//===-- NVPTXAsmPrinter.cpp - NVPTX LLVM assembly writer ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to NVPTX assembly language. // //===----------------------------------------------------------------------===// #include "NVPTXAsmPrinter.h" #include "MCTargetDesc/NVPTXMCAsmInfo.h" #include "NVPTX.h" #include "NVPTXInstrInfo.h" #include "NVPTXNumRegisters.h" #include "NVPTXRegisterInfo.h" #include "NVPTXTargetMachine.h" #include "NVPTXUtilities.h" #include "cl_common_defines.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Assembly/Writer.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/DebugInfo.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/Path.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/TimeValue.h" #include "llvm/Target/Mangler.h" #include "llvm/Target/TargetLoweringObjectFile.h" #include using namespace llvm; #include "NVPTXGenAsmWriter.inc" bool RegAllocNilUsed = true; #define DEPOTNAME "__local_depot" static cl::opt EmitLineNumbers("nvptx-emit-line-numbers", cl::desc("NVPTX Specific: Emit Line numbers even without -G"), cl::init(true)); namespace llvm { bool InterleaveSrcInPtx = false; } static cl::optInterleaveSrc("nvptx-emit-src", cl::ZeroOrMore, cl::desc("NVPTX Specific: Emit source line in ptx file"), cl::location(llvm::InterleaveSrcInPtx)); namespace { /// DiscoverDependentGlobals - Return a set of GlobalVariables on which \p V /// depends. void DiscoverDependentGlobals(Value *V, DenseSet &Globals) { if (GlobalVariable *GV = dyn_cast(V)) Globals.insert(GV); else { if (User *U = dyn_cast(V)) { for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i) { DiscoverDependentGlobals(U->getOperand(i), Globals); } } } } /// VisitGlobalVariableForEmission - Add \p GV to the list of GlobalVariable /// instances to be emitted, but only after any dependents have been added /// first. void VisitGlobalVariableForEmission(GlobalVariable *GV, SmallVectorImpl &Order, DenseSet &Visited, DenseSet &Visiting) { // Have we already visited this one? if (Visited.count(GV)) return; // Do we have a circular dependency? if (Visiting.count(GV)) report_fatal_error("Circular dependency found in global variable set"); // Start visiting this global Visiting.insert(GV); // Make sure we visit all dependents first DenseSet Others; for (unsigned i = 0, e = GV->getNumOperands(); i != e; ++i) DiscoverDependentGlobals(GV->getOperand(i), Others); for (DenseSet::iterator I = Others.begin(), E = Others.end(); I != E; ++I) VisitGlobalVariableForEmission(*I, Order, Visited, Visiting); // Now we can visit ourself Order.push_back(GV); Visited.insert(GV); Visiting.erase(GV); } } // @TODO: This is a copy from AsmPrinter.cpp. The function is static, so we // cannot just link to the existing version. /// LowerConstant - Lower the specified LLVM Constant to an MCExpr. /// using namespace nvptx; const MCExpr *nvptx::LowerConstant(const Constant *CV, AsmPrinter &AP) { MCContext &Ctx = AP.OutContext; if (CV->isNullValue() || isa(CV)) return MCConstantExpr::Create(0, Ctx); if (const ConstantInt *CI = dyn_cast(CV)) return MCConstantExpr::Create(CI->getZExtValue(), Ctx); if (const GlobalValue *GV = dyn_cast(CV)) return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx); if (const BlockAddress *BA = dyn_cast(CV)) return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx); const ConstantExpr *CE = dyn_cast(CV); if (CE == 0) llvm_unreachable("Unknown constant value to lower!"); switch (CE->getOpcode()) { default: // If the code isn't optimized, there may be outstanding folding // opportunities. Attempt to fold the expression using DataLayout as a // last resort before giving up. if (Constant *C = ConstantFoldConstantExpression(CE, AP.TM.getDataLayout())) if (C != CE) return LowerConstant(C, AP); // Otherwise report the problem to the user. { std::string S; raw_string_ostream OS(S); OS << "Unsupported expression in static initializer: "; WriteAsOperand(OS, CE, /*PrintType=*/false, !AP.MF ? 0 : AP.MF->getFunction()->getParent()); report_fatal_error(OS.str()); } case Instruction::GetElementPtr: { const DataLayout &TD = *AP.TM.getDataLayout(); // Generate a symbolic expression for the byte address APInt OffsetAI(TD.getPointerSizeInBits(), 0); cast(CE)->accumulateConstantOffset(TD, OffsetAI); const MCExpr *Base = LowerConstant(CE->getOperand(0), AP); if (!OffsetAI) return Base; int64_t Offset = OffsetAI.getSExtValue(); return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx), Ctx); } case Instruction::Trunc: // We emit the value and depend on the assembler to truncate the generated // expression properly. This is important for differences between // blockaddress labels. Since the two labels are in the same function, it // is reasonable to treat their delta as a 32-bit value. // FALL THROUGH. case Instruction::BitCast: return LowerConstant(CE->getOperand(0), AP); case Instruction::IntToPtr: { const DataLayout &TD = *AP.TM.getDataLayout(); // Handle casts to pointers by changing them into casts to the appropriate // integer type. This promotes constant folding and simplifies this code. Constant *Op = CE->getOperand(0); Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()), false/*ZExt*/); return LowerConstant(Op, AP); } case Instruction::PtrToInt: { const DataLayout &TD = *AP.TM.getDataLayout(); // Support only foldable casts to/from pointers that can be eliminated by // changing the pointer to the appropriately sized integer type. Constant *Op = CE->getOperand(0); Type *Ty = CE->getType(); const MCExpr *OpExpr = LowerConstant(Op, AP); // We can emit the pointer value into this slot if the slot is an // integer slot equal to the size of the pointer. if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType())) return OpExpr; // Otherwise the pointer is smaller than the resultant integer, mask off // the high bits so we are sure to get a proper truncation if the input is // a constant expr. unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType()); const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx); return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx); } // The MC library also has a right-shift operator, but it isn't consistently // signed or unsigned between different targets. case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::SDiv: case Instruction::SRem: case Instruction::Shl: case Instruction::And: case Instruction::Or: case Instruction::Xor: { const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP); const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP); switch (CE->getOpcode()) { default: llvm_unreachable("Unknown binary operator constant cast expr"); case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx); case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx); case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx); case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx); case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx); case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx); case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx); case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx); case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx); } } } } void NVPTXAsmPrinter::emitLineNumberAsDotLoc(const MachineInstr &MI) { if (!EmitLineNumbers) return; if (ignoreLoc(MI)) return; DebugLoc curLoc = MI.getDebugLoc(); if (prevDebugLoc.isUnknown() && curLoc.isUnknown()) return; if (prevDebugLoc == curLoc) return; prevDebugLoc = curLoc; if (curLoc.isUnknown()) return; const MachineFunction *MF = MI.getParent()->getParent(); //const TargetMachine &TM = MF->getTarget(); const LLVMContext &ctx = MF->getFunction()->getContext(); DIScope Scope(curLoc.getScope(ctx)); if (!Scope.Verify()) return; StringRef fileName(Scope.getFilename()); StringRef dirName(Scope.getDirectory()); SmallString<128> FullPathName = dirName; if (!dirName.empty() && !sys::path::is_absolute(fileName)) { sys::path::append(FullPathName, fileName); fileName = FullPathName.str(); } if (filenameMap.find(fileName.str()) == filenameMap.end()) return; // Emit the line from the source file. if (llvm::InterleaveSrcInPtx) this->emitSrcInText(fileName.str(), curLoc.getLine()); std::stringstream temp; temp << "\t.loc " << filenameMap[fileName.str()] << " " << curLoc.getLine() << " " << curLoc.getCol(); OutStreamer.EmitRawText(Twine(temp.str().c_str())); } void NVPTXAsmPrinter::EmitInstruction(const MachineInstr *MI) { SmallString<128> Str; raw_svector_ostream OS(Str); if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) emitLineNumberAsDotLoc(*MI); printInstruction(MI, OS); OutStreamer.EmitRawText(OS.str()); } void NVPTXAsmPrinter::printReturnValStr(const Function *F, raw_ostream &O) { const DataLayout *TD = TM.getDataLayout(); const TargetLowering *TLI = TM.getTargetLowering(); Type *Ty = F->getReturnType(); bool isABI = (nvptxSubtarget.getSmVersion() >= 20); if (Ty->getTypeID() == Type::VoidTyID) return; O << " ("; if (isABI) { if (Ty->isPrimitiveType() || Ty->isIntegerTy()) { unsigned size = 0; if (const IntegerType *ITy = dyn_cast(Ty)) { size = ITy->getBitWidth(); if (size < 32) size = 32; } else { assert(Ty->isFloatingPointTy() && "Floating point type expected here"); size = Ty->getPrimitiveSizeInBits(); } O << ".param .b" << size << " func_retval0"; } else if (isa(Ty)) { O << ".param .b" << TLI->getPointerTy().getSizeInBits() << " func_retval0"; } else { if ((Ty->getTypeID() == Type::StructTyID) || isa(Ty)) { SmallVector vtparts; ComputeValueVTs(*TLI, Ty, vtparts); unsigned totalsz = 0; for (unsigned i=0,e=vtparts.size(); i!=e; ++i) { unsigned elems = 1; EVT elemtype = vtparts[i]; if (vtparts[i].isVector()) { elems = vtparts[i].getVectorNumElements(); elemtype = vtparts[i].getVectorElementType(); } for (unsigned j=0, je=elems; j!=je; ++j) { unsigned sz = elemtype.getSizeInBits(); if (elemtype.isInteger() && (sz < 8)) sz = 8; totalsz += sz/8; } } unsigned retAlignment = 0; if (!llvm::getAlign(*F, 0, retAlignment)) retAlignment = TD->getABITypeAlignment(Ty); O << ".param .align " << retAlignment << " .b8 func_retval0[" << totalsz << "]"; } else assert(false && "Unknown return type"); } } else { SmallVector vtparts; ComputeValueVTs(*TLI, Ty, vtparts); unsigned idx = 0; for (unsigned i=0,e=vtparts.size(); i!=e; ++i) { unsigned elems = 1; EVT elemtype = vtparts[i]; if (vtparts[i].isVector()) { elems = vtparts[i].getVectorNumElements(); elemtype = vtparts[i].getVectorElementType(); } for (unsigned j=0, je=elems; j!=je; ++j) { unsigned sz = elemtype.getSizeInBits(); if (elemtype.isInteger() && (sz < 32)) sz = 32; O << ".reg .b" << sz << " func_retval" << idx; if (j Str; raw_svector_ostream O(Str); // Set up MRI = &MF->getRegInfo(); F = MF->getFunction(); emitLinkageDirective(F,O); if (llvm::isKernelFunction(*F)) O << ".entry "; else { O << ".func "; printReturnValStr(*MF, O); } O << *CurrentFnSym; emitFunctionParamList(*MF, O); if (llvm::isKernelFunction(*F)) emitKernelFunctionDirectives(*F, O); OutStreamer.EmitRawText(O.str()); prevDebugLoc = DebugLoc(); } void NVPTXAsmPrinter::EmitFunctionBodyStart() { const TargetRegisterInfo &TRI = *TM.getRegisterInfo(); unsigned numRegClasses = TRI.getNumRegClasses(); VRidGlobal2LocalMap = new std::map[numRegClasses+1]; OutStreamer.EmitRawText(StringRef("{\n")); setAndEmitFunctionVirtualRegisters(*MF); SmallString<128> Str; raw_svector_ostream O(Str); emitDemotedVars(MF->getFunction(), O); OutStreamer.EmitRawText(O.str()); } void NVPTXAsmPrinter::EmitFunctionBodyEnd() { OutStreamer.EmitRawText(StringRef("}\n")); delete []VRidGlobal2LocalMap; } void NVPTXAsmPrinter::emitKernelFunctionDirectives(const Function& F, raw_ostream &O) const { // If the NVVM IR has some of reqntid* specified, then output // the reqntid directive, and set the unspecified ones to 1. // If none of reqntid* is specified, don't output reqntid directive. unsigned reqntidx, reqntidy, reqntidz; bool specified = false; if (llvm::getReqNTIDx(F, reqntidx) == false) reqntidx = 1; else specified = true; if (llvm::getReqNTIDy(F, reqntidy) == false) reqntidy = 1; else specified = true; if (llvm::getReqNTIDz(F, reqntidz) == false) reqntidz = 1; else specified = true; if (specified) O << ".reqntid " << reqntidx << ", " << reqntidy << ", " << reqntidz << "\n"; // If the NVVM IR has some of maxntid* specified, then output // the maxntid directive, and set the unspecified ones to 1. // If none of maxntid* is specified, don't output maxntid directive. unsigned maxntidx, maxntidy, maxntidz; specified = false; if (llvm::getMaxNTIDx(F, maxntidx) == false) maxntidx = 1; else specified = true; if (llvm::getMaxNTIDy(F, maxntidy) == false) maxntidy = 1; else specified = true; if (llvm::getMaxNTIDz(F, maxntidz) == false) maxntidz = 1; else specified = true; if (specified) O << ".maxntid " << maxntidx << ", " << maxntidy << ", " << maxntidz << "\n"; unsigned mincta; if (llvm::getMinCTASm(F, mincta)) O << ".minnctapersm " << mincta << "\n"; } void NVPTXAsmPrinter::getVirtualRegisterName(unsigned vr, bool isVec, raw_ostream &O) { const TargetRegisterClass * RC = MRI->getRegClass(vr); unsigned id = RC->getID(); std::map ®map = VRidGlobal2LocalMap[id]; unsigned mapped_vr = regmap[vr]; if (!isVec) { O << getNVPTXRegClassStr(RC) << mapped_vr; return; } // Vector virtual register if (getNVPTXVectorSize(RC) == 4) O << "{" << getNVPTXRegClassStr(RC) << mapped_vr << "_0, " << getNVPTXRegClassStr(RC) << mapped_vr << "_1, " << getNVPTXRegClassStr(RC) << mapped_vr << "_2, " << getNVPTXRegClassStr(RC) << mapped_vr << "_3" << "}"; else if (getNVPTXVectorSize(RC) == 2) O << "{" << getNVPTXRegClassStr(RC) << mapped_vr << "_0, " << getNVPTXRegClassStr(RC) << mapped_vr << "_1" << "}"; else llvm_unreachable("Unsupported vector size"); } void NVPTXAsmPrinter::emitVirtualRegister(unsigned int vr, bool isVec, raw_ostream &O) { getVirtualRegisterName(vr, isVec, O); } void NVPTXAsmPrinter::printVecModifiedImmediate(const MachineOperand &MO, const char *Modifier, raw_ostream &O) { static const char vecelem[] = {'0', '1', '2', '3', '0', '1', '2', '3'}; int Imm = (int)MO.getImm(); if(0 == strcmp(Modifier, "vecelem")) O << "_" << vecelem[Imm]; else if(0 == strcmp(Modifier, "vecv4comm1")) { if((Imm < 0) || (Imm > 3)) O << "//"; } else if(0 == strcmp(Modifier, "vecv4comm2")) { if((Imm < 4) || (Imm > 7)) O << "//"; } else if(0 == strcmp(Modifier, "vecv4pos")) { if(Imm < 0) Imm = 0; O << "_" << vecelem[Imm%4]; } else if(0 == strcmp(Modifier, "vecv2comm1")) { if((Imm < 0) || (Imm > 1)) O << "//"; } else if(0 == strcmp(Modifier, "vecv2comm2")) { if((Imm < 2) || (Imm > 3)) O << "//"; } else if(0 == strcmp(Modifier, "vecv2pos")) { if(Imm < 0) Imm = 0; O << "_" << vecelem[Imm%2]; } else llvm_unreachable("Unknown Modifier on immediate operand"); } void NVPTXAsmPrinter::printOperand(const MachineInstr *MI, int opNum, raw_ostream &O, const char *Modifier) { const MachineOperand &MO = MI->getOperand(opNum); switch (MO.getType()) { case MachineOperand::MO_Register: if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { if (MO.getReg() == NVPTX::VRDepot) O << DEPOTNAME << getFunctionNumber(); else O << getRegisterName(MO.getReg()); } else { if (!Modifier) emitVirtualRegister(MO.getReg(), false, O); else { if (strcmp(Modifier, "vecfull") == 0) emitVirtualRegister(MO.getReg(), true, O); else llvm_unreachable( "Don't know how to handle the modifier on virtual register."); } } return; case MachineOperand::MO_Immediate: if (!Modifier) O << MO.getImm(); else if (strstr(Modifier, "vec") == Modifier) printVecModifiedImmediate(MO, Modifier, O); else llvm_unreachable("Don't know how to handle modifier on immediate operand"); return; case MachineOperand::MO_FPImmediate: printFPConstant(MO.getFPImm(), O); break; case MachineOperand::MO_GlobalAddress: O << *Mang->getSymbol(MO.getGlobal()); break; case MachineOperand::MO_ExternalSymbol: { const char * symbname = MO.getSymbolName(); if (strstr(symbname, ".PARAM") == symbname) { unsigned index; sscanf(symbname+6, "%u[];", &index); printParamName(index, O); } else if (strstr(symbname, ".HLPPARAM") == symbname) { unsigned index; sscanf(symbname+9, "%u[];", &index); O << *CurrentFnSym << "_param_" << index << "_offset"; } else O << symbname; break; } case MachineOperand::MO_MachineBasicBlock: O << *MO.getMBB()->getSymbol(); return; default: llvm_unreachable("Operand type not supported."); } } void NVPTXAsmPrinter:: printImplicitDef(const MachineInstr *MI, raw_ostream &O) const { #ifndef __OPTIMIZE__ O << "\t// Implicit def :"; //printOperand(MI, 0); O << "\n"; #endif } void NVPTXAsmPrinter::printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &O, const char *Modifier) { printOperand(MI, opNum, O); if (Modifier && !strcmp(Modifier, "add")) { O << ", "; printOperand(MI, opNum+1, O); } else { if (MI->getOperand(opNum+1).isImm() && MI->getOperand(opNum+1).getImm() == 0) return; // don't print ',0' or '+0' O << "+"; printOperand(MI, opNum+1, O); } } void NVPTXAsmPrinter::printLdStCode(const MachineInstr *MI, int opNum, raw_ostream &O, const char *Modifier) { if (Modifier) { const MachineOperand &MO = MI->getOperand(opNum); int Imm = (int)MO.getImm(); if (!strcmp(Modifier, "volatile")) { if (Imm) O << ".volatile"; } else if (!strcmp(Modifier, "addsp")) { switch (Imm) { case NVPTX::PTXLdStInstCode::GLOBAL: O << ".global"; break; case NVPTX::PTXLdStInstCode::SHARED: O << ".shared"; break; case NVPTX::PTXLdStInstCode::LOCAL: O << ".local"; break; case NVPTX::PTXLdStInstCode::PARAM: O << ".param"; break; case NVPTX::PTXLdStInstCode::CONSTANT: O << ".const"; break; case NVPTX::PTXLdStInstCode::GENERIC: if (!nvptxSubtarget.hasGenericLdSt()) O << ".global"; break; default: llvm_unreachable("Wrong Address Space"); } } else if (!strcmp(Modifier, "sign")) { if (Imm==NVPTX::PTXLdStInstCode::Signed) O << "s"; else if (Imm==NVPTX::PTXLdStInstCode::Unsigned) O << "u"; else O << "f"; } else if (!strcmp(Modifier, "vec")) { if (Imm==NVPTX::PTXLdStInstCode::V2) O << ".v2"; else if (Imm==NVPTX::PTXLdStInstCode::V4) O << ".v4"; } else llvm_unreachable("Unknown Modifier"); } else llvm_unreachable("Empty Modifier"); } void NVPTXAsmPrinter::emitDeclaration (const Function *F, raw_ostream &O) { emitLinkageDirective(F,O); if (llvm::isKernelFunction(*F)) O << ".entry "; else O << ".func "; printReturnValStr(F, O); O << *CurrentFnSym << "\n"; emitFunctionParamList(F, O); O << ";\n"; } static bool usedInGlobalVarDef(const Constant *C) { if (!C) return false; if (const GlobalVariable *GV = dyn_cast(C)) { if (GV->getName().str() == "llvm.used") return false; return true; } for (Value::const_use_iterator ui=C->use_begin(), ue=C->use_end(); ui!=ue; ++ui) { const Constant *C = dyn_cast(*ui); if (usedInGlobalVarDef(C)) return true; } return false; } static bool usedInOneFunc(const User *U, Function const *&oneFunc) { if (const GlobalVariable *othergv = dyn_cast(U)) { if (othergv->getName().str() == "llvm.used") return true; } if (const Instruction *instr = dyn_cast(U)) { if (instr->getParent() && instr->getParent()->getParent()) { const Function *curFunc = instr->getParent()->getParent(); if (oneFunc && (curFunc != oneFunc)) return false; oneFunc = curFunc; return true; } else return false; } if (const MDNode *md = dyn_cast(U)) if (md->hasName() && ((md->getName().str() == "llvm.dbg.gv") || (md->getName().str() == "llvm.dbg.sp"))) return true; for (User::const_use_iterator ui=U->use_begin(), ue=U->use_end(); ui!=ue; ++ui) { if (usedInOneFunc(*ui, oneFunc) == false) return false; } return true; } /* Find out if a global variable can be demoted to local scope. * Currently, this is valid for CUDA shared variables, which have local * scope and global lifetime. So the conditions to check are : * 1. Is the global variable in shared address space? * 2. Does it have internal linkage? * 3. Is the global variable referenced only in one function? */ static bool canDemoteGlobalVar(const GlobalVariable *gv, Function const *&f) { if (gv->hasInternalLinkage() == false) return false; const PointerType *Pty = gv->getType(); if (Pty->getAddressSpace() != llvm::ADDRESS_SPACE_SHARED) return false; const Function *oneFunc = 0; bool flag = usedInOneFunc(gv, oneFunc); if (flag == false) return false; if (!oneFunc) return false; f = oneFunc; return true; } static bool useFuncSeen(const Constant *C, llvm::DenseMap &seenMap) { for (Value::const_use_iterator ui=C->use_begin(), ue=C->use_end(); ui!=ue; ++ui) { if (const Constant *cu = dyn_cast(*ui)) { if (useFuncSeen(cu, seenMap)) return true; } else if (const Instruction *I = dyn_cast(*ui)) { const BasicBlock *bb = I->getParent(); if (!bb) continue; const Function *caller = bb->getParent(); if (!caller) continue; if (seenMap.find(caller) != seenMap.end()) return true; } } return false; } void NVPTXAsmPrinter::emitDeclarations (Module &M, raw_ostream &O) { llvm::DenseMap seenMap; for (Module::const_iterator FI=M.begin(), FE=M.end(); FI!=FE; ++FI) { const Function *F = FI; if (F->isDeclaration()) { if (F->use_empty()) continue; if (F->getIntrinsicID()) continue; CurrentFnSym = Mang->getSymbol(F); emitDeclaration(F, O); continue; } for (Value::const_use_iterator iter=F->use_begin(), iterEnd=F->use_end(); iter!=iterEnd; ++iter) { if (const Constant *C = dyn_cast(*iter)) { if (usedInGlobalVarDef(C)) { // The use is in the initialization of a global variable // that is a function pointer, so print a declaration // for the original function CurrentFnSym = Mang->getSymbol(F); emitDeclaration(F, O); break; } // Emit a declaration of this function if the function that // uses this constant expr has already been seen. if (useFuncSeen(C, seenMap)) { CurrentFnSym = Mang->getSymbol(F); emitDeclaration(F, O); break; } } if (!isa(*iter)) continue; const Instruction *instr = cast(*iter); const BasicBlock *bb = instr->getParent(); if (!bb) continue; const Function *caller = bb->getParent(); if (!caller) continue; // If a caller has already been seen, then the caller is // appearing in the module before the callee. so print out // a declaration for the callee. if (seenMap.find(caller) != seenMap.end()) { CurrentFnSym = Mang->getSymbol(F); emitDeclaration(F, O); break; } } seenMap[F] = true; } } void NVPTXAsmPrinter::recordAndEmitFilenames(Module &M) { DebugInfoFinder DbgFinder; DbgFinder.processModule(M); unsigned i=1; for (DebugInfoFinder::iterator I = DbgFinder.compile_unit_begin(), E = DbgFinder.compile_unit_end(); I != E; ++I) { DICompileUnit DIUnit(*I); StringRef Filename(DIUnit.getFilename()); StringRef Dirname(DIUnit.getDirectory()); SmallString<128> FullPathName = Dirname; if (!Dirname.empty() && !sys::path::is_absolute(Filename)) { sys::path::append(FullPathName, Filename); Filename = FullPathName.str(); } if (filenameMap.find(Filename.str()) != filenameMap.end()) continue; filenameMap[Filename.str()] = i; OutStreamer.EmitDwarfFileDirective(i, "", Filename.str()); ++i; } for (DebugInfoFinder::iterator I = DbgFinder.subprogram_begin(), E = DbgFinder.subprogram_end(); I != E; ++I) { DISubprogram SP(*I); StringRef Filename(SP.getFilename()); StringRef Dirname(SP.getDirectory()); SmallString<128> FullPathName = Dirname; if (!Dirname.empty() && !sys::path::is_absolute(Filename)) { sys::path::append(FullPathName, Filename); Filename = FullPathName.str(); } if (filenameMap.find(Filename.str()) != filenameMap.end()) continue; filenameMap[Filename.str()] = i; ++i; } } bool NVPTXAsmPrinter::doInitialization (Module &M) { SmallString<128> Str1; raw_svector_ostream OS1(Str1); MMI = getAnalysisIfAvailable(); MMI->AnalyzeModule(M); // We need to call the parent's one explicitly. //bool Result = AsmPrinter::doInitialization(M); // Initialize TargetLoweringObjectFile. const_cast(getObjFileLowering()) .Initialize(OutContext, TM); Mang = new Mangler(OutContext, *TM.getDataLayout()); // Emit header before any dwarf directives are emitted below. emitHeader(M, OS1); OutStreamer.EmitRawText(OS1.str()); // Already commented out //bool Result = AsmPrinter::doInitialization(M); if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) recordAndEmitFilenames(M); SmallString<128> Str2; raw_svector_ostream OS2(Str2); emitDeclarations(M, OS2); // As ptxas does not support forward references of globals, we need to first // sort the list of module-level globals in def-use order. We visit each // global variable in order, and ensure that we emit it *after* its dependent // globals. We use a little extra memory maintaining both a set and a list to // have fast searches while maintaining a strict ordering. SmallVector Globals; DenseSet GVVisited; DenseSet GVVisiting; // Visit each global variable, in order for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) VisitGlobalVariableForEmission(I, Globals, GVVisited, GVVisiting); assert(GVVisited.size() == M.getGlobalList().size() && "Missed a global variable"); assert(GVVisiting.size() == 0 && "Did not fully process a global variable"); // Print out module-level global variables in proper order for (unsigned i = 0, e = Globals.size(); i != e; ++i) printModuleLevelGV(Globals[i], OS2); OS2 << '\n'; OutStreamer.EmitRawText(OS2.str()); return false; // success } void NVPTXAsmPrinter::emitHeader (Module &M, raw_ostream &O) { O << "//\n"; O << "// Generated by LLVM NVPTX Back-End\n"; O << "//\n"; O << "\n"; unsigned PTXVersion = nvptxSubtarget.getPTXVersion(); O << ".version " << (PTXVersion / 10) << "." << (PTXVersion % 10) << "\n"; O << ".target "; O << nvptxSubtarget.getTargetName(); if (nvptxSubtarget.getDrvInterface() == NVPTX::NVCL) O << ", texmode_independent"; if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) { if (!nvptxSubtarget.hasDouble()) O << ", map_f64_to_f32"; } if (MAI->doesSupportDebugInformation()) O << ", debug"; O << "\n"; O << ".address_size "; if (nvptxSubtarget.is64Bit()) O << "64"; else O << "32"; O << "\n"; O << "\n"; } bool NVPTXAsmPrinter::doFinalization(Module &M) { // XXX Temproarily remove global variables so that doFinalization() will not // emit them again (global variables are emitted at beginning). Module::GlobalListType &global_list = M.getGlobalList(); int i, n = global_list.size(); GlobalVariable **gv_array = new GlobalVariable* [n]; // first, back-up GlobalVariable in gv_array i = 0; for (Module::global_iterator I = global_list.begin(), E = global_list.end(); I != E; ++I) gv_array[i++] = &*I; // second, empty global_list while (!global_list.empty()) global_list.remove(global_list.begin()); // call doFinalization bool ret = AsmPrinter::doFinalization(M); // now we restore global variables for (i = 0; i < n; i ++) global_list.insert(global_list.end(), gv_array[i]); delete[] gv_array; return ret; //bool Result = AsmPrinter::doFinalization(M); // Instead of calling the parents doFinalization, we may // clone parents doFinalization and customize here. // Currently, we if NVISA out the EmitGlobals() in // parent's doFinalization, which is too intrusive. // // Same for the doInitialization. //return Result; } // This function emits appropriate linkage directives for // functions and global variables. // // extern function declaration -> .extern // extern function definition -> .visible // external global variable with init -> .visible // external without init -> .extern // appending -> not allowed, assert. void NVPTXAsmPrinter::emitLinkageDirective(const GlobalValue* V, raw_ostream &O) { if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) { if (V->hasExternalLinkage()) { if (isa(V)) { const GlobalVariable *GVar = cast(V); if (GVar) { if (GVar->hasInitializer()) O << ".visible "; else O << ".extern "; } } else if (V->isDeclaration()) O << ".extern "; else O << ".visible "; } else if (V->hasAppendingLinkage()) { std::string msg; msg.append("Error: "); msg.append("Symbol "); if (V->hasName()) msg.append(V->getName().str()); msg.append("has unsupported appending linkage type"); llvm_unreachable(msg.c_str()); } } } void NVPTXAsmPrinter::printModuleLevelGV(GlobalVariable* GVar, raw_ostream &O, bool processDemoted) { // Skip meta data if (GVar->hasSection()) { if (GVar->getSection() == "llvm.metadata") return; } const DataLayout *TD = TM.getDataLayout(); // GlobalVariables are always constant pointers themselves. const PointerType *PTy = GVar->getType(); Type *ETy = PTy->getElementType(); if (GVar->hasExternalLinkage()) { if (GVar->hasInitializer()) O << ".visible "; else O << ".extern "; } if (llvm::isTexture(*GVar)) { O << ".global .texref " << llvm::getTextureName(*GVar) << ";\n"; return; } if (llvm::isSurface(*GVar)) { O << ".global .surfref " << llvm::getSurfaceName(*GVar) << ";\n"; return; } if (GVar->isDeclaration()) { // (extern) declarations, no definition or initializer // Currently the only known declaration is for an automatic __local // (.shared) promoted to global. emitPTXGlobalVariable(GVar, O); O << ";\n"; return; } if (llvm::isSampler(*GVar)) { O << ".global .samplerref " << llvm::getSamplerName(*GVar); Constant *Initializer = NULL; if (GVar->hasInitializer()) Initializer = GVar->getInitializer(); ConstantInt *CI = NULL; if (Initializer) CI = dyn_cast(Initializer); if (CI) { unsigned sample=CI->getZExtValue(); O << " = { "; for (int i =0, addr=((sample & __CLK_ADDRESS_MASK ) >> __CLK_ADDRESS_BASE) ; i < 3 ; i++) { O << "addr_mode_" << i << " = "; switch (addr) { case 0: O << "wrap"; break; case 1: O << "clamp_to_border"; break; case 2: O << "clamp_to_edge"; break; case 3: O << "wrap"; break; case 4: O << "mirror"; break; } O <<", "; } O << "filter_mode = "; switch (( sample & __CLK_FILTER_MASK ) >> __CLK_FILTER_BASE ) { case 0: O << "nearest"; break; case 1: O << "linear"; break; case 2: assert ( 0 && "Anisotropic filtering is not supported"); default: O << "nearest"; break; } if (!(( sample &__CLK_NORMALIZED_MASK ) >> __CLK_NORMALIZED_BASE)) { O << ", force_unnormalized_coords = 1"; } O << " }"; } O << ";\n"; return; } if (GVar->hasPrivateLinkage()) { if (!strncmp(GVar->getName().data(), "unrollpragma", 12)) return; // FIXME - need better way (e.g. Metadata) to avoid generating this global if (!strncmp(GVar->getName().data(), "filename", 8)) return; if (GVar->use_empty()) return; } const Function *demotedFunc = 0; if (!processDemoted && canDemoteGlobalVar(GVar, demotedFunc)) { O << "// " << GVar->getName().str() << " has been demoted\n"; if (localDecls.find(demotedFunc) != localDecls.end()) localDecls[demotedFunc].push_back(GVar); else { std::vector temp; temp.push_back(GVar); localDecls[demotedFunc] = temp; } return; } O << "."; emitPTXAddressSpace(PTy->getAddressSpace(), O); if (GVar->getAlignment() == 0) O << " .align " << (int) TD->getPrefTypeAlignment(ETy); else O << " .align " << GVar->getAlignment(); if (ETy->isPrimitiveType() || ETy->isIntegerTy() || isa(ETy)) { O << " ."; O << getPTXFundamentalTypeStr(ETy, false); O << " "; O << *Mang->getSymbol(GVar); // Ptx allows variable initilization only for constant and global state // spaces. if (((PTy->getAddressSpace() == llvm::ADDRESS_SPACE_GLOBAL) || (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST_NOT_GEN) || (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST)) && GVar->hasInitializer()) { Constant *Initializer = GVar->getInitializer(); if (!Initializer->isNullValue()) { O << " = " ; printScalarConstant(Initializer, O); } } } else { unsigned int ElementSize =0; // Although PTX has direct support for struct type and array type and // LLVM IR is very similar to PTX, the LLVM CodeGen does not support for // targets that support these high level field accesses. Structs, arrays // and vectors are lowered into arrays of bytes. switch (ETy->getTypeID()) { case Type::StructTyID: case Type::ArrayTyID: case Type::VectorTyID: ElementSize = TD->getTypeStoreSize(ETy); // Ptx allows variable initilization only for constant and // global state spaces. if (((PTy->getAddressSpace() == llvm::ADDRESS_SPACE_GLOBAL) || (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST_NOT_GEN) || (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST)) && GVar->hasInitializer()) { Constant *Initializer = GVar->getInitializer(); if (!isa(Initializer) && !Initializer->isNullValue()) { AggBuffer aggBuffer(ElementSize, O, *this); bufferAggregateConstant(Initializer, &aggBuffer); if (aggBuffer.numSymbols) { if (nvptxSubtarget.is64Bit()) { O << " .u64 " << *Mang->getSymbol(GVar) <<"[" ; O << ElementSize/8; } else { O << " .u32 " << *Mang->getSymbol(GVar) <<"[" ; O << ElementSize/4; } O << "]"; } else { O << " .b8 " << *Mang->getSymbol(GVar) <<"[" ; O << ElementSize; O << "]"; } O << " = {" ; aggBuffer.print(); O << "}"; } else { O << " .b8 " << *Mang->getSymbol(GVar) ; if (ElementSize) { O <<"[" ; O << ElementSize; O << "]"; } } } else { O << " .b8 " << *Mang->getSymbol(GVar); if (ElementSize) { O <<"[" ; O << ElementSize; O << "]"; } } break; default: assert( 0 && "type not supported yet"); } } O << ";\n"; } void NVPTXAsmPrinter::emitDemotedVars(const Function *f, raw_ostream &O) { if (localDecls.find(f) == localDecls.end()) return; std::vector &gvars = localDecls[f]; for (unsigned i=0, e=gvars.size(); i!=e; ++i) { O << "\t// demoted variable\n\t"; printModuleLevelGV(gvars[i], O, true); } } void NVPTXAsmPrinter::emitPTXAddressSpace(unsigned int AddressSpace, raw_ostream &O) const { switch (AddressSpace) { case llvm::ADDRESS_SPACE_LOCAL: O << "local" ; break; case llvm::ADDRESS_SPACE_GLOBAL: O << "global" ; break; case llvm::ADDRESS_SPACE_CONST: // This logic should be consistent with that in // getCodeAddrSpace() (NVPTXISelDATToDAT.cpp) if (nvptxSubtarget.hasGenericLdSt()) O << "global" ; else O << "const" ; break; case llvm::ADDRESS_SPACE_CONST_NOT_GEN: O << "const" ; break; case llvm::ADDRESS_SPACE_SHARED: O << "shared" ; break; default: report_fatal_error("Bad address space found while emitting PTX"); break; } } std::string NVPTXAsmPrinter::getPTXFundamentalTypeStr(const Type *Ty, bool useB4PTR) const { switch (Ty->getTypeID()) { default: llvm_unreachable("unexpected type"); break; case Type::IntegerTyID: { unsigned NumBits = cast(Ty)->getBitWidth(); if (NumBits == 1) return "pred"; else if (NumBits <= 64) { std::string name = "u"; return name + utostr(NumBits); } else { llvm_unreachable("Integer too large"); break; } break; } case Type::FloatTyID: return "f32"; case Type::DoubleTyID: return "f64"; case Type::PointerTyID: if (nvptxSubtarget.is64Bit()) if (useB4PTR) return "b64"; else return "u64"; else if (useB4PTR) return "b32"; else return "u32"; } llvm_unreachable("unexpected type"); return NULL; } void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable* GVar, raw_ostream &O) { const DataLayout *TD = TM.getDataLayout(); // GlobalVariables are always constant pointers themselves. const PointerType *PTy = GVar->getType(); Type *ETy = PTy->getElementType(); O << "."; emitPTXAddressSpace(PTy->getAddressSpace(), O); if (GVar->getAlignment() == 0) O << " .align " << (int) TD->getPrefTypeAlignment(ETy); else O << " .align " << GVar->getAlignment(); if (ETy->isPrimitiveType() || ETy->isIntegerTy() || isa(ETy)) { O << " ."; O << getPTXFundamentalTypeStr(ETy); O << " "; O << *Mang->getSymbol(GVar); return; } int64_t ElementSize =0; // Although PTX has direct support for struct type and array type and LLVM IR // is very similar to PTX, the LLVM CodeGen does not support for targets that // support these high level field accesses. Structs and arrays are lowered // into arrays of bytes. switch (ETy->getTypeID()) { case Type::StructTyID: case Type::ArrayTyID: case Type::VectorTyID: ElementSize = TD->getTypeStoreSize(ETy); O << " .b8 " << *Mang->getSymbol(GVar) <<"[" ; if (ElementSize) { O << itostr(ElementSize) ; } O << "]"; break; default: assert( 0 && "type not supported yet"); } return ; } static unsigned int getOpenCLAlignment(const DataLayout *TD, Type *Ty) { if (Ty->isPrimitiveType() || Ty->isIntegerTy() || isa(Ty)) return TD->getPrefTypeAlignment(Ty); const ArrayType *ATy = dyn_cast(Ty); if (ATy) return getOpenCLAlignment(TD, ATy->getElementType()); const VectorType *VTy = dyn_cast(Ty); if (VTy) { Type *ETy = VTy->getElementType(); unsigned int numE = VTy->getNumElements(); unsigned int alignE = TD->getPrefTypeAlignment(ETy); if (numE == 3) return 4*alignE; else return numE*alignE; } const StructType *STy = dyn_cast(Ty); if (STy) { unsigned int alignStruct = 1; // Go through each element of the struct and find the // largest alignment. for (unsigned i=0, e=STy->getNumElements(); i != e; i++) { Type *ETy = STy->getElementType(i); unsigned int align = getOpenCLAlignment(TD, ETy); if (align > alignStruct) alignStruct = align; } return alignStruct; } const FunctionType *FTy = dyn_cast(Ty); if (FTy) return TD->getPointerPrefAlignment(); return TD->getPrefTypeAlignment(Ty); } void NVPTXAsmPrinter::printParamName(Function::const_arg_iterator I, int paramIndex, raw_ostream &O) { if ((nvptxSubtarget.getDrvInterface() == NVPTX::NVCL) || (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)) O << *CurrentFnSym << "_param_" << paramIndex; else { std::string argName = I->getName(); const char *p = argName.c_str(); while (*p) { if (*p == '.') O << "_"; else O << *p; p++; } } } void NVPTXAsmPrinter::printParamName(int paramIndex, raw_ostream &O) { Function::const_arg_iterator I, E; int i = 0; if ((nvptxSubtarget.getDrvInterface() == NVPTX::NVCL) || (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)) { O << *CurrentFnSym << "_param_" << paramIndex; return; } for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, i++) { if (i==paramIndex) { printParamName(I, paramIndex, O); return; } } llvm_unreachable("paramIndex out of bound"); } void NVPTXAsmPrinter::emitFunctionParamList(const Function *F, raw_ostream &O) { const DataLayout *TD = TM.getDataLayout(); const AttributeSet &PAL = F->getAttributes(); const TargetLowering *TLI = TM.getTargetLowering(); Function::const_arg_iterator I, E; unsigned paramIndex = 0; bool first = true; bool isKernelFunc = llvm::isKernelFunction(*F); bool isABI = (nvptxSubtarget.getSmVersion() >= 20); MVT thePointerTy = TLI->getPointerTy(); O << "(\n"; for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, paramIndex++) { const Type *Ty = I->getType(); if (!first) O << ",\n"; first = false; // Handle image/sampler parameters if (llvm::isSampler(*I) || llvm::isImage(*I)) { if (llvm::isImage(*I)) { std::string sname = I->getName(); if (llvm::isImageWriteOnly(*I)) O << "\t.param .surfref " << *CurrentFnSym << "_param_" << paramIndex; else // Default image is read_only O << "\t.param .texref " << *CurrentFnSym << "_param_" << paramIndex; } else // Should be llvm::isSampler(*I) O << "\t.param .samplerref " << *CurrentFnSym << "_param_" << paramIndex; continue; } if (PAL.hasAttribute(paramIndex+1, Attribute::ByVal) == false) { // Just a scalar const PointerType *PTy = dyn_cast(Ty); if (isKernelFunc) { if (PTy) { // Special handling for pointer arguments to kernel O << "\t.param .u" << thePointerTy.getSizeInBits() << " "; if (nvptxSubtarget.getDrvInterface() != NVPTX::CUDA) { Type *ETy = PTy->getElementType(); int addrSpace = PTy->getAddressSpace(); switch(addrSpace) { default: O << ".ptr "; break; case llvm::ADDRESS_SPACE_CONST_NOT_GEN: O << ".ptr .const "; break; case llvm::ADDRESS_SPACE_SHARED: O << ".ptr .shared "; break; case llvm::ADDRESS_SPACE_GLOBAL: case llvm::ADDRESS_SPACE_CONST: O << ".ptr .global "; break; } O << ".align " << (int)getOpenCLAlignment(TD, ETy) << " "; } printParamName(I, paramIndex, O); continue; } // non-pointer scalar to kernel func O << "\t.param ." << getPTXFundamentalTypeStr(Ty) << " "; printParamName(I, paramIndex, O); continue; } // Non-kernel function, just print .param .b for ABI // and .reg .b for non ABY unsigned sz = 0; if (isa(Ty)) { sz = cast(Ty)->getBitWidth(); if (sz < 32) sz = 32; } else if (isa(Ty)) sz = thePointerTy.getSizeInBits(); else sz = Ty->getPrimitiveSizeInBits(); if (isABI) O << "\t.param .b" << sz << " "; else O << "\t.reg .b" << sz << " "; printParamName(I, paramIndex, O); continue; } // param has byVal attribute. So should be a pointer const PointerType *PTy = dyn_cast(Ty); assert(PTy && "Param with byval attribute should be a pointer type"); Type *ETy = PTy->getElementType(); if (isABI || isKernelFunc) { // Just print .param .b8 .align .param[size]; // = PAL.getparamalignment // size = typeallocsize of element type unsigned align = PAL.getParamAlignment(paramIndex+1); if (align == 0) align = TD->getABITypeAlignment(ETy); unsigned sz = TD->getTypeAllocSize(ETy); O << "\t.param .align " << align << " .b8 "; printParamName(I, paramIndex, O); O << "[" << sz << "]"; continue; } else { // Split the ETy into constituent parts and // print .param .b for each part. // Further, if a part is vector, print the above for // each vector element. SmallVector vtparts; ComputeValueVTs(*TLI, ETy, vtparts); for (unsigned i=0,e=vtparts.size(); i!=e; ++i) { unsigned elems = 1; EVT elemtype = vtparts[i]; if (vtparts[i].isVector()) { elems = vtparts[i].getVectorNumElements(); elemtype = vtparts[i].getVectorElementType(); } for (unsigned j=0,je=elems; j!=je; ++j) { unsigned sz = elemtype.getSizeInBits(); if (elemtype.isInteger() && (sz < 32)) sz = 32; O << "\t.reg .b" << sz << " "; printParamName(I, paramIndex, O); if (j Str; raw_svector_ostream O(Str); // Map the global virtual register number to a register class specific // virtual register number starting from 1 with that class. const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo(); //unsigned numRegClasses = TRI->getNumRegClasses(); // Emit the Fake Stack Object const MachineFrameInfo *MFI = MF.getFrameInfo(); int NumBytes = (int) MFI->getStackSize(); if (NumBytes) { O << "\t.local .align " << MFI->getMaxAlignment() << " .b8 \t" << DEPOTNAME << getFunctionNumber() << "[" << NumBytes << "];\n"; if (nvptxSubtarget.is64Bit()) { O << "\t.reg .b64 \t%SP;\n"; O << "\t.reg .b64 \t%SPL;\n"; } else { O << "\t.reg .b32 \t%SP;\n"; O << "\t.reg .b32 \t%SPL;\n"; } } // Go through all virtual registers to establish the mapping between the // global virtual // register number and the per class virtual register number. // We use the per class virtual register number in the ptx output. unsigned int numVRs = MRI->getNumVirtRegs(); for (unsigned i=0; i< numVRs; i++) { unsigned int vr = TRI->index2VirtReg(i); const TargetRegisterClass *RC = MRI->getRegClass(vr); std::map ®map = VRidGlobal2LocalMap[RC->getID()]; int n = regmap.size(); regmap.insert(std::make_pair(vr, n+1)); } // Emit register declarations // @TODO: Extract out the real register usage O << "\t.reg .pred %p<" << NVPTXNumRegisters << ">;\n"; O << "\t.reg .s16 %rc<" << NVPTXNumRegisters << ">;\n"; O << "\t.reg .s16 %rs<" << NVPTXNumRegisters << ">;\n"; O << "\t.reg .s32 %r<" << NVPTXNumRegisters << ">;\n"; O << "\t.reg .s64 %rl<" << NVPTXNumRegisters << ">;\n"; O << "\t.reg .f32 %f<" << NVPTXNumRegisters << ">;\n"; O << "\t.reg .f64 %fl<" << NVPTXNumRegisters << ">;\n"; // Emit declaration of the virtual registers or 'physical' registers for // each register class //for (unsigned i=0; i< numRegClasses; i++) { // std::map ®map = VRidGlobal2LocalMap[i]; // const TargetRegisterClass *RC = TRI->getRegClass(i); // std::string rcname = getNVPTXRegClassName(RC); // std::string rcStr = getNVPTXRegClassStr(RC); // //int n = regmap.size(); // if (!isNVPTXVectorRegClass(RC)) { // O << "\t.reg " << rcname << " \t" << rcStr << "<" // << NVPTXNumRegisters << ">;\n"; // } // Only declare those registers that may be used. And do not emit vector // registers as // they are all elementized to scalar registers. //if (n && !isNVPTXVectorRegClass(RC)) { // if (RegAllocNilUsed) { // O << "\t.reg " << rcname << " \t" << rcStr << "<" << (n+1) // << ">;\n"; // } // else { // O << "\t.reg " << rcname << " \t" << StrToUpper(rcStr) // << "<" << 32 << ">;\n"; // } //} //} OutStreamer.EmitRawText(O.str()); } void NVPTXAsmPrinter::printFPConstant(const ConstantFP *Fp, raw_ostream &O) { APFloat APF = APFloat(Fp->getValueAPF()); // make a copy bool ignored; unsigned int numHex; const char *lead; if (Fp->getType()->getTypeID()==Type::FloatTyID) { numHex = 8; lead = "0f"; APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &ignored); } else if (Fp->getType()->getTypeID() == Type::DoubleTyID) { numHex = 16; lead = "0d"; APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored); } else llvm_unreachable("unsupported fp type"); APInt API = APF.bitcastToAPInt(); std::string hexstr(utohexstr(API.getZExtValue())); O << lead; if (hexstr.length() < numHex) O << std::string(numHex - hexstr.length(), '0'); O << utohexstr(API.getZExtValue()); } void NVPTXAsmPrinter::printScalarConstant(Constant *CPV, raw_ostream &O) { if (ConstantInt *CI = dyn_cast(CPV)) { O << CI->getValue(); return; } if (ConstantFP *CFP = dyn_cast(CPV)) { printFPConstant(CFP, O); return; } if (isa(CPV)) { O << "0"; return; } if (GlobalValue *GVar = dyn_cast(CPV)) { O << *Mang->getSymbol(GVar); return; } if (ConstantExpr *Cexpr = dyn_cast(CPV)) { Value *v = Cexpr->stripPointerCasts(); if (GlobalValue *GVar = dyn_cast(v)) { O << *Mang->getSymbol(GVar); return; } else { O << *LowerConstant(CPV, *this); return; } } llvm_unreachable("Not scalar type found in printScalarConstant()"); } void NVPTXAsmPrinter::bufferLEByte(Constant *CPV, int Bytes, AggBuffer *aggBuffer) { const DataLayout *TD = TM.getDataLayout(); if (isa(CPV) || CPV->isNullValue()) { int s = TD->getTypeAllocSize(CPV->getType()); if (saddZeros(s); return; } unsigned char *ptr; switch (CPV->getType()->getTypeID()) { case Type::IntegerTyID: { const Type *ETy = CPV->getType(); if ( ETy == Type::getInt8Ty(CPV->getContext()) ){ unsigned char c = (unsigned char)(dyn_cast(CPV))->getZExtValue(); ptr = &c; aggBuffer->addBytes(ptr, 1, Bytes); } else if ( ETy == Type::getInt16Ty(CPV->getContext()) ) { short int16 = (short)(dyn_cast(CPV))->getZExtValue(); ptr = (unsigned char*)&int16; aggBuffer->addBytes(ptr, 2, Bytes); } else if ( ETy == Type::getInt32Ty(CPV->getContext()) ) { if (ConstantInt *constInt = dyn_cast(CPV)) { int int32 =(int)(constInt->getZExtValue()); ptr = (unsigned char*)&int32; aggBuffer->addBytes(ptr, 4, Bytes); break; } else if (ConstantExpr *Cexpr = dyn_cast(CPV)) { if (ConstantInt *constInt = dyn_cast(ConstantFoldConstantExpression( Cexpr, TD))) { int int32 =(int)(constInt->getZExtValue()); ptr = (unsigned char*)&int32; aggBuffer->addBytes(ptr, 4, Bytes); break; } if (Cexpr->getOpcode() == Instruction::PtrToInt) { Value *v = Cexpr->getOperand(0)->stripPointerCasts(); aggBuffer->addSymbol(v); aggBuffer->addZeros(4); break; } } llvm_unreachable("unsupported integer const type"); } else if (ETy == Type::getInt64Ty(CPV->getContext()) ) { if (ConstantInt *constInt = dyn_cast(CPV)) { long long int64 =(long long)(constInt->getZExtValue()); ptr = (unsigned char*)&int64; aggBuffer->addBytes(ptr, 8, Bytes); break; } else if (ConstantExpr *Cexpr = dyn_cast(CPV)) { if (ConstantInt *constInt = dyn_cast( ConstantFoldConstantExpression(Cexpr, TD))) { long long int64 =(long long)(constInt->getZExtValue()); ptr = (unsigned char*)&int64; aggBuffer->addBytes(ptr, 8, Bytes); break; } if (Cexpr->getOpcode() == Instruction::PtrToInt) { Value *v = Cexpr->getOperand(0)->stripPointerCasts(); aggBuffer->addSymbol(v); aggBuffer->addZeros(8); break; } } llvm_unreachable("unsupported integer const type"); } else llvm_unreachable("unsupported integer const type"); break; } case Type::FloatTyID: case Type::DoubleTyID: { ConstantFP *CFP = dyn_cast(CPV); const Type* Ty = CFP->getType(); if (Ty == Type::getFloatTy(CPV->getContext())) { float float32 = (float)CFP->getValueAPF().convertToFloat(); ptr = (unsigned char*)&float32; aggBuffer->addBytes(ptr, 4, Bytes); } else if (Ty == Type::getDoubleTy(CPV->getContext())) { double float64 = CFP->getValueAPF().convertToDouble(); ptr = (unsigned char*)&float64; aggBuffer->addBytes(ptr, 8, Bytes); } else { llvm_unreachable("unsupported fp const type"); } break; } case Type::PointerTyID: { if (GlobalValue *GVar = dyn_cast(CPV)) { aggBuffer->addSymbol(GVar); } else if (ConstantExpr *Cexpr = dyn_cast(CPV)) { Value *v = Cexpr->stripPointerCasts(); aggBuffer->addSymbol(v); } unsigned int s = TD->getTypeAllocSize(CPV->getType()); aggBuffer->addZeros(s); break; } case Type::ArrayTyID: case Type::VectorTyID: case Type::StructTyID: { if (isa(CPV) || isa(CPV) || isa(CPV)) { int ElementSize = TD->getTypeAllocSize(CPV->getType()); bufferAggregateConstant(CPV, aggBuffer); if ( Bytes > ElementSize ) aggBuffer->addZeros(Bytes-ElementSize); } else if (isa(CPV)) aggBuffer->addZeros(Bytes); else llvm_unreachable("Unexpected Constant type"); break; } default: llvm_unreachable("unsupported type"); } } void NVPTXAsmPrinter::bufferAggregateConstant(Constant *CPV, AggBuffer *aggBuffer) { const DataLayout *TD = TM.getDataLayout(); int Bytes; // Old constants if (isa(CPV) || isa(CPV)) { if (CPV->getNumOperands()) for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i) bufferLEByte(cast(CPV->getOperand(i)), 0, aggBuffer); return; } if (const ConstantDataSequential *CDS = dyn_cast(CPV)) { if (CDS->getNumElements()) for (unsigned i = 0; i < CDS->getNumElements(); ++i) bufferLEByte(cast(CDS->getElementAsConstant(i)), 0, aggBuffer); return; } if (isa(CPV)) { if (CPV->getNumOperands()) { StructType *ST = cast(CPV->getType()); for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i) { if ( i == (e - 1)) Bytes = TD->getStructLayout(ST)->getElementOffset(0) + TD->getTypeAllocSize(ST) - TD->getStructLayout(ST)->getElementOffset(i); else Bytes = TD->getStructLayout(ST)->getElementOffset(i+1) - TD->getStructLayout(ST)->getElementOffset(i); bufferLEByte(cast(CPV->getOperand(i)), Bytes, aggBuffer); } } return; } llvm_unreachable("unsupported constant type in printAggregateConstant()"); } // buildTypeNameMap - Run through symbol table looking for type names. // bool NVPTXAsmPrinter::isImageType(const Type *Ty) { std::map::iterator PI = TypeNameMap.find(Ty); if (PI != TypeNameMap.end() && (!PI->second.compare("struct._image1d_t") || !PI->second.compare("struct._image2d_t") || !PI->second.compare("struct._image3d_t"))) return true; return false; } /// PrintAsmOperand - Print out an operand for an inline asm expression. /// bool NVPTXAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode, raw_ostream &O) { if (ExtraCode && ExtraCode[0]) { if (ExtraCode[1] != 0) return true; // Unknown modifier. switch (ExtraCode[0]) { default: // See if this is a generic print operand return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O); case 'r': break; } } printOperand(MI, OpNo, O); return false; } bool NVPTXAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode, raw_ostream &O) { if (ExtraCode && ExtraCode[0]) return true; // Unknown modifier O << '['; printMemOperand(MI, OpNo, O); O << ']'; return false; } bool NVPTXAsmPrinter::ignoreLoc(const MachineInstr &MI) { switch(MI.getOpcode()) { default: return false; case NVPTX::CallArgBeginInst: case NVPTX::CallArgEndInst0: case NVPTX::CallArgEndInst1: case NVPTX::CallArgF32: case NVPTX::CallArgF64: case NVPTX::CallArgI16: case NVPTX::CallArgI32: case NVPTX::CallArgI32imm: case NVPTX::CallArgI64: case NVPTX::CallArgI8: case NVPTX::CallArgParam: case NVPTX::CallVoidInst: case NVPTX::CallVoidInstReg: case NVPTX::Callseq_End: case NVPTX::CallVoidInstReg64: case NVPTX::DeclareParamInst: case NVPTX::DeclareRetMemInst: case NVPTX::DeclareRetRegInst: case NVPTX::DeclareRetScalarInst: case NVPTX::DeclareScalarParamInst: case NVPTX::DeclareScalarRegInst: case NVPTX::StoreParamF32: case NVPTX::StoreParamF64: case NVPTX::StoreParamI16: case NVPTX::StoreParamI32: case NVPTX::StoreParamI64: case NVPTX::StoreParamI8: case NVPTX::StoreParamS32I8: case NVPTX::StoreParamU32I8: case NVPTX::StoreParamS32I16: case NVPTX::StoreParamU32I16: case NVPTX::StoreParamScalar2F32: case NVPTX::StoreParamScalar2F64: case NVPTX::StoreParamScalar2I16: case NVPTX::StoreParamScalar2I32: case NVPTX::StoreParamScalar2I64: case NVPTX::StoreParamScalar2I8: case NVPTX::StoreParamScalar4F32: case NVPTX::StoreParamScalar4I16: case NVPTX::StoreParamScalar4I32: case NVPTX::StoreParamScalar4I8: case NVPTX::StoreParamV2F32: case NVPTX::StoreParamV2F64: case NVPTX::StoreParamV2I16: case NVPTX::StoreParamV2I32: case NVPTX::StoreParamV2I64: case NVPTX::StoreParamV2I8: case NVPTX::StoreParamV4F32: case NVPTX::StoreParamV4I16: case NVPTX::StoreParamV4I32: case NVPTX::StoreParamV4I8: case NVPTX::StoreRetvalF32: case NVPTX::StoreRetvalF64: case NVPTX::StoreRetvalI16: case NVPTX::StoreRetvalI32: case NVPTX::StoreRetvalI64: case NVPTX::StoreRetvalI8: case NVPTX::StoreRetvalScalar2F32: case NVPTX::StoreRetvalScalar2F64: case NVPTX::StoreRetvalScalar2I16: case NVPTX::StoreRetvalScalar2I32: case NVPTX::StoreRetvalScalar2I64: case NVPTX::StoreRetvalScalar2I8: case NVPTX::StoreRetvalScalar4F32: case NVPTX::StoreRetvalScalar4I16: case NVPTX::StoreRetvalScalar4I32: case NVPTX::StoreRetvalScalar4I8: case NVPTX::StoreRetvalV2F32: case NVPTX::StoreRetvalV2F64: case NVPTX::StoreRetvalV2I16: case NVPTX::StoreRetvalV2I32: case NVPTX::StoreRetvalV2I64: case NVPTX::StoreRetvalV2I8: case NVPTX::StoreRetvalV4F32: case NVPTX::StoreRetvalV4I16: case NVPTX::StoreRetvalV4I32: case NVPTX::StoreRetvalV4I8: case NVPTX::LastCallArgF32: case NVPTX::LastCallArgF64: case NVPTX::LastCallArgI16: case NVPTX::LastCallArgI32: case NVPTX::LastCallArgI32imm: case NVPTX::LastCallArgI64: case NVPTX::LastCallArgI8: case NVPTX::LastCallArgParam: case NVPTX::LoadParamMemF32: case NVPTX::LoadParamMemF64: case NVPTX::LoadParamMemI16: case NVPTX::LoadParamMemI32: case NVPTX::LoadParamMemI64: case NVPTX::LoadParamMemI8: case NVPTX::LoadParamRegF32: case NVPTX::LoadParamRegF64: case NVPTX::LoadParamRegI16: case NVPTX::LoadParamRegI32: case NVPTX::LoadParamRegI64: case NVPTX::LoadParamRegI8: case NVPTX::LoadParamScalar2F32: case NVPTX::LoadParamScalar2F64: case NVPTX::LoadParamScalar2I16: case NVPTX::LoadParamScalar2I32: case NVPTX::LoadParamScalar2I64: case NVPTX::LoadParamScalar2I8: case NVPTX::LoadParamScalar4F32: case NVPTX::LoadParamScalar4I16: case NVPTX::LoadParamScalar4I32: case NVPTX::LoadParamScalar4I8: case NVPTX::LoadParamV2F32: case NVPTX::LoadParamV2F64: case NVPTX::LoadParamV2I16: case NVPTX::LoadParamV2I32: case NVPTX::LoadParamV2I64: case NVPTX::LoadParamV2I8: case NVPTX::LoadParamV4F32: case NVPTX::LoadParamV4I16: case NVPTX::LoadParamV4I32: case NVPTX::LoadParamV4I8: case NVPTX::PrototypeInst: case NVPTX::DBG_VALUE: return true; } return false; } // Force static initialization. extern "C" void LLVMInitializeNVPTXBackendAsmPrinter() { RegisterAsmPrinter X(TheNVPTXTarget32); RegisterAsmPrinter Y(TheNVPTXTarget64); } void NVPTXAsmPrinter::emitSrcInText(StringRef filename, unsigned line) { std::stringstream temp; LineReader * reader = this->getReader(filename.str()); temp << "\n//"; temp << filename.str(); temp << ":"; temp << line; temp << " "; temp << reader->readLine(line); temp << "\n"; this->OutStreamer.EmitRawText(Twine(temp.str())); } LineReader *NVPTXAsmPrinter::getReader(std::string filename) { if (reader == NULL) { reader = new LineReader(filename); } if (reader->fileName() != filename) { delete reader; reader = new LineReader(filename); } return reader; } std::string LineReader::readLine(unsigned lineNum) { if (lineNum < theCurLine) { theCurLine = 0; fstr.seekg(0,std::ios::beg); } while (theCurLine < lineNum) { fstr.getline(buff,500); theCurLine++; } return buff; } // Force static initialization. extern "C" void LLVMInitializeNVPTXAsmPrinter() { RegisterAsmPrinter X(TheNVPTXTarget32); RegisterAsmPrinter Y(TheNVPTXTarget64); }