//===- Reassociate.cpp - Reassociate binary expressions -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass reassociates commutative expressions in an order that is designed // to promote better constant propagation, GCSE, LICM, PRE, etc. // // For example: 4 + (x + 5) -> x + (4 + 5) // // In the implementation of this algorithm, constants are assigned rank = 0, // function arguments are rank = 1, and other values are assigned ranks // corresponding to the reverse post order traversal of current function // (starting at 2), which effectively gives values in deep loops higher rank // than values not in loops. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "reassociate" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/IRBuilder.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" #include "llvm/Pass.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Assembly/Writer.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ValueHandle.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; STATISTIC(NumChanged, "Number of insts reassociated"); STATISTIC(NumAnnihil, "Number of expr tree annihilated"); STATISTIC(NumFactor , "Number of multiplies factored"); namespace { struct ValueEntry { unsigned Rank; Value *Op; ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {} }; inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) { return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start. } } #ifndef NDEBUG /// PrintOps - Print out the expression identified in the Ops list. /// static void PrintOps(Instruction *I, const SmallVectorImpl &Ops) { Module *M = I->getParent()->getParent()->getParent(); dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " << *Ops[0].Op->getType() << '\t'; for (unsigned i = 0, e = Ops.size(); i != e; ++i) { dbgs() << "[ "; WriteAsOperand(dbgs(), Ops[i].Op, false, M); dbgs() << ", #" << Ops[i].Rank << "] "; } } #endif namespace { /// \brief Utility class representing a base and exponent pair which form one /// factor of some product. struct Factor { Value *Base; unsigned Power; Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {} /// \brief Sort factors by their Base. struct BaseSorter { bool operator()(const Factor &LHS, const Factor &RHS) { return LHS.Base < RHS.Base; } }; /// \brief Compare factors for equal bases. struct BaseEqual { bool operator()(const Factor &LHS, const Factor &RHS) { return LHS.Base == RHS.Base; } }; /// \brief Sort factors in descending order by their power. struct PowerDescendingSorter { bool operator()(const Factor &LHS, const Factor &RHS) { return LHS.Power > RHS.Power; } }; /// \brief Compare factors for equal powers. struct PowerEqual { bool operator()(const Factor &LHS, const Factor &RHS) { return LHS.Power == RHS.Power; } }; }; } namespace { class Reassociate : public FunctionPass { DenseMap RankMap; DenseMap, unsigned> ValueRankMap; SetVector > RedoInsts; bool MadeChange; public: static char ID; // Pass identification, replacement for typeid Reassociate() : FunctionPass(ID) { initializeReassociatePass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); } private: void BuildRankMap(Function &F); unsigned getRank(Value *V); void ReassociateExpression(BinaryOperator *I); void RewriteExprTree(BinaryOperator *I, SmallVectorImpl &Ops); Value *OptimizeExpression(BinaryOperator *I, SmallVectorImpl &Ops); Value *OptimizeAdd(Instruction *I, SmallVectorImpl &Ops); bool collectMultiplyFactors(SmallVectorImpl &Ops, SmallVectorImpl &Factors); Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder, SmallVectorImpl &Factors); Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl &Ops); Value *RemoveFactorFromExpression(Value *V, Value *Factor); void EraseInst(Instruction *I); void OptimizeInst(Instruction *I); }; } char Reassociate::ID = 0; INITIALIZE_PASS(Reassociate, "reassociate", "Reassociate expressions", false, false) // Public interface to the Reassociate pass FunctionPass *llvm::createReassociatePass() { return new Reassociate(); } /// isReassociableOp - Return true if V is an instruction of the specified /// opcode and if it only has one use. static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { if (V->hasOneUse() && isa(V) && cast(V)->getOpcode() == Opcode) return cast(V); return 0; } static bool isUnmovableInstruction(Instruction *I) { if (I->getOpcode() == Instruction::PHI || I->getOpcode() == Instruction::LandingPad || I->getOpcode() == Instruction::Alloca || I->getOpcode() == Instruction::Load || I->getOpcode() == Instruction::Invoke || (I->getOpcode() == Instruction::Call && !isa(I)) || I->getOpcode() == Instruction::UDiv || I->getOpcode() == Instruction::SDiv || I->getOpcode() == Instruction::FDiv || I->getOpcode() == Instruction::URem || I->getOpcode() == Instruction::SRem || I->getOpcode() == Instruction::FRem) return true; return false; } void Reassociate::BuildRankMap(Function &F) { unsigned i = 2; // Assign distinct ranks to function arguments for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) ValueRankMap[&*I] = ++i; ReversePostOrderTraversal RPOT(&F); for (ReversePostOrderTraversal::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I) { BasicBlock *BB = *I; unsigned BBRank = RankMap[BB] = ++i << 16; // Walk the basic block, adding precomputed ranks for any instructions that // we cannot move. This ensures that the ranks for these instructions are // all different in the block. for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) if (isUnmovableInstruction(I)) ValueRankMap[&*I] = ++BBRank; } } unsigned Reassociate::getRank(Value *V) { Instruction *I = dyn_cast(V); if (I == 0) { if (isa(V)) return ValueRankMap[V]; // Function argument. return 0; // Otherwise it's a global or constant, rank 0. } if (unsigned Rank = ValueRankMap[I]) return Rank; // Rank already known? // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that // we can reassociate expressions for code motion! Since we do not recurse // for PHI nodes, we cannot have infinite recursion here, because there // cannot be loops in the value graph that do not go through PHI nodes. unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i) Rank = std::max(Rank, getRank(I->getOperand(i))); // If this is a not or neg instruction, do not count it for rank. This // assures us that X and ~X will have the same rank. if (!I->getType()->isIntegerTy() || (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I))) ++Rank; //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " // << Rank << "\n"); return ValueRankMap[I] = Rank; } /// LowerNegateToMultiply - Replace 0-X with X*-1. /// static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { Constant *Cst = Constant::getAllOnesValue(Neg->getType()); BinaryOperator *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg); Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op. Res->takeName(Neg); Neg->replaceAllUsesWith(Res); Res->setDebugLoc(Neg->getDebugLoc()); return Res; } /// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda /// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every /// even x in Bitwidth-bit arithmetic. static unsigned CarmichaelShift(unsigned Bitwidth) { if (Bitwidth < 3) return Bitwidth - 1; return Bitwidth - 2; } /// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS', /// reducing the combined weight using any special properties of the operation. /// The existing weight LHS represents the computation X op X op ... op X where /// X occurs LHS times. The combined weight represents X op X op ... op X with /// X occurring LHS + RHS times. If op is "Xor" for example then the combined /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { // If we were working with infinite precision arithmetic then the combined // weight would be LHS + RHS. But we are using finite precision arithmetic, // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct // for nilpotent operations and addition, but not for idempotent operations // and multiplication), so it is important to correctly reduce the combined // weight back into range if wrapping would be wrong. // If RHS is zero then the weight didn't change. if (RHS.isMinValue()) return; // If LHS is zero then the combined weight is RHS. if (LHS.isMinValue()) { LHS = RHS; return; } // From this point on we know that neither LHS nor RHS is zero. if (Instruction::isIdempotent(Opcode)) { // Idempotent means X op X === X, so any non-zero weight is equivalent to a // weight of 1. Keeping weights at zero or one also means that wrapping is // not a problem. assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); return; // Return a weight of 1. } if (Instruction::isNilpotent(Opcode)) { // Nilpotent means X op X === 0, so reduce weights modulo 2. assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); LHS = 0; // 1 + 1 === 0 modulo 2. return; } if (Opcode == Instruction::Add) { // TODO: Reduce the weight by exploiting nsw/nuw? LHS += RHS; return; } assert(Opcode == Instruction::Mul && "Unknown associative operation!"); unsigned Bitwidth = LHS.getBitWidth(); // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth // bit number x, since either x is odd in which case x^CM = 1, or x is even in // which case both x^W and x^(W - CM) are zero. By subtracting off multiples // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) // which by a happy accident means that they can always be represented using // Bitwidth bits. // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than // the Carmichael number). if (Bitwidth > 3) { /// CM - The value of Carmichael's lambda function. APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); // Any weight W >= Threshold can be replaced with W - CM. APInt Threshold = CM + Bitwidth; assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); // For Bitwidth 4 or more the following sum does not overflow. LHS += RHS; while (LHS.uge(Threshold)) LHS -= CM; } else { // To avoid problems with overflow do everything the same as above but using // a larger type. unsigned CM = 1U << CarmichaelShift(Bitwidth); unsigned Threshold = CM + Bitwidth; assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && "Weights not reduced!"); unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); while (Total >= Threshold) Total -= CM; LHS = Total; } } /// EvaluateRepeatedConstant - Compute C op C op ... op C where the constant C /// is repeated Weight times. static Constant *EvaluateRepeatedConstant(unsigned Opcode, Constant *C, APInt Weight) { // For addition the result can be efficiently computed as the product of the // constant and the weight. if (Opcode == Instruction::Add) return ConstantExpr::getMul(C, ConstantInt::get(C->getContext(), Weight)); // The weight might be huge, so compute by repeated squaring to ensure that // compile time is proportional to the logarithm of the weight. Constant *Result = 0; Constant *Power = C; // Successively C, C op C, (C op C) op (C op C) etc. // Visit the bits in Weight. while (Weight != 0) { // If the current bit in Weight is non-zero do Result = Result op Power. if (Weight[0]) Result = Result ? ConstantExpr::get(Opcode, Result, Power) : Power; // Move on to the next bit if any more are non-zero. Weight = Weight.lshr(1); if (Weight.isMinValue()) break; // Square the power. Power = ConstantExpr::get(Opcode, Power, Power); } assert(Result && "Only positive weights supported!"); return Result; } typedef std::pair RepeatedValue; /// LinearizeExprTree - Given an associative binary expression, return the leaf /// nodes in Ops along with their weights (how many times the leaf occurs). The /// original expression is the same as /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times /// op /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times /// op /// ... /// op /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times /// /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct, and /// they are all non-constant except possibly for the last one, which if it is /// constant will have weight one (Ops[N].second === 1). /// /// This routine may modify the function, in which case it returns 'true'. The /// changes it makes may well be destructive, changing the value computed by 'I' /// to something completely different. Thus if the routine returns 'true' then /// you MUST either replace I with a new expression computed from the Ops array, /// or use RewriteExprTree to put the values back in. /// /// A leaf node is either not a binary operation of the same kind as the root /// node 'I' (i.e. is not a binary operator at all, or is, but with a different /// opcode), or is the same kind of binary operator but has a use which either /// does not belong to the expression, or does belong to the expression but is /// a leaf node. Every leaf node has at least one use that is a non-leaf node /// of the expression, while for non-leaf nodes (except for the root 'I') every /// use is a non-leaf node of the expression. /// /// For example: /// expression graph node names /// /// + | I /// / \ | /// + + | A, B /// / \ / \ | /// * + * | C, D, E /// / \ / \ / \ | /// + * | F, G /// /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in /// that order) (C, 1), (E, 1), (F, 2), (G, 2). /// /// The expression is maximal: if some instruction is a binary operator of the /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, /// then the instruction also belongs to the expression, is not a leaf node of /// it, and its operands also belong to the expression (but may be leaf nodes). /// /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in /// order to ensure that every non-root node in the expression has *exactly one* /// use by a non-leaf node of the expression. This destruction means that the /// caller MUST either replace 'I' with a new expression or use something like /// RewriteExprTree to put the values back in if the routine indicates that it /// made a change by returning 'true'. /// /// In the above example either the right operand of A or the left operand of B /// will be replaced by undef. If it is B's operand then this gives: /// /// + | I /// / \ | /// + + | A, B - operand of B replaced with undef /// / \ \ | /// * + * | C, D, E /// / \ / \ / \ | /// + * | F, G /// /// Note that such undef operands can only be reached by passing through 'I'. /// For example, if you visit operands recursively starting from a leaf node /// then you will never see such an undef operand unless you get back to 'I', /// which requires passing through a phi node. /// /// Note that this routine may also mutate binary operators of the wrong type /// that have all uses inside the expression (i.e. only used by non-leaf nodes /// of the expression) if it can turn them into binary operators of the right /// type and thus make the expression bigger. static bool LinearizeExprTree(BinaryOperator *I, SmallVectorImpl &Ops) { DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); unsigned Opcode = I->getOpcode(); assert(Instruction::isAssociative(Opcode) && Instruction::isCommutative(Opcode) && "Expected an associative and commutative operation!"); // If we see an absorbing element then the entire expression must be equal to // it. For example, if this is a multiplication expression and zero occurs as // an operand somewhere in it then the result of the expression must be zero. Constant *Absorber = ConstantExpr::getBinOpAbsorber(Opcode, I->getType()); // Visit all operands of the expression, keeping track of their weight (the // number of paths from the expression root to the operand, or if you like // the number of times that operand occurs in the linearized expression). // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 // while A has weight two. // Worklist of non-leaf nodes (their operands are in the expression too) along // with their weights, representing a certain number of paths to the operator. // If an operator occurs in the worklist multiple times then we found multiple // ways to get to it. SmallVector, 8> Worklist; // (Op, Weight) Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); bool MadeChange = false; // Leaves of the expression are values that either aren't the right kind of // operation (eg: a constant, or a multiply in an add tree), or are, but have // some uses that are not inside the expression. For example, in I = X + X, // X = A + B, the value X has two uses (by I) that are in the expression. If // X has any other uses, for example in a return instruction, then we consider // X to be a leaf, and won't analyze it further. When we first visit a value, // if it has more than one use then at first we conservatively consider it to // be a leaf. Later, as the expression is explored, we may discover some more // uses of the value from inside the expression. If all uses turn out to be // from within the expression (and the value is a binary operator of the right // kind) then the value is no longer considered to be a leaf, and its operands // are explored. // Leaves - Keeps track of the set of putative leaves as well as the number of // paths to each leaf seen so far. typedef DenseMap LeafMap; LeafMap Leaves; // Leaf -> Total weight so far. SmallVector LeafOrder; // Ensure deterministic leaf output order. #ifndef NDEBUG SmallPtrSet Visited; // For sanity checking the iteration scheme. #endif while (!Worklist.empty()) { std::pair P = Worklist.pop_back_val(); I = P.first; // We examine the operands of this binary operator. for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands. Value *Op = I->getOperand(OpIdx); APInt Weight = P.second; // Number of paths to this operand. DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); assert(!Op->use_empty() && "No uses, so how did we get to it?!"); // If the expression contains an absorbing element then there is no need // to analyze it further: it must evaluate to the absorbing element. if (Op == Absorber && !Weight.isMinValue()) { Ops.push_back(std::make_pair(Absorber, APInt(Bitwidth, 1))); return MadeChange; } // If this is a binary operation of the right kind with only one use then // add its operands to the expression. if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { assert(Visited.insert(Op) && "Not first visit!"); DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); Worklist.push_back(std::make_pair(BO, Weight)); continue; } // Appears to be a leaf. Is the operand already in the set of leaves? LeafMap::iterator It = Leaves.find(Op); if (It == Leaves.end()) { // Not in the leaf map. Must be the first time we saw this operand. assert(Visited.insert(Op) && "Not first visit!"); if (!Op->hasOneUse()) { // This value has uses not accounted for by the expression, so it is // not safe to modify. Mark it as being a leaf. DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); LeafOrder.push_back(Op); Leaves[Op] = Weight; continue; } // No uses outside the expression, try morphing it. } else if (It != Leaves.end()) { // Already in the leaf map. assert(Visited.count(Op) && "In leaf map but not visited!"); // Update the number of paths to the leaf. IncorporateWeight(It->second, Weight, Opcode); // The leaf already has one use from inside the expression. As we want // exactly one such use, drop this new use of the leaf. assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); I->setOperand(OpIdx, UndefValue::get(I->getType())); MadeChange = true; // If the leaf is a binary operation of the right kind and we now see // that its multiple original uses were in fact all by nodes belonging // to the expression, then no longer consider it to be a leaf and add // its operands to the expression. if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); Worklist.push_back(std::make_pair(BO, It->second)); Leaves.erase(It); continue; } // If we still have uses that are not accounted for by the expression // then it is not safe to modify the value. if (!Op->hasOneUse()) continue; // No uses outside the expression, try morphing it. Weight = It->second; Leaves.erase(It); // Since the value may be morphed below. } // At this point we have a value which, first of all, is not a binary // expression of the right kind, and secondly, is only used inside the // expression. This means that it can safely be modified. See if we // can usefully morph it into an expression of the right kind. assert((!isa(Op) || cast(Op)->getOpcode() != Opcode) && "Should have been handled above!"); assert(Op->hasOneUse() && "Has uses outside the expression tree!"); // If this is a multiply expression, turn any internal negations into // multiplies by -1 so they can be reassociated. BinaryOperator *BO = dyn_cast(Op); if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) { DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); BO = LowerNegateToMultiply(BO); DEBUG(dbgs() << *BO << 'n'); Worklist.push_back(std::make_pair(BO, Weight)); MadeChange = true; continue; } // Failed to morph into an expression of the right type. This really is // a leaf. DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); LeafOrder.push_back(Op); Leaves[Op] = Weight; } } // The leaves, repeated according to their weights, represent the linearized // form of the expression. Constant *Cst = 0; // Accumulate constants here. for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) { Value *V = LeafOrder[i]; LeafMap::iterator It = Leaves.find(V); if (It == Leaves.end()) // Node initially thought to be a leaf wasn't. continue; assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); APInt Weight = It->second; if (Weight.isMinValue()) // Leaf already output or weight reduction eliminated it. continue; // Ensure the leaf is only output once. It->second = 0; // Glob all constants together into Cst. if (Constant *C = dyn_cast(V)) { C = EvaluateRepeatedConstant(Opcode, C, Weight); Cst = Cst ? ConstantExpr::get(Opcode, Cst, C) : C; continue; } // Add non-constant Ops.push_back(std::make_pair(V, Weight)); } // Add any constants back into Ops, all globbed together and reduced to having // weight 1 for the convenience of users. Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); if (Cst && Cst != Identity) { // If combining multiple constants resulted in the absorber then the entire // expression must evaluate to the absorber. if (Cst == Absorber) Ops.clear(); Ops.push_back(std::make_pair(Cst, APInt(Bitwidth, 1))); } // For nilpotent operations or addition there may be no operands, for example // because the expression was "X xor X" or consisted of 2^Bitwidth additions: // in both cases the weight reduces to 0 causing the value to be skipped. if (Ops.empty()) { assert(Identity && "Associative operation without identity!"); Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1))); } return MadeChange; } // RewriteExprTree - Now that the operands for this expression tree are // linearized and optimized, emit them in-order. void Reassociate::RewriteExprTree(BinaryOperator *I, SmallVectorImpl &Ops) { assert(Ops.size() > 1 && "Single values should be used directly!"); // Since our optimizations never increase the number of operations, the new // expression can always be written by reusing the existing binary operators // from the original expression tree, without creating any new instructions, // though the rewritten expression may have a completely different topology. // We take care to not change anything if the new expression will be the same // as the original. If more than trivial changes (like commuting operands) // were made then we are obliged to clear out any optional subclass data like // nsw flags. /// NodesToRewrite - Nodes from the original expression available for writing /// the new expression into. SmallVector NodesToRewrite; unsigned Opcode = I->getOpcode(); BinaryOperator *Op = I; // ExpressionChanged - Non-null if the rewritten expression differs from the // original in some non-trivial way, requiring the clearing of optional flags. // Flags are cleared from the operator in ExpressionChanged up to I inclusive. BinaryOperator *ExpressionChanged = 0; for (unsigned i = 0; ; ++i) { // The last operation (which comes earliest in the IR) is special as both // operands will come from Ops, rather than just one with the other being // a subexpression. if (i+2 == Ops.size()) { Value *NewLHS = Ops[i].Op; Value *NewRHS = Ops[i+1].Op; Value *OldLHS = Op->getOperand(0); Value *OldRHS = Op->getOperand(1); if (NewLHS == OldLHS && NewRHS == OldRHS) // Nothing changed, leave it alone. break; if (NewLHS == OldRHS && NewRHS == OldLHS) { // The order of the operands was reversed. Swap them. DEBUG(dbgs() << "RA: " << *Op << '\n'); Op->swapOperands(); DEBUG(dbgs() << "TO: " << *Op << '\n'); MadeChange = true; ++NumChanged; break; } // The new operation differs non-trivially from the original. Overwrite // the old operands with the new ones. DEBUG(dbgs() << "RA: " << *Op << '\n'); if (NewLHS != OldLHS) { if (BinaryOperator *BO = isReassociableOp(OldLHS, Opcode)) NodesToRewrite.push_back(BO); Op->setOperand(0, NewLHS); } if (NewRHS != OldRHS) { if (BinaryOperator *BO = isReassociableOp(OldRHS, Opcode)) NodesToRewrite.push_back(BO); Op->setOperand(1, NewRHS); } DEBUG(dbgs() << "TO: " << *Op << '\n'); ExpressionChanged = Op; MadeChange = true; ++NumChanged; break; } // Not the last operation. The left-hand side will be a sub-expression // while the right-hand side will be the current element of Ops. Value *NewRHS = Ops[i].Op; if (NewRHS != Op->getOperand(1)) { DEBUG(dbgs() << "RA: " << *Op << '\n'); if (NewRHS == Op->getOperand(0)) { // The new right-hand side was already present as the left operand. If // we are lucky then swapping the operands will sort out both of them. Op->swapOperands(); } else { // Overwrite with the new right-hand side. if (BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode)) NodesToRewrite.push_back(BO); Op->setOperand(1, NewRHS); ExpressionChanged = Op; } DEBUG(dbgs() << "TO: " << *Op << '\n'); MadeChange = true; ++NumChanged; } // Now deal with the left-hand side. If this is already an operation node // from the original expression then just rewrite the rest of the expression // into it. if (BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode)) { Op = BO; continue; } // Otherwise, grab a spare node from the original expression and use that as // the left-hand side. If there are no nodes left then the optimizers made // an expression with more nodes than the original! This usually means that // they did something stupid but it might mean that the problem was just too // hard (finding the mimimal number of multiplications needed to realize a // multiplication expression is NP-complete). Whatever the reason, smart or // stupid, create a new node if there are none left. BinaryOperator *NewOp; if (NodesToRewrite.empty()) { Constant *Undef = UndefValue::get(I->getType()); NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), Undef, Undef, "", I); } else { NewOp = NodesToRewrite.pop_back_val(); } DEBUG(dbgs() << "RA: " << *Op << '\n'); Op->setOperand(0, NewOp); DEBUG(dbgs() << "TO: " << *Op << '\n'); ExpressionChanged = Op; MadeChange = true; ++NumChanged; Op = NewOp; } // If the expression changed non-trivially then clear out all subclass data // starting from the operator specified in ExpressionChanged, and compactify // the operators to just before the expression root to guarantee that the // expression tree is dominated by all of Ops. if (ExpressionChanged) do { ExpressionChanged->clearSubclassOptionalData(); if (ExpressionChanged == I) break; ExpressionChanged->moveBefore(I); ExpressionChanged = cast(*ExpressionChanged->use_begin()); } while (1); // Throw away any left over nodes from the original expression. for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) RedoInsts.insert(NodesToRewrite[i]); } /// NegateValue - Insert instructions before the instruction pointed to by BI, /// that computes the negative version of the value specified. The negative /// version of the value is returned, and BI is left pointing at the instruction /// that should be processed next by the reassociation pass. static Value *NegateValue(Value *V, Instruction *BI) { if (Constant *C = dyn_cast(V)) return ConstantExpr::getNeg(C); // We are trying to expose opportunity for reassociation. One of the things // that we want to do to achieve this is to push a negation as deep into an // expression chain as possible, to expose the add instructions. In practice, // this means that we turn this: // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate // the constants. We assume that instcombine will clean up the mess later if // we introduce tons of unnecessary negation instructions. // if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) { // Push the negates through the add. I->setOperand(0, NegateValue(I->getOperand(0), BI)); I->setOperand(1, NegateValue(I->getOperand(1), BI)); // We must move the add instruction here, because the neg instructions do // not dominate the old add instruction in general. By moving it, we are // assured that the neg instructions we just inserted dominate the // instruction we are about to insert after them. // I->moveBefore(BI); I->setName(I->getName()+".neg"); return I; } // Okay, we need to materialize a negated version of V with an instruction. // Scan the use lists of V to see if we have one already. for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ User *U = *UI; if (!BinaryOperator::isNeg(U)) continue; // We found one! Now we have to make sure that the definition dominates // this use. We do this by moving it to the entry block (if it is a // non-instruction value) or right after the definition. These negates will // be zapped by reassociate later, so we don't need much finesse here. BinaryOperator *TheNeg = cast(U); // Verify that the negate is in this function, V might be a constant expr. if (TheNeg->getParent()->getParent() != BI->getParent()->getParent()) continue; BasicBlock::iterator InsertPt; if (Instruction *InstInput = dyn_cast(V)) { if (InvokeInst *II = dyn_cast(InstInput)) { InsertPt = II->getNormalDest()->begin(); } else { InsertPt = InstInput; ++InsertPt; } while (isa(InsertPt)) ++InsertPt; } else { InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin(); } TheNeg->moveBefore(InsertPt); return TheNeg; } // Insert a 'neg' instruction that subtracts the value from zero to get the // negation. return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI); } /// ShouldBreakUpSubtract - Return true if we should break up this subtract of /// X-Y into (X + -Y). static bool ShouldBreakUpSubtract(Instruction *Sub) { // If this is a negation, we can't split it up! if (BinaryOperator::isNeg(Sub)) return false; // Don't bother to break this up unless either the LHS is an associable add or // subtract or if this is only used by one. if (isReassociableOp(Sub->getOperand(0), Instruction::Add) || isReassociableOp(Sub->getOperand(0), Instruction::Sub)) return true; if (isReassociableOp(Sub->getOperand(1), Instruction::Add) || isReassociableOp(Sub->getOperand(1), Instruction::Sub)) return true; if (Sub->hasOneUse() && (isReassociableOp(Sub->use_back(), Instruction::Add) || isReassociableOp(Sub->use_back(), Instruction::Sub))) return true; return false; } /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is /// only used by an add, transform this into (X+(0-Y)) to promote better /// reassociation. static BinaryOperator *BreakUpSubtract(Instruction *Sub) { // Convert a subtract into an add and a neg instruction. This allows sub // instructions to be commuted with other add instructions. // // Calculate the negative value of Operand 1 of the sub instruction, // and set it as the RHS of the add instruction we just made. // Value *NegVal = NegateValue(Sub->getOperand(1), Sub); BinaryOperator *New = BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub); Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. New->takeName(Sub); // Everyone now refers to the add instruction. Sub->replaceAllUsesWith(New); New->setDebugLoc(Sub->getDebugLoc()); DEBUG(dbgs() << "Negated: " << *New << '\n'); return New; } /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used /// by one, change this into a multiply by a constant to assist with further /// reassociation. static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { Constant *MulCst = ConstantInt::get(Shl->getType(), 1); MulCst = ConstantExpr::getShl(MulCst, cast(Shl->getOperand(1))); BinaryOperator *Mul = BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. Mul->takeName(Shl); Shl->replaceAllUsesWith(Mul); Mul->setDebugLoc(Shl->getDebugLoc()); return Mul; } /// FindInOperandList - Scan backwards and forwards among values with the same /// rank as element i to see if X exists. If X does not exist, return i. This /// is useful when scanning for 'x' when we see '-x' because they both get the /// same rank. static unsigned FindInOperandList(SmallVectorImpl &Ops, unsigned i, Value *X) { unsigned XRank = Ops[i].Rank; unsigned e = Ops.size(); for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) if (Ops[j].Op == X) return j; // Scan backwards. for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) if (Ops[j].Op == X) return j; return i; } /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together /// and returning the result. Insert the tree before I. static Value *EmitAddTreeOfValues(Instruction *I, SmallVectorImpl &Ops){ if (Ops.size() == 1) return Ops.back(); Value *V1 = Ops.back(); Ops.pop_back(); Value *V2 = EmitAddTreeOfValues(I, Ops); return BinaryOperator::CreateAdd(V2, V1, "tmp", I); } /// RemoveFactorFromExpression - If V is an expression tree that is a /// multiplication sequence, and if this sequence contains a multiply by Factor, /// remove Factor from the tree and return the new tree. Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) { BinaryOperator *BO = isReassociableOp(V, Instruction::Mul); if (!BO) return 0; SmallVector Tree; MadeChange |= LinearizeExprTree(BO, Tree); SmallVector Factors; Factors.reserve(Tree.size()); for (unsigned i = 0, e = Tree.size(); i != e; ++i) { RepeatedValue E = Tree[i]; Factors.append(E.second.getZExtValue(), ValueEntry(getRank(E.first), E.first)); } bool FoundFactor = false; bool NeedsNegate = false; for (unsigned i = 0, e = Factors.size(); i != e; ++i) { if (Factors[i].Op == Factor) { FoundFactor = true; Factors.erase(Factors.begin()+i); break; } // If this is a negative version of this factor, remove it. if (ConstantInt *FC1 = dyn_cast(Factor)) if (ConstantInt *FC2 = dyn_cast(Factors[i].Op)) if (FC1->getValue() == -FC2->getValue()) { FoundFactor = NeedsNegate = true; Factors.erase(Factors.begin()+i); break; } } if (!FoundFactor) { // Make sure to restore the operands to the expression tree. RewriteExprTree(BO, Factors); return 0; } BasicBlock::iterator InsertPt = BO; ++InsertPt; // If this was just a single multiply, remove the multiply and return the only // remaining operand. if (Factors.size() == 1) { RedoInsts.insert(BO); V = Factors[0].Op; } else { RewriteExprTree(BO, Factors); V = BO; } if (NeedsNegate) V = BinaryOperator::CreateNeg(V, "neg", InsertPt); return V; } /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively /// add its operands as factors, otherwise add V to the list of factors. /// /// Ops is the top-level list of add operands we're trying to factor. static void FindSingleUseMultiplyFactors(Value *V, SmallVectorImpl &Factors, const SmallVectorImpl &Ops) { BinaryOperator *BO = isReassociableOp(V, Instruction::Mul); if (!BO) { Factors.push_back(V); return; } // Otherwise, add the LHS and RHS to the list of factors. FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops); FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops); } /// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor' /// instruction. This optimizes based on identities. If it can be reduced to /// a single Value, it is returned, otherwise the Ops list is mutated as /// necessary. static Value *OptimizeAndOrXor(unsigned Opcode, SmallVectorImpl &Ops) { // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. for (unsigned i = 0, e = Ops.size(); i != e; ++i) { // First, check for X and ~X in the operand list. assert(i < Ops.size()); if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^. Value *X = BinaryOperator::getNotArgument(Ops[i].Op); unsigned FoundX = FindInOperandList(Ops, i, X); if (FoundX != i) { if (Opcode == Instruction::And) // ...&X&~X = 0 return Constant::getNullValue(X->getType()); if (Opcode == Instruction::Or) // ...|X|~X = -1 return Constant::getAllOnesValue(X->getType()); } } // Next, check for duplicate pairs of values, which we assume are next to // each other, due to our sorting criteria. assert(i < Ops.size()); if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { if (Opcode == Instruction::And || Opcode == Instruction::Or) { // Drop duplicate values for And and Or. Ops.erase(Ops.begin()+i); --i; --e; ++NumAnnihil; continue; } // Drop pairs of values for Xor. assert(Opcode == Instruction::Xor); if (e == 2) return Constant::getNullValue(Ops[0].Op->getType()); // Y ^ X^X -> Y Ops.erase(Ops.begin()+i, Ops.begin()+i+2); i -= 1; e -= 2; ++NumAnnihil; } } return 0; } /// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This /// optimizes based on identities. If it can be reduced to a single Value, it /// is returned, otherwise the Ops list is mutated as necessary. Value *Reassociate::OptimizeAdd(Instruction *I, SmallVectorImpl &Ops) { // Scan the operand lists looking for X and -X pairs. If we find any, we // can simplify the expression. X+-X == 0. While we're at it, scan for any // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. // // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1". // for (unsigned i = 0, e = Ops.size(); i != e; ++i) { Value *TheOp = Ops[i].Op; // Check to see if we've seen this operand before. If so, we factor all // instances of the operand together. Due to our sorting criteria, we know // that these need to be next to each other in the vector. if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { // Rescan the list, remove all instances of this operand from the expr. unsigned NumFound = 0; do { Ops.erase(Ops.begin()+i); ++NumFound; } while (i != Ops.size() && Ops[i].Op == TheOp); DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n'); ++NumFactor; // Insert a new multiply. Value *Mul = ConstantInt::get(cast(I->getType()), NumFound); Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I); // Now that we have inserted a multiply, optimize it. This allows us to // handle cases that require multiple factoring steps, such as this: // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 RedoInsts.insert(cast(Mul)); // If every add operand was a duplicate, return the multiply. if (Ops.empty()) return Mul; // Otherwise, we had some input that didn't have the dupe, such as // "A + A + B" -> "A*2 + B". Add the new multiply to the list of // things being added by this operation. Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); --i; e = Ops.size(); continue; } // Check for X and -X in the operand list. if (!BinaryOperator::isNeg(TheOp)) continue; Value *X = BinaryOperator::getNegArgument(TheOp); unsigned FoundX = FindInOperandList(Ops, i, X); if (FoundX == i) continue; // Remove X and -X from the operand list. if (Ops.size() == 2) return Constant::getNullValue(X->getType()); Ops.erase(Ops.begin()+i); if (i < FoundX) --FoundX; else --i; // Need to back up an extra one. Ops.erase(Ops.begin()+FoundX); ++NumAnnihil; --i; // Revisit element. e -= 2; // Removed two elements. } // Scan the operand list, checking to see if there are any common factors // between operands. Consider something like A*A+A*B*C+D. We would like to // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. // To efficiently find this, we count the number of times a factor occurs // for any ADD operands that are MULs. DenseMap FactorOccurrences; // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) // where they are actually the same multiply. unsigned MaxOcc = 0; Value *MaxOccVal = 0; for (unsigned i = 0, e = Ops.size(); i != e; ++i) { BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul); if (!BOp) continue; // Compute all of the factors of this added value. SmallVector Factors; FindSingleUseMultiplyFactors(BOp, Factors, Ops); assert(Factors.size() > 1 && "Bad linearize!"); // Add one to FactorOccurrences for each unique factor in this op. SmallPtrSet Duplicates; for (unsigned i = 0, e = Factors.size(); i != e; ++i) { Value *Factor = Factors[i]; if (!Duplicates.insert(Factor)) continue; unsigned Occ = ++FactorOccurrences[Factor]; if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; } // If Factor is a negative constant, add the negated value as a factor // because we can percolate the negate out. Watch for minint, which // cannot be positivified. if (ConstantInt *CI = dyn_cast(Factor)) if (CI->isNegative() && !CI->isMinValue(true)) { Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); assert(!Duplicates.count(Factor) && "Shouldn't have two constant factors, missed a canonicalize"); unsigned Occ = ++FactorOccurrences[Factor]; if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; } } } } // If any factor occurred more than one time, we can pull it out. if (MaxOcc > 1) { DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n'); ++NumFactor; // Create a new instruction that uses the MaxOccVal twice. If we don't do // this, we could otherwise run into situations where removing a factor // from an expression will drop a use of maxocc, and this can cause // RemoveFactorFromExpression on successive values to behave differently. Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal); SmallVector NewMulOps; for (unsigned i = 0; i != Ops.size(); ++i) { // Only try to remove factors from expressions we're allowed to. BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul); if (!BOp) continue; if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { // The factorized operand may occur several times. Convert them all in // one fell swoop. for (unsigned j = Ops.size(); j != i;) { --j; if (Ops[j].Op == Ops[i].Op) { NewMulOps.push_back(V); Ops.erase(Ops.begin()+j); } } --i; } } // No need for extra uses anymore. delete DummyInst; unsigned NumAddedValues = NewMulOps.size(); Value *V = EmitAddTreeOfValues(I, NewMulOps); // Now that we have inserted the add tree, optimize it. This allows us to // handle cases that require multiple factoring steps, such as this: // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); (void)NumAddedValues; if (Instruction *VI = dyn_cast(V)) RedoInsts.insert(VI); // Create the multiply. Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I); // Rerun associate on the multiply in case the inner expression turned into // a multiply. We want to make sure that we keep things in canonical form. RedoInsts.insert(V2); // If every add operand included the factor (e.g. "A*B + A*C"), then the // entire result expression is just the multiply "A*(B+C)". if (Ops.empty()) return V2; // Otherwise, we had some input that didn't have the factor, such as // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of // things being added by this operation. Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); } return 0; } namespace { /// \brief Predicate tests whether a ValueEntry's op is in a map. struct IsValueInMap { const DenseMap ⤅ IsValueInMap(const DenseMap &Map) : Map(Map) {} bool operator()(const ValueEntry &Entry) { return Map.find(Entry.Op) != Map.end(); } }; } /// \brief Build up a vector of value/power pairs factoring a product. /// /// Given a series of multiplication operands, build a vector of factors and /// the powers each is raised to when forming the final product. Sort them in /// the order of descending power. /// /// (x*x) -> [(x, 2)] /// ((x*x)*x) -> [(x, 3)] /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] /// /// \returns Whether any factors have a power greater than one. bool Reassociate::collectMultiplyFactors(SmallVectorImpl &Ops, SmallVectorImpl &Factors) { // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. // Compute the sum of powers of simplifiable factors. unsigned FactorPowerSum = 0; for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { Value *Op = Ops[Idx-1].Op; // Count the number of occurrences of this value. unsigned Count = 1; for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) ++Count; // Track for simplification all factors which occur 2 or more times. if (Count > 1) FactorPowerSum += Count; } // We can only simplify factors if the sum of the powers of our simplifiable // factors is 4 or higher. When that is the case, we will *always* have // a simplification. This is an important invariant to prevent cyclicly // trying to simplify already minimal formations. if (FactorPowerSum < 4) return false; // Now gather the simplifiable factors, removing them from Ops. FactorPowerSum = 0; for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { Value *Op = Ops[Idx-1].Op; // Count the number of occurrences of this value. unsigned Count = 1; for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) ++Count; if (Count == 1) continue; // Move an even number of occurrences to Factors. Count &= ~1U; Idx -= Count; FactorPowerSum += Count; Factors.push_back(Factor(Op, Count)); Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); } // None of the adjustments above should have reduced the sum of factor powers // below our mininum of '4'. assert(FactorPowerSum >= 4); std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter()); return true; } /// \brief Build a tree of multiplies, computing the product of Ops. static Value *buildMultiplyTree(IRBuilder<> &Builder, SmallVectorImpl &Ops) { if (Ops.size() == 1) return Ops.back(); Value *LHS = Ops.pop_back_val(); do { LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); } while (!Ops.empty()); return LHS; } /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... /// /// Given a vector of values raised to various powers, where no two values are /// equal and the powers are sorted in decreasing order, compute the minimal /// DAG of multiplies to compute the final product, and return that product /// value. Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder, SmallVectorImpl &Factors) { assert(Factors[0].Power); SmallVector OuterProduct; for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); Idx < Size && Factors[Idx].Power > 0; ++Idx) { if (Factors[Idx].Power != Factors[LastIdx].Power) { LastIdx = Idx; continue; } // We want to multiply across all the factors with the same power so that // we can raise them to that power as a single entity. Build a mini tree // for that. SmallVector InnerProduct; InnerProduct.push_back(Factors[LastIdx].Base); do { InnerProduct.push_back(Factors[Idx].Base); ++Idx; } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); // Reset the base value of the first factor to the new expression tree. // We'll remove all the factors with the same power in a second pass. Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); if (Instruction *MI = dyn_cast(M)) RedoInsts.insert(MI); LastIdx = Idx; } // Unique factors with equal powers -- we've folded them into the first one's // base. Factors.erase(std::unique(Factors.begin(), Factors.end(), Factor::PowerEqual()), Factors.end()); // Iteratively collect the base of each factor with an add power into the // outer product, and halve each power in preparation for squaring the // expression. for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) { if (Factors[Idx].Power & 1) OuterProduct.push_back(Factors[Idx].Base); Factors[Idx].Power >>= 1; } if (Factors[0].Power) { Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); OuterProduct.push_back(SquareRoot); OuterProduct.push_back(SquareRoot); } if (OuterProduct.size() == 1) return OuterProduct.front(); Value *V = buildMultiplyTree(Builder, OuterProduct); return V; } Value *Reassociate::OptimizeMul(BinaryOperator *I, SmallVectorImpl &Ops) { // We can only optimize the multiplies when there is a chain of more than // three, such that a balanced tree might require fewer total multiplies. if (Ops.size() < 4) return 0; // Try to turn linear trees of multiplies without other uses of the // intermediate stages into minimal multiply DAGs with perfect sub-expression // re-use. SmallVector Factors; if (!collectMultiplyFactors(Ops, Factors)) return 0; // All distinct factors, so nothing left for us to do. IRBuilder<> Builder(I); Value *V = buildMinimalMultiplyDAG(Builder, Factors); if (Ops.empty()) return V; ValueEntry NewEntry = ValueEntry(getRank(V), V); Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry); return 0; } Value *Reassociate::OptimizeExpression(BinaryOperator *I, SmallVectorImpl &Ops) { // Now that we have the linearized expression tree, try to optimize it. // Start by folding any constants that we found. if (Ops.size() == 1) return Ops[0].Op; unsigned Opcode = I->getOpcode(); // Handle destructive annihilation due to identities between elements in the // argument list here. unsigned NumOps = Ops.size(); switch (Opcode) { default: break; case Instruction::And: case Instruction::Or: case Instruction::Xor: if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) return Result; break; case Instruction::Add: if (Value *Result = OptimizeAdd(I, Ops)) return Result; break; case Instruction::Mul: if (Value *Result = OptimizeMul(I, Ops)) return Result; break; } if (Ops.size() != NumOps) return OptimizeExpression(I, Ops); return 0; } /// EraseInst - Zap the given instruction, adding interesting operands to the /// work list. void Reassociate::EraseInst(Instruction *I) { assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); SmallVector Ops(I->op_begin(), I->op_end()); // Erase the dead instruction. ValueRankMap.erase(I); RedoInsts.remove(I); I->eraseFromParent(); // Optimize its operands. SmallPtrSet Visited; // Detect self-referential nodes. for (unsigned i = 0, e = Ops.size(); i != e; ++i) if (Instruction *Op = dyn_cast(Ops[i])) { // If this is a node in an expression tree, climb to the expression root // and add that since that's where optimization actually happens. unsigned Opcode = Op->getOpcode(); while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode && Visited.insert(Op)) Op = Op->use_back(); RedoInsts.insert(Op); } } /// OptimizeInst - Inspect and optimize the given instruction. Note that erasing /// instructions is not allowed. void Reassociate::OptimizeInst(Instruction *I) { // Only consider operations that we understand. if (!isa(I)) return; if (I->getOpcode() == Instruction::Shl && isa(I->getOperand(1))) // If an operand of this shift is a reassociable multiply, or if the shift // is used by a reassociable multiply or add, turn into a multiply. if (isReassociableOp(I->getOperand(0), Instruction::Mul) || (I->hasOneUse() && (isReassociableOp(I->use_back(), Instruction::Mul) || isReassociableOp(I->use_back(), Instruction::Add)))) { Instruction *NI = ConvertShiftToMul(I); RedoInsts.insert(I); MadeChange = true; I = NI; } // Floating point binary operators are not associative, but we can still // commute (some) of them, to canonicalize the order of their operands. // This can potentially expose more CSE opportunities, and makes writing // other transformations simpler. if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) { // FAdd and FMul can be commuted. if (I->getOpcode() != Instruction::FMul && I->getOpcode() != Instruction::FAdd) return; Value *LHS = I->getOperand(0); Value *RHS = I->getOperand(1); unsigned LHSRank = getRank(LHS); unsigned RHSRank = getRank(RHS); // Sort the operands by rank. if (RHSRank < LHSRank) { I->setOperand(0, RHS); I->setOperand(1, LHS); } return; } // Do not reassociate boolean (i1) expressions. We want to preserve the // original order of evaluation for short-circuited comparisons that // SimplifyCFG has folded to AND/OR expressions. If the expression // is not further optimized, it is likely to be transformed back to a // short-circuited form for code gen, and the source order may have been // optimized for the most likely conditions. if (I->getType()->isIntegerTy(1)) return; // If this is a subtract instruction which is not already in negate form, // see if we can convert it to X+-Y. if (I->getOpcode() == Instruction::Sub) { if (ShouldBreakUpSubtract(I)) { Instruction *NI = BreakUpSubtract(I); RedoInsts.insert(I); MadeChange = true; I = NI; } else if (BinaryOperator::isNeg(I)) { // Otherwise, this is a negation. See if the operand is a multiply tree // and if this is not an inner node of a multiply tree. if (isReassociableOp(I->getOperand(1), Instruction::Mul) && (!I->hasOneUse() || !isReassociableOp(I->use_back(), Instruction::Mul))) { Instruction *NI = LowerNegateToMultiply(I); RedoInsts.insert(I); MadeChange = true; I = NI; } } } // If this instruction is an associative binary operator, process it. if (!I->isAssociative()) return; BinaryOperator *BO = cast(I); // If this is an interior node of a reassociable tree, ignore it until we // get to the root of the tree, to avoid N^2 analysis. unsigned Opcode = BO->getOpcode(); if (BO->hasOneUse() && BO->use_back()->getOpcode() == Opcode) return; // If this is an add tree that is used by a sub instruction, ignore it // until we process the subtract. if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && cast(BO->use_back())->getOpcode() == Instruction::Sub) return; ReassociateExpression(BO); } void Reassociate::ReassociateExpression(BinaryOperator *I) { // First, walk the expression tree, linearizing the tree, collecting the // operand information. SmallVector Tree; MadeChange |= LinearizeExprTree(I, Tree); SmallVector Ops; Ops.reserve(Tree.size()); for (unsigned i = 0, e = Tree.size(); i != e; ++i) { RepeatedValue E = Tree[i]; Ops.append(E.second.getZExtValue(), ValueEntry(getRank(E.first), E.first)); } DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); // Now that we have linearized the tree to a list and have gathered all of // the operands and their ranks, sort the operands by their rank. Use a // stable_sort so that values with equal ranks will have their relative // positions maintained (and so the compiler is deterministic). Note that // this sorts so that the highest ranking values end up at the beginning of // the vector. std::stable_sort(Ops.begin(), Ops.end()); // OptimizeExpression - Now that we have the expression tree in a convenient // sorted form, optimize it globally if possible. if (Value *V = OptimizeExpression(I, Ops)) { if (V == I) // Self-referential expression in unreachable code. return; // This expression tree simplified to something that isn't a tree, // eliminate it. DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); I->replaceAllUsesWith(V); if (Instruction *VI = dyn_cast(V)) VI->setDebugLoc(I->getDebugLoc()); RedoInsts.insert(I); ++NumAnnihil; return; } // We want to sink immediates as deeply as possible except in the case where // this is a multiply tree used only by an add, and the immediate is a -1. // In this case we reassociate to put the negation on the outside so that we // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y if (I->getOpcode() == Instruction::Mul && I->hasOneUse() && cast(I->use_back())->getOpcode() == Instruction::Add && isa(Ops.back().Op) && cast(Ops.back().Op)->isAllOnesValue()) { ValueEntry Tmp = Ops.pop_back_val(); Ops.insert(Ops.begin(), Tmp); } DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); if (Ops.size() == 1) { if (Ops[0].Op == I) // Self-referential expression in unreachable code. return; // This expression tree simplified to something that isn't a tree, // eliminate it. I->replaceAllUsesWith(Ops[0].Op); if (Instruction *OI = dyn_cast(Ops[0].Op)) OI->setDebugLoc(I->getDebugLoc()); RedoInsts.insert(I); return; } // Now that we ordered and optimized the expressions, splat them back into // the expression tree, removing any unneeded nodes. RewriteExprTree(I, Ops); } bool Reassociate::runOnFunction(Function &F) { // Calculate the rank map for F BuildRankMap(F); MadeChange = false; for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { // Optimize every instruction in the basic block. for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; ) if (isInstructionTriviallyDead(II)) { EraseInst(II++); } else { OptimizeInst(II); assert(II->getParent() == BI && "Moved to a different block!"); ++II; } // If this produced extra instructions to optimize, handle them now. while (!RedoInsts.empty()) { Instruction *I = RedoInsts.pop_back_val(); if (isInstructionTriviallyDead(I)) EraseInst(I); else OptimizeInst(I); } } // We are done with the rank map. RankMap.clear(); ValueRankMap.clear(); return MadeChange; }