // Encode instruction operands. let Inst{3-0} = Dm{3-0}; let Inst{5} = Dm{4}; let Inst{19-16} = Dn{3-0}; let Inst{7} = Dn{4}; let Inst{15-12} = Dd{3-0}; let Inst{22} = Dd{4}; let Inst{27-23} = opcod1; let Inst{21-20} = opcod2; let Inst{11-9} = 0b101; let Inst{8} = 1; // Double precision let Inst{6} = op6; let Inst{4} = op4; } // Single precision, unary class ASuI opcod1, bits<2> opcod2, bits<4> opcod3, bits<2> opcod4, bit opcod5, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : VFPAI { // Instruction operands. bits<5> Sd; bits<5> Sm; // Encode instruction operands. let Inst{3-0} = Sm{4-1}; let Inst{5} = Sm{0}; let Inst{15-12} = Sd{4-1}; let Inst{22} = Sd{0}; let Inst{27-23} = opcod1; let Inst{21-20} = opcod2; let Inst{19-16} = opcod3; let Inst{11-9} = 0b101; let Inst{8} = 0; // Single precision let Inst{7-6} = opcod4; let Inst{4} = opcod5; } // Single precision unary, if no NEON. Same as ASuI except not available if // NEON is enabled. class ASuIn opcod1, bits<2> opcod2, bits<4> opcod3, bits<2> opcod4, bit opcod5, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : ASuI { list Predicates = [HasVFP2,DontUseNEONForFP]; } // Single precision, binary class ASbI opcod1, bits<2> opcod2, bit op6, bit op4, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : VFPAI { // Instruction operands. bits<5> Sd; bits<5> Sn; bits<5> Sm; // Encode instruction operands. let Inst{3-0} = Sm{4-1}; let Inst{5} = Sm{0}; let Inst{19-16} = Sn{4-1}; let Inst{7} = Sn{0}; let Inst{15-12} = Sd{4-1}; let Inst{22} = Sd{0}; let Inst{27-23} = opcod1; let Inst{21-20} = opcod2; let Inst{11-9} = 0b101; let Inst{8} = 0; // Single precision let Inst{6} = op6; let Inst{4} = op4; } // Single precision binary, if no NEON. Same as ASbI except not available if // NEON is enabled. class ASbIn opcod1, bits<2> opcod2, bit op6, bit op4, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : ASbI { list Predicates = [HasVFP2,DontUseNEONForFP]; // Instruction operands. bits<5> Sd; bits<5> Sn; bits<5> Sm; // Encode instruction operands. let Inst{3-0} = Sm{4-1}; let Inst{5} = Sm{0}; let Inst{19-16} = Sn{4-1}; let Inst{7} = Sn{0}; let Inst{15-12} = Sd{4-1}; let Inst{22} = Sd{0}; } // VFP conversion instructions class AVConv1I opcod1, bits<2> opcod2, bits<4> opcod3, bits<4> opcod4, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : VFPAI { let Inst{27-23} = opcod1; let Inst{21-20} = opcod2; let Inst{19-16} = opcod3; let Inst{11-8} = opcod4; let Inst{6} = 1; let Inst{4} = 0; } // VFP conversion between floating-point and fixed-point class AVConv1XI op1, bits<2> op2, bits<4> op3, bits<4> op4, bit op5, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : AVConv1I { // size (fixed-point number): sx == 0 ? 16 : 32 let Inst{7} = op5; // sx } // VFP conversion instructions, if no NEON class AVConv1In opcod1, bits<2> opcod2, bits<4> opcod3, bits<4> opcod4, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : AVConv1I { list Predicates = [HasVFP2,DontUseNEONForFP]; } class AVConvXI opcod1, bits<4> opcod2, dag oops, dag iops, Format f, InstrItinClass itin, string opc, string asm, list pattern> : VFPAI { let Inst{27-20} = opcod1; let Inst{11-8} = opcod2; let Inst{4} = 1; } class AVConv2I opcod1, bits<4> opcod2, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : AVConvXI; class AVConv3I opcod1, bits<4> opcod2, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : AVConvXI; class AVConv4I opcod1, bits<4> opcod2, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : AVConvXI; class AVConv5I opcod1, bits<4> opcod2, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : AVConvXI; //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ARM NEON Instruction templates. // class NeonI pattern> : InstARM { let OutOperandList = oops; let InOperandList = !con(iops, (ins pred:$p)); let AsmString = !strconcat(opc, "${p}", ".", dt, "\t", asm); let Pattern = pattern; list Predicates = [HasNEON]; } // Same as NeonI except it does not have a "data type" specifier. class NeonXI pattern> : InstARM { let OutOperandList = oops; let InOperandList = !con(iops, (ins pred:$p)); let AsmString = !strconcat(opc, "${p}", "\t", asm); let Pattern = pattern; list Predicates = [HasNEON]; } class NLdSt op21_20, bits<4> op11_8, bits<4> op7_4, dag oops, dag iops, InstrItinClass itin, string opc, string dt, string asm, string cstr, list pattern> : NeonI { let Inst{31-24} = 0b11110100; let Inst{23} = op23; let Inst{21-20} = op21_20; let Inst{11-8} = op11_8; let Inst{7-4} = op7_4; let PostEncoderMethod = "NEONThumb2LoadStorePostEncoder"; bits<5> Vd; bits<6> Rn; bits<4> Rm; let Inst{22} = Vd{4}; let Inst{15-12} = Vd{3-0}; let Inst{19-16} = Rn{3-0}; let Inst{3-0} = Rm{3-0}; } class NLdStLn op21_20, bits<4> op11_8, bits<4> op7_4, dag oops, dag iops, InstrItinClass itin, string opc, string dt, string asm, string cstr, list pattern> : NLdSt { bits<3> lane; } class PseudoNLdSt : InstARM { let OutOperandList = oops; let InOperandList = !con(iops, (ins pred:$p)); list Predicates = [HasNEON]; } class PseudoNeonI pattern> : InstARM { let OutOperandList = oops; let InOperandList = !con(iops, (ins pred:$p)); let Pattern = pattern; list Predicates = [HasNEON]; } class NDataI pattern> : NeonI { let Inst{31-25} = 0b1111001; let PostEncoderMethod = "NEONThumb2DataIPostEncoder"; } class NDataXI pattern> : NeonXI { let Inst{31-25} = 0b1111001; let PostEncoderMethod = "NEONThumb2DataIPostEncoder"; } // NEON "one register and a modified immediate" format. class N1ModImm op21_19, bits<4> op11_8, bit op7, bit op6, bit op5, bit op4, dag oops, dag iops, InstrItinClass itin, string opc, string dt, string asm, string cstr, list pattern> : NDataI { let Inst{23} = op23; let Inst{21-19} = op21_19; let Inst{11-8} = op11_8; let Inst{7} = op7; let Inst{6} = op6; let Inst{5} = op5; let Inst{4} = op4; // Instruction operands. bits<5> Vd; bits<13> SIMM; let Inst{15-12} = Vd{3-0}; let Inst{22} = Vd{4}; let Inst{24} = SIMM{7}; let Inst{18-16} = SIMM{6-4}; let Inst{3-0} = SIMM{3-0}; } // NEON 2 vector register format. class N2V op24_23, bits<2> op21_20, bits<2> op19_18, bits<2> op17_16, bits<5> op11_7, bit op6, bit op4, dag oops, dag iops, InstrItinClass itin, string opc, string dt, string asm, string cstr, list pattern> : NDataI { let Inst{24-23} = op24_23; let Inst{21-20} = op21_20; let Inst{19-18} = op19_18; let Inst{17-16} = op17_16; let Inst{11-7} = op11_7; let Inst{6} = op6; let Inst{4} = op4; // Instruction operands. bits<5> Vd; bits<5> Vm; let Inst{15-12} = Vd{3-0}; let Inst{22} = Vd{4}; let Inst{3-0} = Vm{3-0}; let Inst{5} = Vm{4}; } // Same as N2V except it doesn't have a datatype suffix. class N2VX op24_23, bits<2> op21_20, bits<2> op19_18, bits<2> op17_16, bits<5> op11_7, bit op6, bit op4, dag oops, dag iops, InstrItinClass itin, string opc, string asm, string cstr, list pattern> : NDataXI { let Inst{24-23} = op24_23; let Inst{21-20} = op21_20; let Inst{19-18} = op19_18; let Inst{17-16} = op17_16; let Inst{11-7} = op11_7; let Inst{6} = op6; let Inst{4} = op4; // Instruction operands. bits<5> Vd; bits<5> Vm; let Inst{15-12} = Vd{3-0}; let Inst{22} = Vd{4}; let Inst{3-0} = Vm{3-0}; let Inst{5} = Vm{4}; } // NEON 2 vector register with immediate. class N2VImm op11_8, bit op7, bit op6, bit op4, dag oops, dag iops, Format f, InstrItinClass itin, string opc, string dt, string asm, string cstr, list pattern> : NDataI { let Inst{24} = op24; let Inst{23} = op23; let Inst{11-8} = op11_8; let Inst{7} = op7; let Inst{6} = op6; let Inst{4} = op4; // Instruction operands. bits<5> Vd; bits<5> Vm; bits<6> SIMM; let Inst{15-12} = Vd{3-0}; let Inst{22} = Vd{4}; let Inst{3-0} = Vm{3-0}; let Inst{5} = Vm{4}; let Inst{21-16} = SIMM{5-0}; } // NEON 3 vector register format. class N3V op21_20, bits<4> op11_8, bit op6, bit op4, dag oops, dag iops, Format f, InstrItinClass itin, string opc, string dt, string asm, string cstr, list pattern> : NDataI { let Inst{24} = op24; let Inst{23} = op23; let Inst{21-20} = op21_20; let Inst{11-8} = op11_8; let Inst{6} = op6; let Inst{4} = op4; // Instruction operands. bits<5> Vd; bits<5> Vn; bits<5> Vm; let Inst{15-12} = Vd{3-0}; let Inst{22} = Vd{4}; let Inst{19-16} = Vn{3-0}; let Inst{7} = Vn{4}; let Inst{3-0} = Vm{3-0}; let Inst{5} = Vm{4}; } // Same as N3V except it doesn't have a data type suffix. class N3VX op21_20, bits<4> op11_8, bit op6, bit op4, dag oops, dag iops, Format f, InstrItinClass itin, string opc, string asm, string cstr, list pattern> : NDataXI { let Inst{24} = op24; let Inst{23} = op23; let Inst{21-20} = op21_20; let Inst{11-8} = op11_8; let Inst{6} = op6; let Inst{4} = op4; // Instruction operands. bits<5> Vd; bits<5> Vn; bits<5> Vm; let Inst{15-12} = Vd{3-0}; let Inst{22} = Vd{4}; let Inst{19-16} = Vn{3-0}; let Inst{7} = Vn{4}; let Inst{3-0} = Vm{3-0}; let Inst{5} = Vm{4}; } // NEON VMOVs between scalar and core registers. class NVLaneOp opcod1, bits<4> opcod2, bits<2> opcod3, dag oops, dag iops, Format f, InstrItinClass itin, string opc, string dt, string asm, list pattern> : InstARM { let Inst{27-20} = opcod1; let Inst{11-8} = opcod2; let Inst{6-5} = opcod3; let Inst{4} = 1; let OutOperandList = oops; let InOperandList = !con(iops, (ins pred:$p)); let AsmString = !strconcat(opc, "${p}", ".", dt, "\t", asm); let Pattern = pattern; list Predicates = [HasNEON]; let PostEncoderMethod = "NEONThumb2DupPostEncoder"; bits<5> V; bits<4> R; bits<4> p; bits<4> lane; let Inst{31-28} = p{3-0}; let Inst{7} = V{4}; let Inst{19-16} = V{3-0}; let Inst{15-12} = R{3-0}; } class NVGetLane opcod1, bits<4> opcod2, bits<2> opcod3, dag oops, dag iops, InstrItinClass itin, string opc, string dt, string asm, list pattern> : NVLaneOp; class NVSetLane opcod1, bits<4> opcod2, bits<2> opcod3, dag oops, dag iops, InstrItinClass itin, string opc, string dt, string asm, list pattern> : NVLaneOp; class NVDup opcod1, bits<4> opcod2, bits<2> opcod3, dag oops, dag iops, InstrItinClass itin, string opc, string dt, string asm, list pattern> : NVLaneOp; // Vector Duplicate Lane (from scalar to all elements) class NVDupLane op19_16, bit op6, dag oops, dag iops, InstrItinClass itin, string opc, string dt, string asm, list pattern> : NDataI { let Inst{24-23} = 0b11; let Inst{21-20} = 0b11; let Inst{19-16} = op19_16; let Inst{11-7} = 0b11000; let Inst{6} = op6; let Inst{4} = 0; bits<5> Vd; bits<5> Vm; bits<4> lane; let Inst{22} = Vd{4}; let Inst{15-12} = Vd{3-0}; let Inst{5} = Vm{4}; let Inst{3-0} = Vm{3-0}; } // NEONFPPat - Same as Pat<>, but requires that the compiler be using NEON // for single-precision FP. class NEONFPPat : Pat { list Predicates = [HasNEON,UseNEONForFP]; }