//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This transformation analyzes and transforms the induction variables (and // computations derived from them) into simpler forms suitable for subsequent // analysis and transformation. // // This transformation makes the following changes to each loop with an // identifiable induction variable: // 1. All loops are transformed to have a SINGLE canonical induction variable // which starts at zero and steps by one. // 2. The canonical induction variable is guaranteed to be the first PHI node // in the loop header block. // 3. Any pointer arithmetic recurrences are raised to use array subscripts. // // If the trip count of a loop is computable, this pass also makes the following // changes: // 1. The exit condition for the loop is canonicalized to compare the // induction value against the exit value. This turns loops like: // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' // 2. Any use outside of the loop of an expression derived from the indvar // is changed to compute the derived value outside of the loop, eliminating // the dependence on the exit value of the induction variable. If the only // purpose of the loop is to compute the exit value of some derived // expression, this transformation will make the loop dead. // // This transformation should be followed by strength reduction after all of the // desired loop transformations have been performed. Additionally, on targets // where it is profitable, the loop could be transformed to count down to zero // (the "do loop" optimization). // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "indvars" #include "llvm/Transforms/Scalar.h" #include "llvm/BasicBlock.h" #include "llvm/Constants.h" #include "llvm/Instructions.h" #include "llvm/Type.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Support/CommandLine.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" using namespace llvm; STATISTIC(NumRemoved , "Number of aux indvars removed"); STATISTIC(NumInserted, "Number of canonical indvars added"); STATISTIC(NumReplaced, "Number of exit values replaced"); STATISTIC(NumLFTR , "Number of loop exit tests replaced"); namespace { class VISIBILITY_HIDDEN IndVarSimplify : public LoopPass { LoopInfo *LI; ScalarEvolution *SE; bool Changed; public: static char ID; // Pass identification, replacement for typeid IndVarSimplify() : LoopPass(&ID) {} virtual bool runOnLoop(Loop *L, LPPassManager &LPM); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequiredID(LCSSAID); AU.addRequiredID(LoopSimplifyID); AU.addRequired(); AU.addPreserved(); AU.addPreservedID(LoopSimplifyID); AU.addPreservedID(LCSSAID); AU.setPreservesCFG(); } private: void RewriteNonIntegerIVs(Loop *L); void LinearFunctionTestReplace(Loop *L, SCEVHandle BackedgeTakenCount, Value *IndVar, BasicBlock *ExitingBlock, BranchInst *BI, SCEVExpander &Rewriter); void RewriteLoopExitValues(Loop *L, const SCEV *BackedgeTakenCount); void DeleteTriviallyDeadInstructions(SmallPtrSet &Insts); void HandleFloatingPointIV(Loop *L, PHINode *PH, SmallPtrSet &DeadInsts); }; } char IndVarSimplify::ID = 0; static RegisterPass X("indvars", "Canonicalize Induction Variables"); Pass *llvm::createIndVarSimplifyPass() { return new IndVarSimplify(); } /// DeleteTriviallyDeadInstructions - If any of the instructions is the /// specified set are trivially dead, delete them and see if this makes any of /// their operands subsequently dead. void IndVarSimplify:: DeleteTriviallyDeadInstructions(SmallPtrSet &Insts) { while (!Insts.empty()) { Instruction *I = *Insts.begin(); Insts.erase(I); if (isInstructionTriviallyDead(I)) { for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) if (Instruction *U = dyn_cast(I->getOperand(i))) Insts.insert(U); DOUT << "INDVARS: Deleting: " << *I; I->eraseFromParent(); Changed = true; } } } /// LinearFunctionTestReplace - This method rewrites the exit condition of the /// loop to be a canonical != comparison against the incremented loop induction /// variable. This pass is able to rewrite the exit tests of any loop where the /// SCEV analysis can determine a loop-invariant trip count of the loop, which /// is actually a much broader range than just linear tests. void IndVarSimplify::LinearFunctionTestReplace(Loop *L, SCEVHandle BackedgeTakenCount, Value *IndVar, BasicBlock *ExitingBlock, BranchInst *BI, SCEVExpander &Rewriter) { // If the exiting block is not the same as the backedge block, we must compare // against the preincremented value, otherwise we prefer to compare against // the post-incremented value. Value *CmpIndVar; SCEVHandle RHS = BackedgeTakenCount; if (ExitingBlock == L->getLoopLatch()) { // Add one to the "backedge-taken" count to get the trip count. // If this addition may overflow, we have to be more pessimistic and // cast the induction variable before doing the add. SCEVHandle Zero = SE->getIntegerSCEV(0, BackedgeTakenCount->getType()); SCEVHandle N = SE->getAddExpr(BackedgeTakenCount, SE->getIntegerSCEV(1, BackedgeTakenCount->getType())); if ((isa(N) && !N->isZero()) || SE->isLoopGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) { // No overflow. Cast the sum. RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType()); } else { // Potential overflow. Cast before doing the add. RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount, IndVar->getType()); RHS = SE->getAddExpr(RHS, SE->getIntegerSCEV(1, IndVar->getType())); } // The BackedgeTaken expression contains the number of times that the // backedge branches to the loop header. This is one less than the // number of times the loop executes, so use the incremented indvar. CmpIndVar = L->getCanonicalInductionVariableIncrement(); } else { // We have to use the preincremented value... RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount, IndVar->getType()); CmpIndVar = IndVar; } // Expand the code for the iteration count into the preheader of the loop. BasicBlock *Preheader = L->getLoopPreheader(); Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(), Preheader->getTerminator()); // Insert a new icmp_ne or icmp_eq instruction before the branch. ICmpInst::Predicate Opcode; if (L->contains(BI->getSuccessor(0))) Opcode = ICmpInst::ICMP_NE; else Opcode = ICmpInst::ICMP_EQ; DOUT << "INDVARS: Rewriting loop exit condition to:\n" << " LHS:" << *CmpIndVar // includes a newline << " op:\t" << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" << " RHS:\t" << *RHS << "\n"; Value *Cond = new ICmpInst(Opcode, CmpIndVar, ExitCnt, "exitcond", BI); BI->setCondition(Cond); ++NumLFTR; Changed = true; } /// RewriteLoopExitValues - Check to see if this loop has a computable /// loop-invariant execution count. If so, this means that we can compute the /// final value of any expressions that are recurrent in the loop, and /// substitute the exit values from the loop into any instructions outside of /// the loop that use the final values of the current expressions. void IndVarSimplify::RewriteLoopExitValues(Loop *L, const SCEV *BackedgeTakenCount) { BasicBlock *Preheader = L->getLoopPreheader(); // Scan all of the instructions in the loop, looking at those that have // extra-loop users and which are recurrences. SCEVExpander Rewriter(*SE, *LI); // We insert the code into the preheader of the loop if the loop contains // multiple exit blocks, or in the exit block if there is exactly one. BasicBlock *BlockToInsertInto; SmallVector ExitBlocks; L->getUniqueExitBlocks(ExitBlocks); if (ExitBlocks.size() == 1) BlockToInsertInto = ExitBlocks[0]; else BlockToInsertInto = Preheader; BasicBlock::iterator InsertPt = BlockToInsertInto->getFirstNonPHI(); bool HasConstantItCount = isa(BackedgeTakenCount); SmallPtrSet InstructionsToDelete; std::map ExitValues; // Find all values that are computed inside the loop, but used outside of it. // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan // the exit blocks of the loop to find them. for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { BasicBlock *ExitBB = ExitBlocks[i]; // If there are no PHI nodes in this exit block, then no values defined // inside the loop are used on this path, skip it. PHINode *PN = dyn_cast(ExitBB->begin()); if (!PN) continue; unsigned NumPreds = PN->getNumIncomingValues(); // Iterate over all of the PHI nodes. BasicBlock::iterator BBI = ExitBB->begin(); while ((PN = dyn_cast(BBI++))) { // Iterate over all of the values in all the PHI nodes. for (unsigned i = 0; i != NumPreds; ++i) { // If the value being merged in is not integer or is not defined // in the loop, skip it. Value *InVal = PN->getIncomingValue(i); if (!isa(InVal) || // SCEV only supports integer expressions for now. (!isa(InVal->getType()) && !isa(InVal->getType()))) continue; // If this pred is for a subloop, not L itself, skip it. if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) continue; // The Block is in a subloop, skip it. // Check that InVal is defined in the loop. Instruction *Inst = cast(InVal); if (!L->contains(Inst->getParent())) continue; // We require that this value either have a computable evolution or that // the loop have a constant iteration count. In the case where the loop // has a constant iteration count, we can sometimes force evaluation of // the exit value through brute force. SCEVHandle SH = SE->getSCEV(Inst); if (!SH->hasComputableLoopEvolution(L) && !HasConstantItCount) continue; // Cannot get exit evolution for the loop value. // Okay, this instruction has a user outside of the current loop // and varies predictably *inside* the loop. Evaluate the value it // contains when the loop exits, if possible. SCEVHandle ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); if (isa(ExitValue) || !ExitValue->isLoopInvariant(L)) continue; Changed = true; ++NumReplaced; // See if we already computed the exit value for the instruction, if so, // just reuse it. Value *&ExitVal = ExitValues[Inst]; if (!ExitVal) ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), InsertPt); DOUT << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << " LoopVal = " << *Inst << "\n"; PN->setIncomingValue(i, ExitVal); // If this instruction is dead now, schedule it to be removed. if (Inst->use_empty()) InstructionsToDelete.insert(Inst); // See if this is a single-entry LCSSA PHI node. If so, we can (and // have to) remove // the PHI entirely. This is safe, because the NewVal won't be variant // in the loop, so we don't need an LCSSA phi node anymore. if (NumPreds == 1) { PN->replaceAllUsesWith(ExitVal); PN->eraseFromParent(); break; } } } } DeleteTriviallyDeadInstructions(InstructionsToDelete); } void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) { // First step. Check to see if there are any floating-point recurrences. // If there are, change them into integer recurrences, permitting analysis by // the SCEV routines. // BasicBlock *Header = L->getHeader(); SmallPtrSet DeadInsts; for (BasicBlock::iterator I = Header->begin(); isa(I); ++I) { PHINode *PN = cast(I); HandleFloatingPointIV(L, PN, DeadInsts); } // If the loop previously had floating-point IV, ScalarEvolution // may not have been able to compute a trip count. Now that we've done some // re-writing, the trip count may be computable. if (Changed) SE->forgetLoopBackedgeTakenCount(L); if (!DeadInsts.empty()) DeleteTriviallyDeadInstructions(DeadInsts); } /// getEffectiveIndvarType - Determine the widest type that the /// induction-variable PHINode Phi is cast to. /// static const Type *getEffectiveIndvarType(const PHINode *Phi, const ScalarEvolution *SE) { const Type *Ty = Phi->getType(); for (Value::use_const_iterator UI = Phi->use_begin(), UE = Phi->use_end(); UI != UE; ++UI) { const Type *CandidateType = NULL; if (const ZExtInst *ZI = dyn_cast(UI)) CandidateType = ZI->getDestTy(); else if (const SExtInst *SI = dyn_cast(UI)) CandidateType = SI->getDestTy(); else if (const IntToPtrInst *IP = dyn_cast(UI)) CandidateType = IP->getDestTy(); else if (const PtrToIntInst *PI = dyn_cast(UI)) CandidateType = PI->getDestTy(); if (CandidateType && SE->isSCEVable(CandidateType) && SE->getTypeSizeInBits(CandidateType) > SE->getTypeSizeInBits(Ty)) Ty = CandidateType; } return Ty; } /// TestOrigIVForWrap - Analyze the original induction variable that /// controls the loop's iteration to determine whether it would ever /// undergo signed or unsigned overflow. /// /// In addition to setting the NoSignedWrap and NoUnsignedWrap /// variables to true when appropriate (they are not set to false here), /// return the PHI for this induction variable. Also record the initial /// and final values and the increment; these are not meaningful unless /// either NoSignedWrap or NoUnsignedWrap is true, and are always meaningful /// in that case, although the final value may be 0 indicating a nonconstant. /// /// TODO: This duplicates a fair amount of ScalarEvolution logic. /// Perhaps this can be merged with /// ScalarEvolution::getBackedgeTakenCount /// and/or ScalarEvolution::get{Sign,Zero}ExtendExpr. /// static const PHINode *TestOrigIVForWrap(const Loop *L, const BranchInst *BI, const Instruction *OrigCond, const ScalarEvolution &SE, bool &NoSignedWrap, bool &NoUnsignedWrap, const ConstantInt* &InitialVal, const ConstantInt* &IncrVal, const ConstantInt* &LimitVal) { // Verify that the loop is sane and find the exit condition. const ICmpInst *Cmp = dyn_cast(OrigCond); if (!Cmp) return 0; const Value *CmpLHS = Cmp->getOperand(0); const Value *CmpRHS = Cmp->getOperand(1); const BasicBlock *TrueBB = BI->getSuccessor(0); const BasicBlock *FalseBB = BI->getSuccessor(1); ICmpInst::Predicate Pred = Cmp->getPredicate(); // Canonicalize a constant to the RHS. if (isa(CmpLHS)) { Pred = ICmpInst::getSwappedPredicate(Pred); std::swap(CmpLHS, CmpRHS); } // Canonicalize SLE to SLT. if (Pred == ICmpInst::ICMP_SLE) if (const ConstantInt *CI = dyn_cast(CmpRHS)) if (!CI->getValue().isMaxSignedValue()) { CmpRHS = ConstantInt::get(CI->getValue() + 1); Pred = ICmpInst::ICMP_SLT; } // Canonicalize SGT to SGE. if (Pred == ICmpInst::ICMP_SGT) if (const ConstantInt *CI = dyn_cast(CmpRHS)) if (!CI->getValue().isMaxSignedValue()) { CmpRHS = ConstantInt::get(CI->getValue() + 1); Pred = ICmpInst::ICMP_SGE; } // Canonicalize SGE to SLT. if (Pred == ICmpInst::ICMP_SGE) { std::swap(TrueBB, FalseBB); Pred = ICmpInst::ICMP_SLT; } // Canonicalize ULE to ULT. if (Pred == ICmpInst::ICMP_ULE) if (const ConstantInt *CI = dyn_cast(CmpRHS)) if (!CI->getValue().isMaxValue()) { CmpRHS = ConstantInt::get(CI->getValue() + 1); Pred = ICmpInst::ICMP_ULT; } // Canonicalize UGT to UGE. if (Pred == ICmpInst::ICMP_UGT) if (const ConstantInt *CI = dyn_cast(CmpRHS)) if (!CI->getValue().isMaxValue()) { CmpRHS = ConstantInt::get(CI->getValue() + 1); Pred = ICmpInst::ICMP_UGE; } // Canonicalize UGE to ULT. if (Pred == ICmpInst::ICMP_UGE) { std::swap(TrueBB, FalseBB); Pred = ICmpInst::ICMP_ULT; } // For now, analyze only LT loops for signed overflow. if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_ULT) return 0; bool isSigned = Pred == ICmpInst::ICMP_SLT; // Get the increment instruction. Look past casts if we will // be able to prove that the original induction variable doesn't // undergo signed or unsigned overflow, respectively. const Value *IncrInst = CmpLHS; if (isSigned) { if (const SExtInst *SI = dyn_cast(CmpLHS)) { if (!isa(CmpRHS) || !cast(CmpRHS)->getValue() .isSignedIntN(SE.getTypeSizeInBits(IncrInst->getType()))) return 0; IncrInst = SI->getOperand(0); } } else { if (const ZExtInst *ZI = dyn_cast(CmpLHS)) { if (!isa(CmpRHS) || !cast(CmpRHS)->getValue() .isIntN(SE.getTypeSizeInBits(IncrInst->getType()))) return 0; IncrInst = ZI->getOperand(0); } } // For now, only analyze induction variables that have simple increments. const BinaryOperator *IncrOp = dyn_cast(IncrInst); if (!IncrOp || IncrOp->getOpcode() != Instruction::Add) return 0; IncrVal = dyn_cast(IncrOp->getOperand(1)); if (!IncrVal) return 0; // Make sure the PHI looks like a normal IV. const PHINode *PN = dyn_cast(IncrOp->getOperand(0)); if (!PN || PN->getNumIncomingValues() != 2) return 0; unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); unsigned BackEdge = !IncomingEdge; if (!L->contains(PN->getIncomingBlock(BackEdge)) || PN->getIncomingValue(BackEdge) != IncrOp) return 0; if (!L->contains(TrueBB)) return 0; // For now, only analyze loops with a constant start value, so that // we can easily determine if the start value is not a maximum value // which would wrap on the first iteration. InitialVal = dyn_cast(PN->getIncomingValue(IncomingEdge)); if (!InitialVal) return 0; // The upper limit need not be a constant; we'll check later. LimitVal = dyn_cast(CmpRHS); // We detect the impossibility of wrapping in two cases, both of // which require starting with a non-max value: // - The IV counts up by one, and the loop iterates only while it remains // less than a limiting value (any) in the same type. // - The IV counts up by a positive increment other than 1, and the // constant limiting value + the increment is less than the max value // (computed as max-increment to avoid overflow) if (isSigned && !InitialVal->getValue().isMaxSignedValue()) { if (IncrVal->equalsInt(1)) NoSignedWrap = true; // LimitVal need not be constant else if (LimitVal) { uint64_t numBits = LimitVal->getValue().getBitWidth(); if (IncrVal->getValue().sgt(APInt::getNullValue(numBits)) && (APInt::getSignedMaxValue(numBits) - IncrVal->getValue()) .sgt(LimitVal->getValue())) NoSignedWrap = true; } } else if (!isSigned && !InitialVal->getValue().isMaxValue()) { if (IncrVal->equalsInt(1)) NoUnsignedWrap = true; // LimitVal need not be constant else if (LimitVal) { uint64_t numBits = LimitVal->getValue().getBitWidth(); if (IncrVal->getValue().ugt(APInt::getNullValue(numBits)) && (APInt::getMaxValue(numBits) - IncrVal->getValue()) .ugt(LimitVal->getValue())) NoUnsignedWrap = true; } } return PN; } static Value *getSignExtendedTruncVar(const SCEVAddRecExpr *AR, ScalarEvolution *SE, const Type *LargestType, Loop *L, const Type *myType, SCEVExpander &Rewriter) { SCEVHandle ExtendedStart = SE->getSignExtendExpr(AR->getStart(), LargestType); SCEVHandle ExtendedStep = SE->getSignExtendExpr(AR->getStepRecurrence(*SE), LargestType); SCEVHandle ExtendedAddRec = SE->getAddRecExpr(ExtendedStart, ExtendedStep, L); if (LargestType != myType) ExtendedAddRec = SE->getTruncateExpr(ExtendedAddRec, myType); return Rewriter.expandCodeFor(ExtendedAddRec, myType); } static Value *getZeroExtendedTruncVar(const SCEVAddRecExpr *AR, ScalarEvolution *SE, const Type *LargestType, Loop *L, const Type *myType, SCEVExpander &Rewriter) { SCEVHandle ExtendedStart = SE->getZeroExtendExpr(AR->getStart(), LargestType); SCEVHandle ExtendedStep = SE->getZeroExtendExpr(AR->getStepRecurrence(*SE), LargestType); SCEVHandle ExtendedAddRec = SE->getAddRecExpr(ExtendedStart, ExtendedStep, L); if (LargestType != myType) ExtendedAddRec = SE->getTruncateExpr(ExtendedAddRec, myType); return Rewriter.expandCodeFor(ExtendedAddRec, myType); } /// allUsesAreSameTyped - See whether all Uses of I are instructions /// with the same Opcode and the same type. static bool allUsesAreSameTyped(unsigned int Opcode, Instruction *I) { const Type* firstType = NULL; for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; ++UI) { Instruction *II = dyn_cast(*UI); if (!II || II->getOpcode() != Opcode) return false; if (!firstType) firstType = II->getType(); else if (firstType != II->getType()) return false; } return true; } bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { LI = &getAnalysis(); SE = &getAnalysis(); Changed = false; // If there are any floating-point recurrences, attempt to // transform them to use integer recurrences. RewriteNonIntegerIVs(L); BasicBlock *Header = L->getHeader(); BasicBlock *ExitingBlock = L->getExitingBlock(); SmallPtrSet DeadInsts; // Verify the input to the pass in already in LCSSA form. assert(L->isLCSSAForm()); // Check to see if this loop has a computable loop-invariant execution count. // If so, this means that we can compute the final value of any expressions // that are recurrent in the loop, and substitute the exit values from the // loop into any instructions outside of the loop that use the final values of // the current expressions. // SCEVHandle BackedgeTakenCount = SE->getBackedgeTakenCount(L); if (!isa(BackedgeTakenCount)) RewriteLoopExitValues(L, BackedgeTakenCount); // Next, analyze all of the induction variables in the loop, canonicalizing // auxillary induction variables. std::vector > IndVars; for (BasicBlock::iterator I = Header->begin(); isa(I); ++I) { PHINode *PN = cast(I); if (SE->isSCEVable(PN->getType())) { SCEVHandle SCEV = SE->getSCEV(PN); // FIXME: It is an extremely bad idea to indvar substitute anything more // complex than affine induction variables. Doing so will put expensive // polynomial evaluations inside of the loop, and the str reduction pass // currently can only reduce affine polynomials. For now just disable // indvar subst on anything more complex than an affine addrec. if (const SCEVAddRecExpr *AR = dyn_cast(SCEV)) if (AR->getLoop() == L && AR->isAffine()) IndVars.push_back(std::make_pair(PN, SCEV)); } } // Compute the type of the largest recurrence expression, and collect // the set of the types of the other recurrence expressions. const Type *LargestType = 0; SmallSetVector SizesToInsert; if (!isa(BackedgeTakenCount)) { LargestType = BackedgeTakenCount->getType(); LargestType = SE->getEffectiveSCEVType(LargestType); SizesToInsert.insert(LargestType); } for (unsigned i = 0, e = IndVars.size(); i != e; ++i) { const PHINode *PN = IndVars[i].first; const Type *PNTy = PN->getType(); PNTy = SE->getEffectiveSCEVType(PNTy); SizesToInsert.insert(PNTy); const Type *EffTy = getEffectiveIndvarType(PN, SE); EffTy = SE->getEffectiveSCEVType(EffTy); SizesToInsert.insert(EffTy); if (!LargestType || SE->getTypeSizeInBits(EffTy) > SE->getTypeSizeInBits(LargestType)) LargestType = EffTy; } // Create a rewriter object which we'll use to transform the code with. SCEVExpander Rewriter(*SE, *LI); // Now that we know the largest of of the induction variables in this loop, // insert a canonical induction variable of the largest size. Value *IndVar = 0; if (!SizesToInsert.empty()) { IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType); ++NumInserted; Changed = true; DOUT << "INDVARS: New CanIV: " << *IndVar; } // If we have a trip count expression, rewrite the loop's exit condition // using it. We can currently only handle loops with a single exit. bool NoSignedWrap = false; bool NoUnsignedWrap = false; const ConstantInt* InitialVal, * IncrVal, * LimitVal; const PHINode *OrigControllingPHI = 0; if (!isa(BackedgeTakenCount) && ExitingBlock) // Can't rewrite non-branch yet. if (BranchInst *BI = dyn_cast(ExitingBlock->getTerminator())) { if (Instruction *OrigCond = dyn_cast(BI->getCondition())) { // Determine if the OrigIV will ever undergo overflow. OrigControllingPHI = TestOrigIVForWrap(L, BI, OrigCond, *SE, NoSignedWrap, NoUnsignedWrap, InitialVal, IncrVal, LimitVal); // We'll be replacing the original condition, so it'll be dead. DeadInsts.insert(OrigCond); } LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, ExitingBlock, BI, Rewriter); } // Now that we have a canonical induction variable, we can rewrite any // recurrences in terms of the induction variable. Start with the auxillary // induction variables, and recursively rewrite any of their uses. BasicBlock::iterator InsertPt = Header->getFirstNonPHI(); Rewriter.setInsertionPoint(InsertPt); // If there were induction variables of other sizes, cast the primary // induction variable to the right size for them, avoiding the need for the // code evaluation methods to insert induction variables of different sizes. for (unsigned i = 0, e = SizesToInsert.size(); i != e; ++i) { const Type *Ty = SizesToInsert[i]; if (Ty != LargestType) { Instruction *New = new TruncInst(IndVar, Ty, "indvar", InsertPt); Rewriter.addInsertedValue(New, SE->getSCEV(New)); DOUT << "INDVARS: Made trunc IV for type " << *Ty << ": " << *New << "\n"; } } // Rewrite all induction variables in terms of the canonical induction // variable. while (!IndVars.empty()) { PHINode *PN = IndVars.back().first; const SCEVAddRecExpr *AR = cast(IndVars.back().second); Value *NewVal = Rewriter.expandCodeFor(AR, PN->getType()); DOUT << "INDVARS: Rewrote IV '" << *AR << "' " << *PN << " into = " << *NewVal << "\n"; NewVal->takeName(PN); /// If the new canonical induction variable is wider than the original, /// and the original has uses that are casts to wider types, see if the /// truncate and extend can be omitted. if (PN == OrigControllingPHI && PN->getType() != LargestType) for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end(); UI != UE; ++UI) { Instruction *UInst = dyn_cast(*UI); if (UInst && isa(UInst) && NoSignedWrap) { Value *TruncIndVar = getSignExtendedTruncVar(AR, SE, LargestType, L, UInst->getType(), Rewriter); UInst->replaceAllUsesWith(TruncIndVar); DeadInsts.insert(UInst); } // See if we can figure out sext(i+constant) doesn't wrap, so we can // use a larger add. This is common in subscripting. if (UInst && UInst->getOpcode()==Instruction::Add && !UInst->use_empty() && allUsesAreSameTyped(Instruction::SExt, UInst) && isa(UInst->getOperand(1)) && NoSignedWrap && LimitVal) { uint64_t oldBitSize = LimitVal->getValue().getBitWidth(); uint64_t newBitSize = LargestType->getPrimitiveSizeInBits(); ConstantInt* AddRHS = dyn_cast(UInst->getOperand(1)); if (((APInt::getSignedMaxValue(oldBitSize) - IncrVal->getValue()) - AddRHS->getValue()).sgt(LimitVal->getValue())) { // We've determined this is (i+constant) and it won't overflow. if (isa(UInst->use_begin())) { SExtInst* oldSext = dyn_cast(UInst->use_begin()); uint64_t truncSize = oldSext->getType()->getPrimitiveSizeInBits(); Value *TruncIndVar = getSignExtendedTruncVar(AR, SE, LargestType, L, oldSext->getType(), Rewriter); APInt APnewAddRHS = APInt(AddRHS->getValue()).sext(newBitSize); if (newBitSize > truncSize) APnewAddRHS = APnewAddRHS.trunc(truncSize); ConstantInt* newAddRHS =ConstantInt::get(APnewAddRHS); Value *NewAdd = BinaryOperator::CreateAdd(TruncIndVar, newAddRHS, UInst->getName()+".nosex", UInst); for (Value::use_iterator UI2 = UInst->use_begin(), UE2 = UInst->use_end(); UI2 != UE2; ++UI2) { Instruction *II = dyn_cast(UI2); II->replaceAllUsesWith(NewAdd); DeadInsts.insert(II); } DeadInsts.insert(UInst); } } } // Try for sext(i | constant). This is safe as long as the // high bit of the constant is not set. if (UInst && UInst->getOpcode()==Instruction::Or && !UInst->use_empty() && allUsesAreSameTyped(Instruction::SExt, UInst) && NoSignedWrap && isa(UInst->getOperand(1))) { ConstantInt* RHS = dyn_cast(UInst->getOperand(1)); if (!RHS->getValue().isNegative()) { uint64_t newBitSize = LargestType->getPrimitiveSizeInBits(); SExtInst* oldSext = dyn_cast(UInst->use_begin()); uint64_t truncSize = oldSext->getType()->getPrimitiveSizeInBits(); Value *TruncIndVar = getSignExtendedTruncVar(AR, SE, LargestType, L, oldSext->getType(), Rewriter); APInt APnewOrRHS = APInt(RHS->getValue()).sext(newBitSize); if (newBitSize > truncSize) APnewOrRHS = APnewOrRHS.trunc(truncSize); ConstantInt* newOrRHS =ConstantInt::get(APnewOrRHS); Value *NewOr = BinaryOperator::CreateOr(TruncIndVar, newOrRHS, UInst->getName()+".nosex", UInst); for (Value::use_iterator UI2 = UInst->use_begin(), UE2 = UInst->use_end(); UI2 != UE2; ++UI2) { Instruction *II = dyn_cast(UI2); II->replaceAllUsesWith(NewOr); DeadInsts.insert(II); } DeadInsts.insert(UInst); } } // A zext of a signed variable known not to overflow is still safe. if (UInst && isa(UInst) && (NoUnsignedWrap || NoSignedWrap)) { Value *TruncIndVar = getZeroExtendedTruncVar(AR, SE, LargestType, L, UInst->getType(), Rewriter); UInst->replaceAllUsesWith(TruncIndVar); DeadInsts.insert(UInst); } // If we have zext(i&constant), it's always safe to use the larger // variable. This is not common but is a bottleneck in Openssl. // (RHS doesn't have to be constant. There should be a better approach // than bottom-up pattern matching for this...) if (UInst && UInst->getOpcode()==Instruction::And && !UInst->use_empty() && allUsesAreSameTyped(Instruction::ZExt, UInst) && isa(UInst->getOperand(1))) { uint64_t newBitSize = LargestType->getPrimitiveSizeInBits(); ConstantInt* AndRHS = dyn_cast(UInst->getOperand(1)); ZExtInst* oldZext = dyn_cast(UInst->use_begin()); uint64_t truncSize = oldZext->getType()->getPrimitiveSizeInBits(); Value *TruncIndVar = getSignExtendedTruncVar(AR, SE, LargestType, L, oldZext->getType(), Rewriter); APInt APnewAndRHS = APInt(AndRHS->getValue()).zext(newBitSize); if (newBitSize > truncSize) APnewAndRHS = APnewAndRHS.trunc(truncSize); ConstantInt* newAndRHS = ConstantInt::get(APnewAndRHS); Value *NewAnd = BinaryOperator::CreateAnd(TruncIndVar, newAndRHS, UInst->getName()+".nozex", UInst); for (Value::use_iterator UI2 = UInst->use_begin(), UE2 = UInst->use_end(); UI2 != UE2; ++UI2) { Instruction *II = dyn_cast(UI2); II->replaceAllUsesWith(NewAnd); DeadInsts.insert(II); } DeadInsts.insert(UInst); } // If we have zext((i+constant)&constant), we can use the larger // variable even if the add does overflow. This works whenever the // constant being ANDed is the same size as i, which it presumably is. // We don't need to restrict the expression being and'ed to i+const, // but we have to promote everything in it, so it's convenient. // zext((i | constant)&constant) is also valid and accepted here. if (UInst && (UInst->getOpcode()==Instruction::Add || UInst->getOpcode()==Instruction::Or) && UInst->hasOneUse() && isa(UInst->getOperand(1))) { uint64_t newBitSize = LargestType->getPrimitiveSizeInBits(); ConstantInt* AddRHS = dyn_cast(UInst->getOperand(1)); Instruction *UInst2 = dyn_cast(UInst->use_begin()); if (UInst2 && UInst2->getOpcode() == Instruction::And && !UInst2->use_empty() && allUsesAreSameTyped(Instruction::ZExt, UInst2) && isa(UInst2->getOperand(1))) { ZExtInst* oldZext = dyn_cast(UInst2->use_begin()); uint64_t truncSize = oldZext->getType()->getPrimitiveSizeInBits(); Value *TruncIndVar = getSignExtendedTruncVar(AR, SE, LargestType, L, oldZext->getType(), Rewriter); ConstantInt* AndRHS = dyn_cast(UInst2->getOperand(1)); APInt APnewAddRHS = APInt(AddRHS->getValue()).zext(newBitSize); if (newBitSize > truncSize) APnewAddRHS = APnewAddRHS.trunc(truncSize); ConstantInt* newAddRHS = ConstantInt::get(APnewAddRHS); Value *NewAdd = ((UInst->getOpcode()==Instruction::Add) ? BinaryOperator::CreateAdd(TruncIndVar, newAddRHS, UInst->getName()+".nozex", UInst2) : BinaryOperator::CreateOr(TruncIndVar, newAddRHS, UInst->getName()+".nozex", UInst2)); APInt APcopy2 = APInt(AndRHS->getValue()); ConstantInt* newAndRHS = ConstantInt::get(APcopy2.zext(newBitSize)); Value *NewAnd = BinaryOperator::CreateAnd(NewAdd, newAndRHS, UInst->getName()+".nozex", UInst2); for (Value::use_iterator UI2 = UInst2->use_begin(), UE2 = UInst2->use_end(); UI2 != UE2; ++UI2) { Instruction *II = dyn_cast(UI2); II->replaceAllUsesWith(NewAnd); DeadInsts.insert(II); } DeadInsts.insert(UInst); DeadInsts.insert(UInst2); } } } // Replace the old PHI Node with the inserted computation. PN->replaceAllUsesWith(NewVal); DeadInsts.insert(PN); IndVars.pop_back(); ++NumRemoved; Changed = true; } DeleteTriviallyDeadInstructions(DeadInsts); assert(L->isLCSSAForm()); return Changed; } /// Return true if it is OK to use SIToFPInst for an inducation variable /// with given inital and exit values. static bool useSIToFPInst(ConstantFP &InitV, ConstantFP &ExitV, uint64_t intIV, uint64_t intEV) { if (InitV.getValueAPF().isNegative() || ExitV.getValueAPF().isNegative()) return true; // If the iteration range can be handled by SIToFPInst then use it. APInt Max = APInt::getSignedMaxValue(32); if (Max.getZExtValue() > static_cast(abs(intEV - intIV))) return true; return false; } /// convertToInt - Convert APF to an integer, if possible. static bool convertToInt(const APFloat &APF, uint64_t *intVal) { bool isExact = false; if (&APF.getSemantics() == &APFloat::PPCDoubleDouble) return false; if (APF.convertToInteger(intVal, 32, APF.isNegative(), APFloat::rmTowardZero, &isExact) != APFloat::opOK) return false; if (!isExact) return false; return true; } /// HandleFloatingPointIV - If the loop has floating induction variable /// then insert corresponding integer induction variable if possible. /// For example, /// for(double i = 0; i < 10000; ++i) /// bar(i) /// is converted into /// for(int i = 0; i < 10000; ++i) /// bar((double)i); /// void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH, SmallPtrSet &DeadInsts) { unsigned IncomingEdge = L->contains(PH->getIncomingBlock(0)); unsigned BackEdge = IncomingEdge^1; // Check incoming value. ConstantFP *InitValue = dyn_cast(PH->getIncomingValue(IncomingEdge)); if (!InitValue) return; uint64_t newInitValue = Type::Int32Ty->getPrimitiveSizeInBits(); if (!convertToInt(InitValue->getValueAPF(), &newInitValue)) return; // Check IV increment. Reject this PH if increement operation is not // an add or increment value can not be represented by an integer. BinaryOperator *Incr = dyn_cast(PH->getIncomingValue(BackEdge)); if (!Incr) return; if (Incr->getOpcode() != Instruction::Add) return; ConstantFP *IncrValue = NULL; unsigned IncrVIndex = 1; if (Incr->getOperand(1) == PH) IncrVIndex = 0; IncrValue = dyn_cast(Incr->getOperand(IncrVIndex)); if (!IncrValue) return; uint64_t newIncrValue = Type::Int32Ty->getPrimitiveSizeInBits(); if (!convertToInt(IncrValue->getValueAPF(), &newIncrValue)) return; // Check Incr uses. One user is PH and the other users is exit condition used // by the conditional terminator. Value::use_iterator IncrUse = Incr->use_begin(); Instruction *U1 = cast(IncrUse++); if (IncrUse == Incr->use_end()) return; Instruction *U2 = cast(IncrUse++); if (IncrUse != Incr->use_end()) return; // Find exit condition. FCmpInst *EC = dyn_cast(U1); if (!EC) EC = dyn_cast(U2); if (!EC) return; if (BranchInst *BI = dyn_cast(EC->getParent()->getTerminator())) { if (!BI->isConditional()) return; if (BI->getCondition() != EC) return; } // Find exit value. If exit value can not be represented as an interger then // do not handle this floating point PH. ConstantFP *EV = NULL; unsigned EVIndex = 1; if (EC->getOperand(1) == Incr) EVIndex = 0; EV = dyn_cast(EC->getOperand(EVIndex)); if (!EV) return; uint64_t intEV = Type::Int32Ty->getPrimitiveSizeInBits(); if (!convertToInt(EV->getValueAPF(), &intEV)) return; // Find new predicate for integer comparison. CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; switch (EC->getPredicate()) { case CmpInst::FCMP_OEQ: case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; case CmpInst::FCMP_OGT: case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_UGT; break; case CmpInst::FCMP_OGE: case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_UGE; break; case CmpInst::FCMP_OLT: case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_ULT; break; case CmpInst::FCMP_OLE: case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_ULE; break; default: break; } if (NewPred == CmpInst::BAD_ICMP_PREDICATE) return; // Insert new integer induction variable. PHINode *NewPHI = PHINode::Create(Type::Int32Ty, PH->getName()+".int", PH); NewPHI->addIncoming(ConstantInt::get(Type::Int32Ty, newInitValue), PH->getIncomingBlock(IncomingEdge)); Value *NewAdd = BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Type::Int32Ty, newIncrValue), Incr->getName()+".int", Incr); NewPHI->addIncoming(NewAdd, PH->getIncomingBlock(BackEdge)); // The back edge is edge 1 of newPHI, whatever it may have been in the // original PHI. ConstantInt *NewEV = ConstantInt::get(Type::Int32Ty, intEV); Value *LHS = (EVIndex == 1 ? NewPHI->getIncomingValue(1) : NewEV); Value *RHS = (EVIndex == 1 ? NewEV : NewPHI->getIncomingValue(1)); ICmpInst *NewEC = new ICmpInst(NewPred, LHS, RHS, EC->getNameStart(), EC->getParent()->getTerminator()); // Delete old, floating point, exit comparision instruction. EC->replaceAllUsesWith(NewEC); DeadInsts.insert(EC); // Delete old, floating point, increment instruction. Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); DeadInsts.insert(Incr); // Replace floating induction variable. Give SIToFPInst preference over // UIToFPInst because it is faster on platforms that are widely used. if (useSIToFPInst(*InitValue, *EV, newInitValue, intEV)) { SIToFPInst *Conv = new SIToFPInst(NewPHI, PH->getType(), "indvar.conv", PH->getParent()->getFirstNonPHI()); PH->replaceAllUsesWith(Conv); } else { UIToFPInst *Conv = new UIToFPInst(NewPHI, PH->getType(), "indvar.conv", PH->getParent()->getFirstNonPHI()); PH->replaceAllUsesWith(Conv); } DeadInsts.insert(PH); }