//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// This transformation implements the well known scalar replacement of /// aggregates transformation. It tries to identify promotable elements of an /// aggregate alloca, and promote them to registers. It will also try to /// convert uses of an element (or set of elements) of an alloca into a vector /// or bitfield-style integer scalar if appropriate. /// /// It works to do this with minimal slicing of the alloca so that regions /// which are merely transferred in and out of external memory remain unchanged /// and are not decomposed to scalar code. /// /// Because this also performs alloca promotion, it can be thought of as also /// serving the purpose of SSA formation. The algorithm iterates on the /// function until all opportunities for promotion have been realized. /// //===----------------------------------------------------------------------===// #define DEBUG_TYPE "sroa" #include "llvm/Transforms/Scalar.h" #include "llvm/Constants.h" #include "llvm/DIBuilder.h" #include "llvm/DebugInfo.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/IRBuilder.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" #include "llvm/LLVMContext.h" #include "llvm/Module.h" #include "llvm/Operator.h" #include "llvm/Pass.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/Loads.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/InstVisitor.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/DataLayout.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/PromoteMemToReg.h" #include "llvm/Transforms/Utils/SSAUpdater.h" using namespace llvm; STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement"); STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced"); STATISTIC(NumPromoted, "Number of allocas promoted to SSA values"); STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion"); STATISTIC(NumDeleted, "Number of instructions deleted"); STATISTIC(NumVectorized, "Number of vectorized aggregates"); /// Hidden option to force the pass to not use DomTree and mem2reg, instead /// forming SSA values through the SSAUpdater infrastructure. static cl::opt ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden); namespace { /// \brief Alloca partitioning representation. /// /// This class represents a partitioning of an alloca into slices, and /// information about the nature of uses of each slice of the alloca. The goal /// is that this information is sufficient to decide if and how to split the /// alloca apart and replace slices with scalars. It is also intended that this /// structure can capture the relevant information needed both to decide about /// and to enact these transformations. class AllocaPartitioning { public: /// \brief A common base class for representing a half-open byte range. struct ByteRange { /// \brief The beginning offset of the range. uint64_t BeginOffset; /// \brief The ending offset, not included in the range. uint64_t EndOffset; ByteRange() : BeginOffset(), EndOffset() {} ByteRange(uint64_t BeginOffset, uint64_t EndOffset) : BeginOffset(BeginOffset), EndOffset(EndOffset) {} /// \brief Support for ordering ranges. /// /// This provides an ordering over ranges such that start offsets are /// always increasing, and within equal start offsets, the end offsets are /// decreasing. Thus the spanning range comes first in a cluster with the /// same start position. bool operator<(const ByteRange &RHS) const { if (BeginOffset < RHS.BeginOffset) return true; if (BeginOffset > RHS.BeginOffset) return false; if (EndOffset > RHS.EndOffset) return true; return false; } /// \brief Support comparison with a single offset to allow binary searches. friend bool operator<(const ByteRange &LHS, uint64_t RHSOffset) { return LHS.BeginOffset < RHSOffset; } friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset, const ByteRange &RHS) { return LHSOffset < RHS.BeginOffset; } bool operator==(const ByteRange &RHS) const { return BeginOffset == RHS.BeginOffset && EndOffset == RHS.EndOffset; } bool operator!=(const ByteRange &RHS) const { return !operator==(RHS); } }; /// \brief A partition of an alloca. /// /// This structure represents a contiguous partition of the alloca. These are /// formed by examining the uses of the alloca. During formation, they may /// overlap but once an AllocaPartitioning is built, the Partitions within it /// are all disjoint. struct Partition : public ByteRange { /// \brief Whether this partition is splittable into smaller partitions. /// /// We flag partitions as splittable when they are formed entirely due to /// accesses by trivially splittable operations such as memset and memcpy. /// /// FIXME: At some point we should consider loads and stores of FCAs to be /// splittable and eagerly split them into scalar values. bool IsSplittable; /// \brief Test whether a partition has been marked as dead. bool isDead() const { if (BeginOffset == UINT64_MAX) { assert(EndOffset == UINT64_MAX); return true; } return false; } /// \brief Kill a partition. /// This is accomplished by setting both its beginning and end offset to /// the maximum possible value. void kill() { assert(!isDead() && "He's Dead, Jim!"); BeginOffset = EndOffset = UINT64_MAX; } Partition() : ByteRange(), IsSplittable() {} Partition(uint64_t BeginOffset, uint64_t EndOffset, bool IsSplittable) : ByteRange(BeginOffset, EndOffset), IsSplittable(IsSplittable) {} }; /// \brief A particular use of a partition of the alloca. /// /// This structure is used to associate uses of a partition with it. They /// mark the range of bytes which are referenced by a particular instruction, /// and includes a handle to the user itself and the pointer value in use. /// The bounds of these uses are determined by intersecting the bounds of the /// memory use itself with a particular partition. As a consequence there is /// intentionally overlap between various uses of the same partition. struct PartitionUse : public ByteRange { /// \brief The use in question. Provides access to both user and used value. /// /// Note that this may be null if the partition use is *dead*, that is, it /// should be ignored. Use *U; PartitionUse() : ByteRange(), U() {} PartitionUse(uint64_t BeginOffset, uint64_t EndOffset, Use *U) : ByteRange(BeginOffset, EndOffset), U(U) {} }; /// \brief Construct a partitioning of a particular alloca. /// /// Construction does most of the work for partitioning the alloca. This /// performs the necessary walks of users and builds a partitioning from it. AllocaPartitioning(const DataLayout &TD, AllocaInst &AI); /// \brief Test whether a pointer to the allocation escapes our analysis. /// /// If this is true, the partitioning is never fully built and should be /// ignored. bool isEscaped() const { return PointerEscapingInstr; } /// \brief Support for iterating over the partitions. /// @{ typedef SmallVectorImpl::iterator iterator; iterator begin() { return Partitions.begin(); } iterator end() { return Partitions.end(); } typedef SmallVectorImpl::const_iterator const_iterator; const_iterator begin() const { return Partitions.begin(); } const_iterator end() const { return Partitions.end(); } /// @} /// \brief Support for iterating over and manipulating a particular /// partition's uses. /// /// The iteration support provided for uses is more limited, but also /// includes some manipulation routines to support rewriting the uses of /// partitions during SROA. /// @{ typedef SmallVectorImpl::iterator use_iterator; use_iterator use_begin(unsigned Idx) { return Uses[Idx].begin(); } use_iterator use_begin(const_iterator I) { return Uses[I - begin()].begin(); } use_iterator use_end(unsigned Idx) { return Uses[Idx].end(); } use_iterator use_end(const_iterator I) { return Uses[I - begin()].end(); } typedef SmallVectorImpl::const_iterator const_use_iterator; const_use_iterator use_begin(unsigned Idx) const { return Uses[Idx].begin(); } const_use_iterator use_begin(const_iterator I) const { return Uses[I - begin()].begin(); } const_use_iterator use_end(unsigned Idx) const { return Uses[Idx].end(); } const_use_iterator use_end(const_iterator I) const { return Uses[I - begin()].end(); } unsigned use_size(unsigned Idx) const { return Uses[Idx].size(); } unsigned use_size(const_iterator I) const { return Uses[I - begin()].size(); } const PartitionUse &getUse(unsigned PIdx, unsigned UIdx) const { return Uses[PIdx][UIdx]; } const PartitionUse &getUse(const_iterator I, unsigned UIdx) const { return Uses[I - begin()][UIdx]; } void use_push_back(unsigned Idx, const PartitionUse &PU) { Uses[Idx].push_back(PU); } void use_push_back(const_iterator I, const PartitionUse &PU) { Uses[I - begin()].push_back(PU); } /// @} /// \brief Allow iterating the dead users for this alloca. /// /// These are instructions which will never actually use the alloca as they /// are outside the allocated range. They are safe to replace with undef and /// delete. /// @{ typedef SmallVectorImpl::const_iterator dead_user_iterator; dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); } dead_user_iterator dead_user_end() const { return DeadUsers.end(); } /// @} /// \brief Allow iterating the dead expressions referring to this alloca. /// /// These are operands which have cannot actually be used to refer to the /// alloca as they are outside its range and the user doesn't correct for /// that. These mostly consist of PHI node inputs and the like which we just /// need to replace with undef. /// @{ typedef SmallVectorImpl::const_iterator dead_op_iterator; dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); } dead_op_iterator dead_op_end() const { return DeadOperands.end(); } /// @} /// \brief MemTransferInst auxiliary data. /// This struct provides some auxiliary data about memory transfer /// intrinsics such as memcpy and memmove. These intrinsics can use two /// different ranges within the same alloca, and provide other challenges to /// correctly represent. We stash extra data to help us untangle this /// after the partitioning is complete. struct MemTransferOffsets { /// The destination begin and end offsets when the destination is within /// this alloca. If the end offset is zero the destination is not within /// this alloca. uint64_t DestBegin, DestEnd; /// The source begin and end offsets when the source is within this alloca. /// If the end offset is zero, the source is not within this alloca. uint64_t SourceBegin, SourceEnd; /// Flag for whether an alloca is splittable. bool IsSplittable; }; MemTransferOffsets getMemTransferOffsets(MemTransferInst &II) const { return MemTransferInstData.lookup(&II); } /// \brief Map from a PHI or select operand back to a partition. /// /// When manipulating PHI nodes or selects, they can use more than one /// partition of an alloca. We store a special mapping to allow finding the /// partition referenced by each of these operands, if any. iterator findPartitionForPHIOrSelectOperand(Use *U) { SmallDenseMap >::const_iterator MapIt = PHIOrSelectOpMap.find(U); if (MapIt == PHIOrSelectOpMap.end()) return end(); return begin() + MapIt->second.first; } /// \brief Map from a PHI or select operand back to the specific use of /// a partition. /// /// Similar to mapping these operands back to the partitions, this maps /// directly to the use structure of that partition. use_iterator findPartitionUseForPHIOrSelectOperand(Use *U) { SmallDenseMap >::const_iterator MapIt = PHIOrSelectOpMap.find(U); assert(MapIt != PHIOrSelectOpMap.end()); return Uses[MapIt->second.first].begin() + MapIt->second.second; } /// \brief Compute a common type among the uses of a particular partition. /// /// This routines walks all of the uses of a particular partition and tries /// to find a common type between them. Untyped operations such as memset and /// memcpy are ignored. Type *getCommonType(iterator I) const; #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; void printUsers(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; void print(raw_ostream &OS) const; void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump(const_iterator I) const; void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump() const; #endif private: template class BuilderBase; class PartitionBuilder; friend class AllocaPartitioning::PartitionBuilder; class UseBuilder; friend class AllocaPartitioning::UseBuilder; #ifndef NDEBUG /// \brief Handle to alloca instruction to simplify method interfaces. AllocaInst &AI; #endif /// \brief The instruction responsible for this alloca having no partitioning. /// /// When an instruction (potentially) escapes the pointer to the alloca, we /// store a pointer to that here and abort trying to partition the alloca. /// This will be null if the alloca is partitioned successfully. Instruction *PointerEscapingInstr; /// \brief The partitions of the alloca. /// /// We store a vector of the partitions over the alloca here. This vector is /// sorted by increasing begin offset, and then by decreasing end offset. See /// the Partition inner class for more details. Initially (during /// construction) there are overlaps, but we form a disjoint sequence of /// partitions while finishing construction and a fully constructed object is /// expected to always have this as a disjoint space. SmallVector Partitions; /// \brief The uses of the partitions. /// /// This is essentially a mapping from each partition to a list of uses of /// that partition. The mapping is done with a Uses vector that has the exact /// same number of entries as the partition vector. Each entry is itself /// a vector of the uses. SmallVector, 8> Uses; /// \brief Instructions which will become dead if we rewrite the alloca. /// /// Note that these are not separated by partition. This is because we expect /// a partitioned alloca to be completely rewritten or not rewritten at all. /// If rewritten, all these instructions can simply be removed and replaced /// with undef as they come from outside of the allocated space. SmallVector DeadUsers; /// \brief Operands which will become dead if we rewrite the alloca. /// /// These are operands that in their particular use can be replaced with /// undef when we rewrite the alloca. These show up in out-of-bounds inputs /// to PHI nodes and the like. They aren't entirely dead (there might be /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we /// want to swap this particular input for undef to simplify the use lists of /// the alloca. SmallVector DeadOperands; /// \brief The underlying storage for auxiliary memcpy and memset info. SmallDenseMap MemTransferInstData; /// \brief A side datastructure used when building up the partitions and uses. /// /// This mapping is only really used during the initial building of the /// partitioning so that we can retain information about PHI and select nodes /// processed. SmallDenseMap > PHIOrSelectSizes; /// \brief Auxiliary information for particular PHI or select operands. SmallDenseMap, 4> PHIOrSelectOpMap; /// \brief A utility routine called from the constructor. /// /// This does what it says on the tin. It is the key of the alloca partition /// splitting and merging. After it is called we have the desired disjoint /// collection of partitions. void splitAndMergePartitions(); }; } template class AllocaPartitioning::BuilderBase : public InstVisitor { public: BuilderBase(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P) : TD(TD), AllocSize(TD.getTypeAllocSize(AI.getAllocatedType())), P(P) { enqueueUsers(AI, 0); } protected: const DataLayout &TD; const uint64_t AllocSize; AllocaPartitioning &P; SmallPtrSet VisitedUses; struct OffsetUse { Use *U; int64_t Offset; }; SmallVector Queue; // The active offset and use while visiting. Use *U; int64_t Offset; void enqueueUsers(Instruction &I, int64_t UserOffset) { for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ++UI) { if (VisitedUses.insert(&UI.getUse())) { OffsetUse OU = { &UI.getUse(), UserOffset }; Queue.push_back(OU); } } } bool computeConstantGEPOffset(GetElementPtrInst &GEPI, int64_t &GEPOffset) { GEPOffset = Offset; for (gep_type_iterator GTI = gep_type_begin(GEPI), GTE = gep_type_end(GEPI); GTI != GTE; ++GTI) { ConstantInt *OpC = dyn_cast(GTI.getOperand()); if (!OpC) return false; if (OpC->isZero()) continue; // Handle a struct index, which adds its field offset to the pointer. if (StructType *STy = dyn_cast(*GTI)) { unsigned ElementIdx = OpC->getZExtValue(); const StructLayout *SL = TD.getStructLayout(STy); uint64_t ElementOffset = SL->getElementOffset(ElementIdx); // Check that we can continue to model this GEP in a signed 64-bit offset. if (ElementOffset > INT64_MAX || (GEPOffset >= 0 && ((uint64_t)GEPOffset + ElementOffset) > INT64_MAX)) { DEBUG(dbgs() << "WARNING: Encountered a cumulative offset exceeding " << "what can be represented in an int64_t!\n" << " alloca: " << P.AI << "\n"); return false; } if (GEPOffset < 0) GEPOffset = ElementOffset + (uint64_t)-GEPOffset; else GEPOffset += ElementOffset; continue; } APInt Index = OpC->getValue().sextOrTrunc(TD.getPointerSizeInBits()); Index *= APInt(Index.getBitWidth(), TD.getTypeAllocSize(GTI.getIndexedType())); Index += APInt(Index.getBitWidth(), (uint64_t)GEPOffset, /*isSigned*/true); // Check if the result can be stored in our int64_t offset. if (!Index.isSignedIntN(sizeof(GEPOffset) * 8)) { DEBUG(dbgs() << "WARNING: Encountered a cumulative offset exceeding " << "what can be represented in an int64_t!\n" << " alloca: " << P.AI << "\n"); return false; } GEPOffset = Index.getSExtValue(); } return true; } Value *foldSelectInst(SelectInst &SI) { // If the condition being selected on is a constant or the same value is // being selected between, fold the select. Yes this does (rarely) happen // early on. if (ConstantInt *CI = dyn_cast(SI.getCondition())) return SI.getOperand(1+CI->isZero()); if (SI.getOperand(1) == SI.getOperand(2)) { assert(*U == SI.getOperand(1)); return SI.getOperand(1); } return 0; } }; /// \brief Builder for the alloca partitioning. /// /// This class builds an alloca partitioning by recursively visiting the uses /// of an alloca and splitting the partitions for each load and store at each /// offset. class AllocaPartitioning::PartitionBuilder : public BuilderBase { friend class InstVisitor; SmallDenseMap MemTransferPartitionMap; public: PartitionBuilder(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P) : BuilderBase(TD, AI, P) {} /// \brief Run the builder over the allocation. bool operator()() { // Note that we have to re-evaluate size on each trip through the loop as // the queue grows at the tail. for (unsigned Idx = 0; Idx < Queue.size(); ++Idx) { U = Queue[Idx].U; Offset = Queue[Idx].Offset; if (!visit(cast(U->getUser()))) return false; } return true; } private: bool markAsEscaping(Instruction &I) { P.PointerEscapingInstr = &I; return false; } void insertUse(Instruction &I, int64_t Offset, uint64_t Size, bool IsSplittable = false) { // Completely skip uses which have a zero size or don't overlap the // allocation. if (Size == 0 || (Offset >= 0 && (uint64_t)Offset >= AllocSize) || (Offset < 0 && (uint64_t)-Offset >= Size)) { DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset << " which starts past the end of the " << AllocSize << " byte alloca:\n" << " alloca: " << P.AI << "\n" << " use: " << I << "\n"); return; } // Clamp the start to the beginning of the allocation. if (Offset < 0) { DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset << " to start at the beginning of the alloca:\n" << " alloca: " << P.AI << "\n" << " use: " << I << "\n"); Size -= (uint64_t)-Offset; Offset = 0; } uint64_t BeginOffset = Offset, EndOffset = BeginOffset + Size; // Clamp the end offset to the end of the allocation. Note that this is // formulated to handle even the case where "BeginOffset + Size" overflows. assert(AllocSize >= BeginOffset); // Established above. if (Size > AllocSize - BeginOffset) { DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset << " to remain within the " << AllocSize << " byte alloca:\n" << " alloca: " << P.AI << "\n" << " use: " << I << "\n"); EndOffset = AllocSize; } Partition New(BeginOffset, EndOffset, IsSplittable); P.Partitions.push_back(New); } bool handleLoadOrStore(Type *Ty, Instruction &I, int64_t Offset) { uint64_t Size = TD.getTypeStoreSize(Ty); // If this memory access can be shown to *statically* extend outside the // bounds of of the allocation, it's behavior is undefined, so simply // ignore it. Note that this is more strict than the generic clamping // behavior of insertUse. We also try to handle cases which might run the // risk of overflow. // FIXME: We should instead consider the pointer to have escaped if this // function is being instrumented for addressing bugs or race conditions. if (Offset < 0 || (uint64_t)Offset >= AllocSize || Size > (AllocSize - (uint64_t)Offset)) { DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte " << (isa(I) ? "load" : "store") << " @" << Offset << " which extends past the end of the " << AllocSize << " byte alloca:\n" << " alloca: " << P.AI << "\n" << " use: " << I << "\n"); return true; } insertUse(I, Offset, Size); return true; } bool visitBitCastInst(BitCastInst &BC) { enqueueUsers(BC, Offset); return true; } bool visitGetElementPtrInst(GetElementPtrInst &GEPI) { int64_t GEPOffset; if (!computeConstantGEPOffset(GEPI, GEPOffset)) return markAsEscaping(GEPI); enqueueUsers(GEPI, GEPOffset); return true; } bool visitLoadInst(LoadInst &LI) { assert((!LI.isSimple() || LI.getType()->isSingleValueType()) && "All simple FCA loads should have been pre-split"); return handleLoadOrStore(LI.getType(), LI, Offset); } bool visitStoreInst(StoreInst &SI) { Value *ValOp = SI.getValueOperand(); if (ValOp == *U) return markAsEscaping(SI); assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) && "All simple FCA stores should have been pre-split"); return handleLoadOrStore(ValOp->getType(), SI, Offset); } bool visitMemSetInst(MemSetInst &II) { assert(II.getRawDest() == *U && "Pointer use is not the destination?"); ConstantInt *Length = dyn_cast(II.getLength()); uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset; insertUse(II, Offset, Size, Length); return true; } bool visitMemTransferInst(MemTransferInst &II) { ConstantInt *Length = dyn_cast(II.getLength()); uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset; if (!Size) // Zero-length mem transfer intrinsics can be ignored entirely. return true; MemTransferOffsets &Offsets = P.MemTransferInstData[&II]; // Only intrinsics with a constant length can be split. Offsets.IsSplittable = Length; if (*U == II.getRawDest()) { Offsets.DestBegin = Offset; Offsets.DestEnd = Offset + Size; } if (*U == II.getRawSource()) { Offsets.SourceBegin = Offset; Offsets.SourceEnd = Offset + Size; } // If we have set up end offsets for both the source and the destination, // we have found both sides of this transfer pointing at the same alloca. bool SeenBothEnds = Offsets.SourceEnd && Offsets.DestEnd; if (SeenBothEnds && II.getRawDest() != II.getRawSource()) { unsigned PrevIdx = MemTransferPartitionMap[&II]; // Check if the begin offsets match and this is a non-volatile transfer. // In that case, we can completely elide the transfer. if (!II.isVolatile() && Offsets.SourceBegin == Offsets.DestBegin) { P.Partitions[PrevIdx].kill(); return true; } // Otherwise we have an offset transfer within the same alloca. We can't // split those. P.Partitions[PrevIdx].IsSplittable = Offsets.IsSplittable = false; } else if (SeenBothEnds) { // Handle the case where this exact use provides both ends of the // operation. assert(II.getRawDest() == II.getRawSource()); // For non-volatile transfers this is a no-op. if (!II.isVolatile()) return true; // Otherwise just suppress splitting. Offsets.IsSplittable = false; } // Insert the use now that we've fixed up the splittable nature. insertUse(II, Offset, Size, Offsets.IsSplittable); // Setup the mapping from intrinsic to partition of we've not seen both // ends of this transfer. if (!SeenBothEnds) { unsigned NewIdx = P.Partitions.size() - 1; bool Inserted = MemTransferPartitionMap.insert(std::make_pair(&II, NewIdx)).second; assert(Inserted && "Already have intrinsic in map but haven't seen both ends"); (void)Inserted; } return true; } // Disable SRoA for any intrinsics except for lifetime invariants. // FIXME: What about debug instrinsics? This matches old behavior, but // doesn't make sense. bool visitIntrinsicInst(IntrinsicInst &II) { if (II.getIntrinsicID() == Intrinsic::lifetime_start || II.getIntrinsicID() == Intrinsic::lifetime_end) { ConstantInt *Length = cast(II.getArgOperand(0)); uint64_t Size = std::min(AllocSize - Offset, Length->getLimitedValue()); insertUse(II, Offset, Size, true); return true; } return markAsEscaping(II); } Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) { // We consider any PHI or select that results in a direct load or store of // the same offset to be a viable use for partitioning purposes. These uses // are considered unsplittable and the size is the maximum loaded or stored // size. SmallPtrSet Visited; SmallVector, 4> Uses; Visited.insert(Root); Uses.push_back(std::make_pair(cast(*U), Root)); // If there are no loads or stores, the access is dead. We mark that as // a size zero access. Size = 0; do { Instruction *I, *UsedI; llvm::tie(UsedI, I) = Uses.pop_back_val(); if (LoadInst *LI = dyn_cast(I)) { Size = std::max(Size, TD.getTypeStoreSize(LI->getType())); continue; } if (StoreInst *SI = dyn_cast(I)) { Value *Op = SI->getOperand(0); if (Op == UsedI) return SI; Size = std::max(Size, TD.getTypeStoreSize(Op->getType())); continue; } if (GetElementPtrInst *GEP = dyn_cast(I)) { if (!GEP->hasAllZeroIndices()) return GEP; } else if (!isa(I) && !isa(I) && !isa(I)) { return I; } for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; ++UI) if (Visited.insert(cast(*UI))) Uses.push_back(std::make_pair(I, cast(*UI))); } while (!Uses.empty()); return 0; } bool visitPHINode(PHINode &PN) { // See if we already have computed info on this node. std::pair &PHIInfo = P.PHIOrSelectSizes[&PN]; if (PHIInfo.first) { PHIInfo.second = true; insertUse(PN, Offset, PHIInfo.first); return true; } // Check for an unsafe use of the PHI node. if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&PN, PHIInfo.first)) return markAsEscaping(*EscapingI); insertUse(PN, Offset, PHIInfo.first); return true; } bool visitSelectInst(SelectInst &SI) { if (Value *Result = foldSelectInst(SI)) { if (Result == *U) // If the result of the constant fold will be the pointer, recurse // through the select as if we had RAUW'ed it. enqueueUsers(SI, Offset); return true; } // See if we already have computed info on this node. std::pair &SelectInfo = P.PHIOrSelectSizes[&SI]; if (SelectInfo.first) { SelectInfo.second = true; insertUse(SI, Offset, SelectInfo.first); return true; } // Check for an unsafe use of the PHI node. if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&SI, SelectInfo.first)) return markAsEscaping(*EscapingI); insertUse(SI, Offset, SelectInfo.first); return true; } /// \brief Disable SROA entirely if there are unhandled users of the alloca. bool visitInstruction(Instruction &I) { return markAsEscaping(I); } }; /// \brief Use adder for the alloca partitioning. /// /// This class adds the uses of an alloca to all of the partitions which they /// use. For splittable partitions, this can end up doing essentially a linear /// walk of the partitions, but the number of steps remains bounded by the /// total result instruction size: /// - The number of partitions is a result of the number unsplittable /// instructions using the alloca. /// - The number of users of each partition is at worst the total number of /// splittable instructions using the alloca. /// Thus we will produce N * M instructions in the end, where N are the number /// of unsplittable uses and M are the number of splittable. This visitor does /// the exact same number of updates to the partitioning. /// /// In the more common case, this visitor will leverage the fact that the /// partition space is pre-sorted, and do a logarithmic search for the /// partition needed, making the total visit a classical ((N + M) * log(N)) /// complexity operation. class AllocaPartitioning::UseBuilder : public BuilderBase { friend class InstVisitor; /// \brief Set to de-duplicate dead instructions found in the use walk. SmallPtrSet VisitedDeadInsts; public: UseBuilder(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P) : BuilderBase(TD, AI, P) {} /// \brief Run the builder over the allocation. void operator()() { // Note that we have to re-evaluate size on each trip through the loop as // the queue grows at the tail. for (unsigned Idx = 0; Idx < Queue.size(); ++Idx) { U = Queue[Idx].U; Offset = Queue[Idx].Offset; this->visit(cast(U->getUser())); } } private: void markAsDead(Instruction &I) { if (VisitedDeadInsts.insert(&I)) P.DeadUsers.push_back(&I); } void insertUse(Instruction &User, int64_t Offset, uint64_t Size) { // If the use has a zero size or extends outside of the allocation, record // it as a dead use for elimination later. if (Size == 0 || (uint64_t)Offset >= AllocSize || (Offset < 0 && (uint64_t)-Offset >= Size)) return markAsDead(User); // Clamp the start to the beginning of the allocation. if (Offset < 0) { Size -= (uint64_t)-Offset; Offset = 0; } uint64_t BeginOffset = Offset, EndOffset = BeginOffset + Size; // Clamp the end offset to the end of the allocation. Note that this is // formulated to handle even the case where "BeginOffset + Size" overflows. assert(AllocSize >= BeginOffset); // Established above. if (Size > AllocSize - BeginOffset) EndOffset = AllocSize; // NB: This only works if we have zero overlapping partitions. iterator B = std::lower_bound(P.begin(), P.end(), BeginOffset); if (B != P.begin() && llvm::prior(B)->EndOffset > BeginOffset) B = llvm::prior(B); for (iterator I = B, E = P.end(); I != E && I->BeginOffset < EndOffset; ++I) { PartitionUse NewPU(std::max(I->BeginOffset, BeginOffset), std::min(I->EndOffset, EndOffset), U); P.use_push_back(I, NewPU); if (isa(U->getUser()) || isa(U->getUser())) P.PHIOrSelectOpMap[U] = std::make_pair(I - P.begin(), P.Uses[I - P.begin()].size() - 1); } } void handleLoadOrStore(Type *Ty, Instruction &I, int64_t Offset) { uint64_t Size = TD.getTypeStoreSize(Ty); // If this memory access can be shown to *statically* extend outside the // bounds of of the allocation, it's behavior is undefined, so simply // ignore it. Note that this is more strict than the generic clamping // behavior of insertUse. if (Offset < 0 || (uint64_t)Offset >= AllocSize || Size > (AllocSize - (uint64_t)Offset)) return markAsDead(I); insertUse(I, Offset, Size); } void visitBitCastInst(BitCastInst &BC) { if (BC.use_empty()) return markAsDead(BC); enqueueUsers(BC, Offset); } void visitGetElementPtrInst(GetElementPtrInst &GEPI) { if (GEPI.use_empty()) return markAsDead(GEPI); int64_t GEPOffset; if (!computeConstantGEPOffset(GEPI, GEPOffset)) llvm_unreachable("Unable to compute constant offset for use"); enqueueUsers(GEPI, GEPOffset); } void visitLoadInst(LoadInst &LI) { handleLoadOrStore(LI.getType(), LI, Offset); } void visitStoreInst(StoreInst &SI) { handleLoadOrStore(SI.getOperand(0)->getType(), SI, Offset); } void visitMemSetInst(MemSetInst &II) { ConstantInt *Length = dyn_cast(II.getLength()); uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset; insertUse(II, Offset, Size); } void visitMemTransferInst(MemTransferInst &II) { ConstantInt *Length = dyn_cast(II.getLength()); uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset; if (!Size) return markAsDead(II); MemTransferOffsets &Offsets = P.MemTransferInstData[&II]; if (!II.isVolatile() && Offsets.DestEnd && Offsets.SourceEnd && Offsets.DestBegin == Offsets.SourceBegin) return markAsDead(II); // Skip identity transfers without side-effects. insertUse(II, Offset, Size); } void visitIntrinsicInst(IntrinsicInst &II) { assert(II.getIntrinsicID() == Intrinsic::lifetime_start || II.getIntrinsicID() == Intrinsic::lifetime_end); ConstantInt *Length = cast(II.getArgOperand(0)); insertUse(II, Offset, std::min(AllocSize - Offset, Length->getLimitedValue())); } void insertPHIOrSelect(Instruction &User, uint64_t Offset) { uint64_t Size = P.PHIOrSelectSizes.lookup(&User).first; // For PHI and select operands outside the alloca, we can't nuke the entire // phi or select -- the other side might still be relevant, so we special // case them here and use a separate structure to track the operands // themselves which should be replaced with undef. if (Offset >= AllocSize) { P.DeadOperands.push_back(U); return; } insertUse(User, Offset, Size); } void visitPHINode(PHINode &PN) { if (PN.use_empty()) return markAsDead(PN); insertPHIOrSelect(PN, Offset); } void visitSelectInst(SelectInst &SI) { if (SI.use_empty()) return markAsDead(SI); if (Value *Result = foldSelectInst(SI)) { if (Result == *U) // If the result of the constant fold will be the pointer, recurse // through the select as if we had RAUW'ed it. enqueueUsers(SI, Offset); else // Otherwise the operand to the select is dead, and we can replace it // with undef. P.DeadOperands.push_back(U); return; } insertPHIOrSelect(SI, Offset); } /// \brief Unreachable, we've already visited the alloca once. void visitInstruction(Instruction &I) { llvm_unreachable("Unhandled instruction in use builder."); } }; void AllocaPartitioning::splitAndMergePartitions() { size_t NumDeadPartitions = 0; // Track the range of splittable partitions that we pass when accumulating // overlapping unsplittable partitions. uint64_t SplitEndOffset = 0ull; Partition New(0ull, 0ull, false); for (unsigned i = 0, j = i, e = Partitions.size(); i != e; i = j) { ++j; if (!Partitions[i].IsSplittable || New.BeginOffset == New.EndOffset) { assert(New.BeginOffset == New.EndOffset); New = Partitions[i]; } else { assert(New.IsSplittable); New.EndOffset = std::max(New.EndOffset, Partitions[i].EndOffset); } assert(New.BeginOffset != New.EndOffset); // Scan the overlapping partitions. while (j != e && New.EndOffset > Partitions[j].BeginOffset) { // If the new partition we are forming is splittable, stop at the first // unsplittable partition. if (New.IsSplittable && !Partitions[j].IsSplittable) break; // Grow the new partition to include any equally splittable range. 'j' is // always equally splittable when New is splittable, but when New is not // splittable, we may subsume some (or part of some) splitable partition // without growing the new one. if (New.IsSplittable == Partitions[j].IsSplittable) { New.EndOffset = std::max(New.EndOffset, Partitions[j].EndOffset); } else { assert(!New.IsSplittable); assert(Partitions[j].IsSplittable); SplitEndOffset = std::max(SplitEndOffset, Partitions[j].EndOffset); } Partitions[j].kill(); ++NumDeadPartitions; ++j; } // If the new partition is splittable, chop off the end as soon as the // unsplittable subsequent partition starts and ensure we eventually cover // the splittable area. if (j != e && New.IsSplittable) { SplitEndOffset = std::max(SplitEndOffset, New.EndOffset); New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset); } // Add the new partition if it differs from the original one and is // non-empty. We can end up with an empty partition here if it was // splittable but there is an unsplittable one that starts at the same // offset. if (New != Partitions[i]) { if (New.BeginOffset != New.EndOffset) Partitions.push_back(New); // Mark the old one for removal. Partitions[i].kill(); ++NumDeadPartitions; } New.BeginOffset = New.EndOffset; if (!New.IsSplittable) { New.EndOffset = std::max(New.EndOffset, SplitEndOffset); if (j != e && !Partitions[j].IsSplittable) New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset); New.IsSplittable = true; // If there is a trailing splittable partition which won't be fused into // the next splittable partition go ahead and add it onto the partitions // list. if (New.BeginOffset < New.EndOffset && (j == e || !Partitions[j].IsSplittable || New.EndOffset < Partitions[j].BeginOffset)) { Partitions.push_back(New); New.BeginOffset = New.EndOffset = 0ull; } } } // Re-sort the partitions now that they have been split and merged into // disjoint set of partitions. Also remove any of the dead partitions we've // replaced in the process. std::sort(Partitions.begin(), Partitions.end()); if (NumDeadPartitions) { assert(Partitions.back().isDead()); assert((ptrdiff_t)NumDeadPartitions == std::count(Partitions.begin(), Partitions.end(), Partitions.back())); } Partitions.erase(Partitions.end() - NumDeadPartitions, Partitions.end()); } AllocaPartitioning::AllocaPartitioning(const DataLayout &TD, AllocaInst &AI) : #ifndef NDEBUG AI(AI), #endif PointerEscapingInstr(0) { PartitionBuilder PB(TD, AI, *this); if (!PB()) return; // Sort the uses. This arranges for the offsets to be in ascending order, // and the sizes to be in descending order. std::sort(Partitions.begin(), Partitions.end()); // Remove any partitions from the back which are marked as dead. while (!Partitions.empty() && Partitions.back().isDead()) Partitions.pop_back(); if (Partitions.size() > 1) { // Intersect splittability for all partitions with equal offsets and sizes. // Then remove all but the first so that we have a sequence of non-equal but // potentially overlapping partitions. for (iterator I = Partitions.begin(), J = I, E = Partitions.end(); I != E; I = J) { ++J; while (J != E && *I == *J) { I->IsSplittable &= J->IsSplittable; ++J; } } Partitions.erase(std::unique(Partitions.begin(), Partitions.end()), Partitions.end()); // Split splittable and merge unsplittable partitions into a disjoint set // of partitions over the used space of the allocation. splitAndMergePartitions(); } // Now build up the user lists for each of these disjoint partitions by // re-walking the recursive users of the alloca. Uses.resize(Partitions.size()); UseBuilder UB(TD, AI, *this); UB(); } Type *AllocaPartitioning::getCommonType(iterator I) const { Type *Ty = 0; for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) { if (!UI->U) continue; // Skip dead uses. if (isa(*UI->U->getUser())) continue; if (UI->BeginOffset != I->BeginOffset || UI->EndOffset != I->EndOffset) continue; Type *UserTy = 0; if (LoadInst *LI = dyn_cast(UI->U->getUser())) { UserTy = LI->getType(); } else if (StoreInst *SI = dyn_cast(UI->U->getUser())) { UserTy = SI->getValueOperand()->getType(); } if (Ty && Ty != UserTy) return 0; Ty = UserTy; } return Ty; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void AllocaPartitioning::print(raw_ostream &OS, const_iterator I, StringRef Indent) const { OS << Indent << "partition #" << (I - begin()) << " [" << I->BeginOffset << "," << I->EndOffset << ")" << (I->IsSplittable ? " (splittable)" : "") << (Uses[I - begin()].empty() ? " (zero uses)" : "") << "\n"; } void AllocaPartitioning::printUsers(raw_ostream &OS, const_iterator I, StringRef Indent) const { for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) { if (!UI->U) continue; // Skip dead uses. OS << Indent << " [" << UI->BeginOffset << "," << UI->EndOffset << ") " << "used by: " << *UI->U->getUser() << "\n"; if (MemTransferInst *II = dyn_cast(UI->U->getUser())) { const MemTransferOffsets &MTO = MemTransferInstData.lookup(II); bool IsDest; if (!MTO.IsSplittable) IsDest = UI->BeginOffset == MTO.DestBegin; else IsDest = MTO.DestBegin != 0u; OS << Indent << " (original " << (IsDest ? "dest" : "source") << ": " << "[" << (IsDest ? MTO.DestBegin : MTO.SourceBegin) << "," << (IsDest ? MTO.DestEnd : MTO.SourceEnd) << ")\n"; } } } void AllocaPartitioning::print(raw_ostream &OS) const { if (PointerEscapingInstr) { OS << "No partitioning for alloca: " << AI << "\n" << " A pointer to this alloca escaped by:\n" << " " << *PointerEscapingInstr << "\n"; return; } OS << "Partitioning of alloca: " << AI << "\n"; unsigned Num = 0; for (const_iterator I = begin(), E = end(); I != E; ++I, ++Num) { print(OS, I); printUsers(OS, I); } } void AllocaPartitioning::dump(const_iterator I) const { print(dbgs(), I); } void AllocaPartitioning::dump() const { print(dbgs()); } #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) namespace { /// \brief Implementation of LoadAndStorePromoter for promoting allocas. /// /// This subclass of LoadAndStorePromoter adds overrides to handle promoting /// the loads and stores of an alloca instruction, as well as updating its /// debug information. This is used when a domtree is unavailable and thus /// mem2reg in its full form can't be used to handle promotion of allocas to /// scalar values. class AllocaPromoter : public LoadAndStorePromoter { AllocaInst &AI; DIBuilder &DIB; SmallVector DDIs; SmallVector DVIs; public: AllocaPromoter(const SmallVectorImpl &Insts, SSAUpdater &S, AllocaInst &AI, DIBuilder &DIB) : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {} void run(const SmallVectorImpl &Insts) { // Remember which alloca we're promoting (for isInstInList). if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) { for (Value::use_iterator UI = DebugNode->use_begin(), UE = DebugNode->use_end(); UI != UE; ++UI) if (DbgDeclareInst *DDI = dyn_cast(*UI)) DDIs.push_back(DDI); else if (DbgValueInst *DVI = dyn_cast(*UI)) DVIs.push_back(DVI); } LoadAndStorePromoter::run(Insts); AI.eraseFromParent(); while (!DDIs.empty()) DDIs.pop_back_val()->eraseFromParent(); while (!DVIs.empty()) DVIs.pop_back_val()->eraseFromParent(); } virtual bool isInstInList(Instruction *I, const SmallVectorImpl &Insts) const { if (LoadInst *LI = dyn_cast(I)) return LI->getOperand(0) == &AI; return cast(I)->getPointerOperand() == &AI; } virtual void updateDebugInfo(Instruction *Inst) const { for (SmallVector::const_iterator I = DDIs.begin(), E = DDIs.end(); I != E; ++I) { DbgDeclareInst *DDI = *I; if (StoreInst *SI = dyn_cast(Inst)) ConvertDebugDeclareToDebugValue(DDI, SI, DIB); else if (LoadInst *LI = dyn_cast(Inst)) ConvertDebugDeclareToDebugValue(DDI, LI, DIB); } for (SmallVector::const_iterator I = DVIs.begin(), E = DVIs.end(); I != E; ++I) { DbgValueInst *DVI = *I; Value *Arg = NULL; if (StoreInst *SI = dyn_cast(Inst)) { // If an argument is zero extended then use argument directly. The ZExt // may be zapped by an optimization pass in future. if (ZExtInst *ZExt = dyn_cast(SI->getOperand(0))) Arg = dyn_cast(ZExt->getOperand(0)); if (SExtInst *SExt = dyn_cast(SI->getOperand(0))) Arg = dyn_cast(SExt->getOperand(0)); if (!Arg) Arg = SI->getOperand(0); } else if (LoadInst *LI = dyn_cast(Inst)) { Arg = LI->getOperand(0); } else { continue; } Instruction *DbgVal = DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()), Inst); DbgVal->setDebugLoc(DVI->getDebugLoc()); } } }; } // end anon namespace namespace { /// \brief An optimization pass providing Scalar Replacement of Aggregates. /// /// This pass takes allocations which can be completely analyzed (that is, they /// don't escape) and tries to turn them into scalar SSA values. There are /// a few steps to this process. /// /// 1) It takes allocations of aggregates and analyzes the ways in which they /// are used to try to split them into smaller allocations, ideally of /// a single scalar data type. It will split up memcpy and memset accesses /// as necessary and try to isolate invidual scalar accesses. /// 2) It will transform accesses into forms which are suitable for SSA value /// promotion. This can be replacing a memset with a scalar store of an /// integer value, or it can involve speculating operations on a PHI or /// select to be a PHI or select of the results. /// 3) Finally, this will try to detect a pattern of accesses which map cleanly /// onto insert and extract operations on a vector value, and convert them to /// this form. By doing so, it will enable promotion of vector aggregates to /// SSA vector values. class SROA : public FunctionPass { const bool RequiresDomTree; LLVMContext *C; const DataLayout *TD; DominatorTree *DT; /// \brief Worklist of alloca instructions to simplify. /// /// Each alloca in the function is added to this. Each new alloca formed gets /// added to it as well to recursively simplify unless that alloca can be /// directly promoted. Finally, each time we rewrite a use of an alloca other /// the one being actively rewritten, we add it back onto the list if not /// already present to ensure it is re-visited. SetVector > Worklist; /// \brief A collection of instructions to delete. /// We try to batch deletions to simplify code and make things a bit more /// efficient. SmallVector DeadInsts; /// \brief A set to prevent repeatedly marking an instruction split into many /// uses as dead. Only used to guard insertion into DeadInsts. SmallPtrSet DeadSplitInsts; /// \brief Post-promotion worklist. /// /// Sometimes we discover an alloca which has a high probability of becoming /// viable for SROA after a round of promotion takes place. In those cases, /// the alloca is enqueued here for re-processing. /// /// Note that we have to be very careful to clear allocas out of this list in /// the event they are deleted. SetVector > PostPromotionWorklist; /// \brief A collection of alloca instructions we can directly promote. std::vector PromotableAllocas; public: SROA(bool RequiresDomTree = true) : FunctionPass(ID), RequiresDomTree(RequiresDomTree), C(0), TD(0), DT(0) { initializeSROAPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F); void getAnalysisUsage(AnalysisUsage &AU) const; const char *getPassName() const { return "SROA"; } static char ID; private: friend class PHIOrSelectSpeculator; friend class AllocaPartitionRewriter; friend class AllocaPartitionVectorRewriter; bool rewriteAllocaPartition(AllocaInst &AI, AllocaPartitioning &P, AllocaPartitioning::iterator PI); bool splitAlloca(AllocaInst &AI, AllocaPartitioning &P); bool runOnAlloca(AllocaInst &AI); void deleteDeadInstructions(SmallPtrSet &DeletedAllocas); bool promoteAllocas(Function &F); }; } char SROA::ID = 0; FunctionPass *llvm::createSROAPass(bool RequiresDomTree) { return new SROA(RequiresDomTree); } INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTree) INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates", false, false) namespace { /// \brief Visitor to speculate PHIs and Selects where possible. class PHIOrSelectSpeculator : public InstVisitor { // Befriend the base class so it can delegate to private visit methods. friend class llvm::InstVisitor; const DataLayout &TD; AllocaPartitioning &P; SROA &Pass; public: PHIOrSelectSpeculator(const DataLayout &TD, AllocaPartitioning &P, SROA &Pass) : TD(TD), P(P), Pass(Pass) {} /// \brief Visit the users of an alloca partition and rewrite them. void visitUsers(AllocaPartitioning::const_iterator PI) { // Note that we need to use an index here as the underlying vector of uses // may be grown during speculation. However, we never need to re-visit the // new uses, and so we can use the initial size bound. for (unsigned Idx = 0, Size = P.use_size(PI); Idx != Size; ++Idx) { const AllocaPartitioning::PartitionUse &PU = P.getUse(PI, Idx); if (!PU.U) continue; // Skip dead use. visit(cast(PU.U->getUser())); } } private: // By default, skip this instruction. void visitInstruction(Instruction &I) {} /// PHI instructions that use an alloca and are subsequently loaded can be /// rewritten to load both input pointers in the pred blocks and then PHI the /// results, allowing the load of the alloca to be promoted. /// From this: /// %P2 = phi [i32* %Alloca, i32* %Other] /// %V = load i32* %P2 /// to: /// %V1 = load i32* %Alloca -> will be mem2reg'd /// ... /// %V2 = load i32* %Other /// ... /// %V = phi [i32 %V1, i32 %V2] /// /// We can do this to a select if its only uses are loads and if the operands /// to the select can be loaded unconditionally. /// /// FIXME: This should be hoisted into a generic utility, likely in /// Transforms/Util/Local.h bool isSafePHIToSpeculate(PHINode &PN, SmallVectorImpl &Loads) { // For now, we can only do this promotion if the load is in the same block // as the PHI, and if there are no stores between the phi and load. // TODO: Allow recursive phi users. // TODO: Allow stores. BasicBlock *BB = PN.getParent(); unsigned MaxAlign = 0; for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end(); UI != UE; ++UI) { LoadInst *LI = dyn_cast(*UI); if (LI == 0 || !LI->isSimple()) return false; // For now we only allow loads in the same block as the PHI. This is // a common case that happens when instcombine merges two loads through // a PHI. if (LI->getParent() != BB) return false; // Ensure that there are no instructions between the PHI and the load that // could store. for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI) if (BBI->mayWriteToMemory()) return false; MaxAlign = std::max(MaxAlign, LI->getAlignment()); Loads.push_back(LI); } // We can only transform this if it is safe to push the loads into the // predecessor blocks. The only thing to watch out for is that we can't put // a possibly trapping load in the predecessor if it is a critical edge. for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator(); Value *InVal = PN.getIncomingValue(Idx); // If the value is produced by the terminator of the predecessor (an // invoke) or it has side-effects, there is no valid place to put a load // in the predecessor. if (TI == InVal || TI->mayHaveSideEffects()) return false; // If the predecessor has a single successor, then the edge isn't // critical. if (TI->getNumSuccessors() == 1) continue; // If this pointer is always safe to load, or if we can prove that there // is already a load in the block, then we can move the load to the pred // block. if (InVal->isDereferenceablePointer() || isSafeToLoadUnconditionally(InVal, TI, MaxAlign, &TD)) continue; return false; } return true; } void visitPHINode(PHINode &PN) { DEBUG(dbgs() << " original: " << PN << "\n"); SmallVector Loads; if (!isSafePHIToSpeculate(PN, Loads)) return; assert(!Loads.empty()); Type *LoadTy = cast(PN.getType())->getElementType(); IRBuilder<> PHIBuilder(&PN); PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(), PN.getName() + ".sroa.speculated"); // Get the TBAA tag and alignment to use from one of the loads. It doesn't // matter which one we get and if any differ, it doesn't matter. LoadInst *SomeLoad = cast(Loads.back()); MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa); unsigned Align = SomeLoad->getAlignment(); // Rewrite all loads of the PN to use the new PHI. do { LoadInst *LI = Loads.pop_back_val(); LI->replaceAllUsesWith(NewPN); Pass.DeadInsts.push_back(LI); } while (!Loads.empty()); // Inject loads into all of the pred blocks. for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { BasicBlock *Pred = PN.getIncomingBlock(Idx); TerminatorInst *TI = Pred->getTerminator(); Use *InUse = &PN.getOperandUse(PN.getOperandNumForIncomingValue(Idx)); Value *InVal = PN.getIncomingValue(Idx); IRBuilder<> PredBuilder(TI); LoadInst *Load = PredBuilder.CreateLoad(InVal, (PN.getName() + ".sroa.speculate.load." + Pred->getName())); ++NumLoadsSpeculated; Load->setAlignment(Align); if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag); NewPN->addIncoming(Load, Pred); Instruction *Ptr = dyn_cast(InVal); if (!Ptr) // No uses to rewrite. continue; // Try to lookup and rewrite any partition uses corresponding to this phi // input. AllocaPartitioning::iterator PI = P.findPartitionForPHIOrSelectOperand(InUse); if (PI == P.end()) continue; // Replace the Use in the PartitionUse for this operand with the Use // inside the load. AllocaPartitioning::use_iterator UI = P.findPartitionUseForPHIOrSelectOperand(InUse); assert(isa(*UI->U->getUser())); UI->U = &Load->getOperandUse(Load->getPointerOperandIndex()); } DEBUG(dbgs() << " speculated to: " << *NewPN << "\n"); } /// Select instructions that use an alloca and are subsequently loaded can be /// rewritten to load both input pointers and then select between the result, /// allowing the load of the alloca to be promoted. /// From this: /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other /// %V = load i32* %P2 /// to: /// %V1 = load i32* %Alloca -> will be mem2reg'd /// %V2 = load i32* %Other /// %V = select i1 %cond, i32 %V1, i32 %V2 /// /// We can do this to a select if its only uses are loads and if the operand /// to the select can be loaded unconditionally. bool isSafeSelectToSpeculate(SelectInst &SI, SmallVectorImpl &Loads) { Value *TValue = SI.getTrueValue(); Value *FValue = SI.getFalseValue(); bool TDerefable = TValue->isDereferenceablePointer(); bool FDerefable = FValue->isDereferenceablePointer(); for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end(); UI != UE; ++UI) { LoadInst *LI = dyn_cast(*UI); if (LI == 0 || !LI->isSimple()) return false; // Both operands to the select need to be dereferencable, either // absolutely (e.g. allocas) or at this point because we can see other // accesses to it. if (!TDerefable && !isSafeToLoadUnconditionally(TValue, LI, LI->getAlignment(), &TD)) return false; if (!FDerefable && !isSafeToLoadUnconditionally(FValue, LI, LI->getAlignment(), &TD)) return false; Loads.push_back(LI); } return true; } void visitSelectInst(SelectInst &SI) { DEBUG(dbgs() << " original: " << SI << "\n"); IRBuilder<> IRB(&SI); // If the select isn't safe to speculate, just use simple logic to emit it. SmallVector Loads; if (!isSafeSelectToSpeculate(SI, Loads)) return; Use *Ops[2] = { &SI.getOperandUse(1), &SI.getOperandUse(2) }; AllocaPartitioning::iterator PIs[2]; AllocaPartitioning::PartitionUse PUs[2]; for (unsigned i = 0, e = 2; i != e; ++i) { PIs[i] = P.findPartitionForPHIOrSelectOperand(Ops[i]); if (PIs[i] != P.end()) { // If the pointer is within the partitioning, remove the select from // its uses. We'll add in the new loads below. AllocaPartitioning::use_iterator UI = P.findPartitionUseForPHIOrSelectOperand(Ops[i]); PUs[i] = *UI; // Clear out the use here so that the offsets into the use list remain // stable but this use is ignored when rewriting. UI->U = 0; } } Value *TV = SI.getTrueValue(); Value *FV = SI.getFalseValue(); // Replace the loads of the select with a select of two loads. while (!Loads.empty()) { LoadInst *LI = Loads.pop_back_val(); IRB.SetInsertPoint(LI); LoadInst *TL = IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true"); LoadInst *FL = IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false"); NumLoadsSpeculated += 2; // Transfer alignment and TBAA info if present. TL->setAlignment(LI->getAlignment()); FL->setAlignment(LI->getAlignment()); if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) { TL->setMetadata(LLVMContext::MD_tbaa, Tag); FL->setMetadata(LLVMContext::MD_tbaa, Tag); } Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL, LI->getName() + ".sroa.speculated"); LoadInst *Loads[2] = { TL, FL }; for (unsigned i = 0, e = 2; i != e; ++i) { if (PIs[i] != P.end()) { Use *LoadUse = &Loads[i]->getOperandUse(0); assert(PUs[i].U->get() == LoadUse->get()); PUs[i].U = LoadUse; P.use_push_back(PIs[i], PUs[i]); } } DEBUG(dbgs() << " speculated to: " << *V << "\n"); LI->replaceAllUsesWith(V); Pass.DeadInsts.push_back(LI); } } }; } /// \brief Accumulate the constant offsets in a GEP into a single APInt offset. /// /// If the provided GEP is all-constant, the total byte offset formed by the /// GEP is computed and Offset is set to it. If the GEP has any non-constant /// operands, the function returns false and the value of Offset is unmodified. static bool accumulateGEPOffsets(const DataLayout &TD, GEPOperator &GEP, APInt &Offset) { APInt GEPOffset(Offset.getBitWidth(), 0); for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); GTI != GTE; ++GTI) { ConstantInt *OpC = dyn_cast(GTI.getOperand()); if (!OpC) return false; if (OpC->isZero()) continue; // Handle a struct index, which adds its field offset to the pointer. if (StructType *STy = dyn_cast(*GTI)) { unsigned ElementIdx = OpC->getZExtValue(); const StructLayout *SL = TD.getStructLayout(STy); GEPOffset += APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)); continue; } APInt TypeSize(Offset.getBitWidth(), TD.getTypeAllocSize(GTI.getIndexedType())); if (VectorType *VTy = dyn_cast(*GTI)) { assert((VTy->getScalarSizeInBits() % 8) == 0 && "vector element size is not a multiple of 8, cannot GEP over it"); TypeSize = VTy->getScalarSizeInBits() / 8; } GEPOffset += OpC->getValue().sextOrTrunc(Offset.getBitWidth()) * TypeSize; } Offset = GEPOffset; return true; } /// \brief Build a GEP out of a base pointer and indices. /// /// This will return the BasePtr if that is valid, or build a new GEP /// instruction using the IRBuilder if GEP-ing is needed. static Value *buildGEP(IRBuilder<> &IRB, Value *BasePtr, SmallVectorImpl &Indices, const Twine &Prefix) { if (Indices.empty()) return BasePtr; // A single zero index is a no-op, so check for this and avoid building a GEP // in that case. if (Indices.size() == 1 && cast(Indices.back())->isZero()) return BasePtr; return IRB.CreateInBoundsGEP(BasePtr, Indices, Prefix + ".idx"); } /// \brief Get a natural GEP off of the BasePtr walking through Ty toward /// TargetTy without changing the offset of the pointer. /// /// This routine assumes we've already established a properly offset GEP with /// Indices, and arrived at the Ty type. The goal is to continue to GEP with /// zero-indices down through type layers until we find one the same as /// TargetTy. If we can't find one with the same type, we at least try to use /// one with the same size. If none of that works, we just produce the GEP as /// indicated by Indices to have the correct offset. static Value *getNaturalGEPWithType(IRBuilder<> &IRB, const DataLayout &TD, Value *BasePtr, Type *Ty, Type *TargetTy, SmallVectorImpl &Indices, const Twine &Prefix) { if (Ty == TargetTy) return buildGEP(IRB, BasePtr, Indices, Prefix); // See if we can descend into a struct and locate a field with the correct // type. unsigned NumLayers = 0; Type *ElementTy = Ty; do { if (ElementTy->isPointerTy()) break; if (SequentialType *SeqTy = dyn_cast(ElementTy)) { ElementTy = SeqTy->getElementType(); Indices.push_back(IRB.getInt(APInt(TD.getPointerSizeInBits(), 0))); } else if (StructType *STy = dyn_cast(ElementTy)) { if (STy->element_begin() == STy->element_end()) break; // Nothing left to descend into. ElementTy = *STy->element_begin(); Indices.push_back(IRB.getInt32(0)); } else { break; } ++NumLayers; } while (ElementTy != TargetTy); if (ElementTy != TargetTy) Indices.erase(Indices.end() - NumLayers, Indices.end()); return buildGEP(IRB, BasePtr, Indices, Prefix); } /// \brief Recursively compute indices for a natural GEP. /// /// This is the recursive step for getNaturalGEPWithOffset that walks down the /// element types adding appropriate indices for the GEP. static Value *getNaturalGEPRecursively(IRBuilder<> &IRB, const DataLayout &TD, Value *Ptr, Type *Ty, APInt &Offset, Type *TargetTy, SmallVectorImpl &Indices, const Twine &Prefix) { if (Offset == 0) return getNaturalGEPWithType(IRB, TD, Ptr, Ty, TargetTy, Indices, Prefix); // We can't recurse through pointer types. if (Ty->isPointerTy()) return 0; // We try to analyze GEPs over vectors here, but note that these GEPs are // extremely poorly defined currently. The long-term goal is to remove GEPing // over a vector from the IR completely. if (VectorType *VecTy = dyn_cast(Ty)) { unsigned ElementSizeInBits = VecTy->getScalarSizeInBits(); if (ElementSizeInBits % 8) return 0; // GEPs over non-multiple of 8 size vector elements are invalid. APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8); APInt NumSkippedElements = Offset.udiv(ElementSize); if (NumSkippedElements.ugt(VecTy->getNumElements())) return 0; Offset -= NumSkippedElements * ElementSize; Indices.push_back(IRB.getInt(NumSkippedElements)); return getNaturalGEPRecursively(IRB, TD, Ptr, VecTy->getElementType(), Offset, TargetTy, Indices, Prefix); } if (ArrayType *ArrTy = dyn_cast(Ty)) { Type *ElementTy = ArrTy->getElementType(); APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy)); APInt NumSkippedElements = Offset.udiv(ElementSize); if (NumSkippedElements.ugt(ArrTy->getNumElements())) return 0; Offset -= NumSkippedElements * ElementSize; Indices.push_back(IRB.getInt(NumSkippedElements)); return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy, Indices, Prefix); } StructType *STy = dyn_cast(Ty); if (!STy) return 0; const StructLayout *SL = TD.getStructLayout(STy); uint64_t StructOffset = Offset.getZExtValue(); if (StructOffset >= SL->getSizeInBytes()) return 0; unsigned Index = SL->getElementContainingOffset(StructOffset); Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index)); Type *ElementTy = STy->getElementType(Index); if (Offset.uge(TD.getTypeAllocSize(ElementTy))) return 0; // The offset points into alignment padding. Indices.push_back(IRB.getInt32(Index)); return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy, Indices, Prefix); } /// \brief Get a natural GEP from a base pointer to a particular offset and /// resulting in a particular type. /// /// The goal is to produce a "natural" looking GEP that works with the existing /// composite types to arrive at the appropriate offset and element type for /// a pointer. TargetTy is the element type the returned GEP should point-to if /// possible. We recurse by decreasing Offset, adding the appropriate index to /// Indices, and setting Ty to the result subtype. /// /// If no natural GEP can be constructed, this function returns null. static Value *getNaturalGEPWithOffset(IRBuilder<> &IRB, const DataLayout &TD, Value *Ptr, APInt Offset, Type *TargetTy, SmallVectorImpl &Indices, const Twine &Prefix) { PointerType *Ty = cast(Ptr->getType()); // Don't consider any GEPs through an i8* as natural unless the TargetTy is // an i8. if (Ty == IRB.getInt8PtrTy() && TargetTy->isIntegerTy(8)) return 0; Type *ElementTy = Ty->getElementType(); if (!ElementTy->isSized()) return 0; // We can't GEP through an unsized element. APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy)); if (ElementSize == 0) return 0; // Zero-length arrays can't help us build a natural GEP. APInt NumSkippedElements = Offset.udiv(ElementSize); Offset -= NumSkippedElements * ElementSize; Indices.push_back(IRB.getInt(NumSkippedElements)); return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy, Indices, Prefix); } /// \brief Compute an adjusted pointer from Ptr by Offset bytes where the /// resulting pointer has PointerTy. /// /// This tries very hard to compute a "natural" GEP which arrives at the offset /// and produces the pointer type desired. Where it cannot, it will try to use /// the natural GEP to arrive at the offset and bitcast to the type. Where that /// fails, it will try to use an existing i8* and GEP to the byte offset and /// bitcast to the type. /// /// The strategy for finding the more natural GEPs is to peel off layers of the /// pointer, walking back through bit casts and GEPs, searching for a base /// pointer from which we can compute a natural GEP with the desired /// properities. The algorithm tries to fold as many constant indices into /// a single GEP as possible, thus making each GEP more independent of the /// surrounding code. static Value *getAdjustedPtr(IRBuilder<> &IRB, const DataLayout &TD, Value *Ptr, APInt Offset, Type *PointerTy, const Twine &Prefix) { // Even though we don't look through PHI nodes, we could be called on an // instruction in an unreachable block, which may be on a cycle. SmallPtrSet Visited; Visited.insert(Ptr); SmallVector Indices; // We may end up computing an offset pointer that has the wrong type. If we // never are able to compute one directly that has the correct type, we'll // fall back to it, so keep it around here. Value *OffsetPtr = 0; // Remember any i8 pointer we come across to re-use if we need to do a raw // byte offset. Value *Int8Ptr = 0; APInt Int8PtrOffset(Offset.getBitWidth(), 0); Type *TargetTy = PointerTy->getPointerElementType(); do { // First fold any existing GEPs into the offset. while (GEPOperator *GEP = dyn_cast(Ptr)) { APInt GEPOffset(Offset.getBitWidth(), 0); if (!accumulateGEPOffsets(TD, *GEP, GEPOffset)) break; Offset += GEPOffset; Ptr = GEP->getPointerOperand(); if (!Visited.insert(Ptr)) break; } // See if we can perform a natural GEP here. Indices.clear(); if (Value *P = getNaturalGEPWithOffset(IRB, TD, Ptr, Offset, TargetTy, Indices, Prefix)) { if (P->getType() == PointerTy) { // Zap any offset pointer that we ended up computing in previous rounds. if (OffsetPtr && OffsetPtr->use_empty()) if (Instruction *I = dyn_cast(OffsetPtr)) I->eraseFromParent(); return P; } if (!OffsetPtr) { OffsetPtr = P; } } // Stash this pointer if we've found an i8*. if (Ptr->getType()->isIntegerTy(8)) { Int8Ptr = Ptr; Int8PtrOffset = Offset; } // Peel off a layer of the pointer and update the offset appropriately. if (Operator::getOpcode(Ptr) == Instruction::BitCast) { Ptr = cast(Ptr)->getOperand(0); } else if (GlobalAlias *GA = dyn_cast(Ptr)) { if (GA->mayBeOverridden()) break; Ptr = GA->getAliasee(); } else { break; } assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!"); } while (Visited.insert(Ptr)); if (!OffsetPtr) { if (!Int8Ptr) { Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(), Prefix + ".raw_cast"); Int8PtrOffset = Offset; } OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr : IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset), Prefix + ".raw_idx"); } Ptr = OffsetPtr; // On the off chance we were targeting i8*, guard the bitcast here. if (Ptr->getType() != PointerTy) Ptr = IRB.CreateBitCast(Ptr, PointerTy, Prefix + ".cast"); return Ptr; } /// \brief Test whether we can convert a value from the old to the new type. /// /// This predicate should be used to guard calls to convertValue in order to /// ensure that we only try to convert viable values. The strategy is that we /// will peel off single element struct and array wrappings to get to an /// underlying value, and convert that value. static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) { if (OldTy == NewTy) return true; if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy)) return false; if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType()) return false; if (NewTy->isPointerTy() || OldTy->isPointerTy()) { if (NewTy->isPointerTy() && OldTy->isPointerTy()) return true; if (NewTy->isIntegerTy() || OldTy->isIntegerTy()) return true; return false; } return true; } /// \brief Generic routine to convert an SSA value to a value of a different /// type. /// /// This will try various different casting techniques, such as bitcasts, /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test /// two types for viability with this routine. static Value *convertValue(const DataLayout &DL, IRBuilder<> &IRB, Value *V, Type *Ty) { assert(canConvertValue(DL, V->getType(), Ty) && "Value not convertable to type"); if (V->getType() == Ty) return V; if (V->getType()->isIntegerTy() && Ty->isPointerTy()) return IRB.CreateIntToPtr(V, Ty); if (V->getType()->isPointerTy() && Ty->isIntegerTy()) return IRB.CreatePtrToInt(V, Ty); return IRB.CreateBitCast(V, Ty); } /// \brief Test whether the given alloca partition can be promoted to a vector. /// /// This is a quick test to check whether we can rewrite a particular alloca /// partition (and its newly formed alloca) into a vector alloca with only /// whole-vector loads and stores such that it could be promoted to a vector /// SSA value. We only can ensure this for a limited set of operations, and we /// don't want to do the rewrites unless we are confident that the result will /// be promotable, so we have an early test here. static bool isVectorPromotionViable(const DataLayout &TD, Type *AllocaTy, AllocaPartitioning &P, uint64_t PartitionBeginOffset, uint64_t PartitionEndOffset, AllocaPartitioning::const_use_iterator I, AllocaPartitioning::const_use_iterator E) { VectorType *Ty = dyn_cast(AllocaTy); if (!Ty) return false; uint64_t VecSize = TD.getTypeSizeInBits(Ty); uint64_t ElementSize = Ty->getScalarSizeInBits(); // While the definition of LLVM vectors is bitpacked, we don't support sizes // that aren't byte sized. if (ElementSize % 8) return false; assert((VecSize % 8) == 0 && "vector size not a multiple of element size?"); VecSize /= 8; ElementSize /= 8; for (; I != E; ++I) { if (!I->U) continue; // Skip dead use. uint64_t BeginOffset = I->BeginOffset - PartitionBeginOffset; uint64_t BeginIndex = BeginOffset / ElementSize; if (BeginIndex * ElementSize != BeginOffset || BeginIndex >= Ty->getNumElements()) return false; uint64_t EndOffset = I->EndOffset - PartitionBeginOffset; uint64_t EndIndex = EndOffset / ElementSize; if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements()) return false; // FIXME: We should build shuffle vector instructions to handle // non-element-sized accesses. if ((EndOffset - BeginOffset) != ElementSize && (EndOffset - BeginOffset) != VecSize) return false; if (MemIntrinsic *MI = dyn_cast(I->U->getUser())) { if (MI->isVolatile()) return false; if (MemTransferInst *MTI = dyn_cast(I->U->getUser())) { const AllocaPartitioning::MemTransferOffsets &MTO = P.getMemTransferOffsets(*MTI); if (!MTO.IsSplittable) return false; } } else if (I->U->get()->getType()->getPointerElementType()->isStructTy()) { // Disable vector promotion when there are loads or stores of an FCA. return false; } else if (!isa(I->U->getUser()) && !isa(I->U->getUser())) { return false; } } return true; } /// \brief Test whether the given alloca partition can be promoted to an int. /// /// This is a quick test to check whether we can rewrite a particular alloca /// partition (and its newly formed alloca) into an integer alloca suitable for /// promotion to an SSA value. We only can ensure this for a limited set of /// operations, and we don't want to do the rewrites unless we are confident /// that the result will be promotable, so we have an early test here. static bool isIntegerPromotionViable(const DataLayout &TD, Type *AllocaTy, uint64_t AllocBeginOffset, AllocaPartitioning &P, AllocaPartitioning::const_use_iterator I, AllocaPartitioning::const_use_iterator E) { IntegerType *Ty = dyn_cast(AllocaTy); if (!Ty || 8*TD.getTypeStoreSize(Ty) != Ty->getBitWidth()) return false; // Check the uses to ensure the uses are (likely) promoteable integer uses. // Also ensure that the alloca has a covering load or store. We don't want // promote because of some other unsplittable entry (which we may make // splittable later) and lose the ability to promote each element access. bool WholeAllocaOp = false; for (; I != E; ++I) { if (!I->U) continue; // Skip dead use. // We can't reasonably handle cases where the load or store extends past // the end of the aloca's type and into its padding. if ((I->EndOffset - AllocBeginOffset) > TD.getTypeStoreSize(Ty)) return false; if (LoadInst *LI = dyn_cast(I->U->getUser())) { if (LI->isVolatile() || !LI->getType()->isIntegerTy()) return false; if (LI->getType() == Ty) WholeAllocaOp = true; } else if (StoreInst *SI = dyn_cast(I->U->getUser())) { if (SI->isVolatile() || !SI->getValueOperand()->getType()->isIntegerTy()) return false; if (SI->getValueOperand()->getType() == Ty) WholeAllocaOp = true; } else if (MemIntrinsic *MI = dyn_cast(I->U->getUser())) { if (MI->isVolatile()) return false; if (MemTransferInst *MTI = dyn_cast(I->U->getUser())) { const AllocaPartitioning::MemTransferOffsets &MTO = P.getMemTransferOffsets(*MTI); if (!MTO.IsSplittable) return false; } } else { return false; } } return WholeAllocaOp; } namespace { /// \brief Visitor to rewrite instructions using a partition of an alloca to /// use a new alloca. /// /// Also implements the rewriting to vector-based accesses when the partition /// passes the isVectorPromotionViable predicate. Most of the rewriting logic /// lives here. class AllocaPartitionRewriter : public InstVisitor { // Befriend the base class so it can delegate to private visit methods. friend class llvm::InstVisitor; const DataLayout &TD; AllocaPartitioning &P; SROA &Pass; AllocaInst &OldAI, &NewAI; const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset; Type *NewAllocaTy; // If we are rewriting an alloca partition which can be written as pure // vector operations, we stash extra information here. When VecTy is // non-null, we have some strict guarantees about the rewriten alloca: // - The new alloca is exactly the size of the vector type here. // - The accesses all either map to the entire vector or to a single // element. // - The set of accessing instructions is only one of those handled above // in isVectorPromotionViable. Generally these are the same access kinds // which are promotable via mem2reg. VectorType *VecTy; Type *ElementTy; uint64_t ElementSize; // This is a convenience and flag variable that will be null unless the new // alloca has a promotion-targeted integer type due to passing // isIntegerPromotionViable above. If it is non-null does, the desired // integer type will be stored here for easy access during rewriting. IntegerType *IntPromotionTy; // The offset of the partition user currently being rewritten. uint64_t BeginOffset, EndOffset; Use *OldUse; Instruction *OldPtr; // The name prefix to use when rewriting instructions for this alloca. std::string NamePrefix; public: AllocaPartitionRewriter(const DataLayout &TD, AllocaPartitioning &P, AllocaPartitioning::iterator PI, SROA &Pass, AllocaInst &OldAI, AllocaInst &NewAI, uint64_t NewBeginOffset, uint64_t NewEndOffset) : TD(TD), P(P), Pass(Pass), OldAI(OldAI), NewAI(NewAI), NewAllocaBeginOffset(NewBeginOffset), NewAllocaEndOffset(NewEndOffset), NewAllocaTy(NewAI.getAllocatedType()), VecTy(), ElementTy(), ElementSize(), IntPromotionTy(), BeginOffset(), EndOffset() { } /// \brief Visit the users of the alloca partition and rewrite them. bool visitUsers(AllocaPartitioning::const_use_iterator I, AllocaPartitioning::const_use_iterator E) { if (isVectorPromotionViable(TD, NewAI.getAllocatedType(), P, NewAllocaBeginOffset, NewAllocaEndOffset, I, E)) { ++NumVectorized; VecTy = cast(NewAI.getAllocatedType()); ElementTy = VecTy->getElementType(); assert((VecTy->getScalarSizeInBits() % 8) == 0 && "Only multiple-of-8 sized vector elements are viable"); ElementSize = VecTy->getScalarSizeInBits() / 8; } else if (isIntegerPromotionViable(TD, NewAI.getAllocatedType(), NewAllocaBeginOffset, P, I, E)) { IntPromotionTy = cast(NewAI.getAllocatedType()); } bool CanSROA = true; for (; I != E; ++I) { if (!I->U) continue; // Skip dead uses. BeginOffset = I->BeginOffset; EndOffset = I->EndOffset; OldUse = I->U; OldPtr = cast(I->U->get()); NamePrefix = (Twine(NewAI.getName()) + "." + Twine(BeginOffset)).str(); CanSROA &= visit(cast(I->U->getUser())); } if (VecTy) { assert(CanSROA); VecTy = 0; ElementTy = 0; ElementSize = 0; } return CanSROA; } private: // Every instruction which can end up as a user must have a rewrite rule. bool visitInstruction(Instruction &I) { DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n"); llvm_unreachable("No rewrite rule for this instruction!"); } Twine getName(const Twine &Suffix) { return NamePrefix + Suffix; } Value *getAdjustedAllocaPtr(IRBuilder<> &IRB, Type *PointerTy) { assert(BeginOffset >= NewAllocaBeginOffset); APInt Offset(TD.getPointerSizeInBits(), BeginOffset - NewAllocaBeginOffset); return getAdjustedPtr(IRB, TD, &NewAI, Offset, PointerTy, getName("")); } /// \brief Compute suitable alignment to access an offset into the new alloca. unsigned getOffsetAlign(uint64_t Offset) { unsigned NewAIAlign = NewAI.getAlignment(); if (!NewAIAlign) NewAIAlign = TD.getABITypeAlignment(NewAI.getAllocatedType()); return MinAlign(NewAIAlign, Offset); } /// \brief Compute suitable alignment to access this partition of the new /// alloca. unsigned getPartitionAlign() { return getOffsetAlign(BeginOffset - NewAllocaBeginOffset); } /// \brief Compute suitable alignment to access a type at an offset of the /// new alloca. /// /// \returns zero if the type's ABI alignment is a suitable alignment, /// otherwise returns the maximal suitable alignment. unsigned getOffsetTypeAlign(Type *Ty, uint64_t Offset) { unsigned Align = getOffsetAlign(Offset); return Align == TD.getABITypeAlignment(Ty) ? 0 : Align; } /// \brief Compute suitable alignment to access a type at the beginning of /// this partition of the new alloca. /// /// See \c getOffsetTypeAlign for details; this routine delegates to it. unsigned getPartitionTypeAlign(Type *Ty) { return getOffsetTypeAlign(Ty, BeginOffset - NewAllocaBeginOffset); } ConstantInt *getIndex(IRBuilder<> &IRB, uint64_t Offset) { assert(VecTy && "Can only call getIndex when rewriting a vector"); uint64_t RelOffset = Offset - NewAllocaBeginOffset; assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds"); uint32_t Index = RelOffset / ElementSize; assert(Index * ElementSize == RelOffset); return IRB.getInt32(Index); } Value *extractInteger(IRBuilder<> &IRB, IntegerType *TargetTy, uint64_t Offset) { assert(IntPromotionTy && "Alloca is not an integer we can extract from"); Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), getName(".load")); assert(Offset >= NewAllocaBeginOffset && "Out of bounds offset"); uint64_t RelOffset = Offset - NewAllocaBeginOffset; assert(TD.getTypeStoreSize(TargetTy) + RelOffset <= TD.getTypeStoreSize(IntPromotionTy) && "Element load outside of alloca store"); uint64_t ShAmt = 8*RelOffset; if (TD.isBigEndian()) ShAmt = 8*(TD.getTypeStoreSize(IntPromotionTy) - TD.getTypeStoreSize(TargetTy) - RelOffset); if (ShAmt) V = IRB.CreateLShr(V, ShAmt, getName(".shift")); if (TargetTy != IntPromotionTy) { assert(TargetTy->getBitWidth() < IntPromotionTy->getBitWidth() && "Cannot extract to a larger integer!"); V = IRB.CreateTrunc(V, TargetTy, getName(".trunc")); } return V; } StoreInst *insertInteger(IRBuilder<> &IRB, Value *V, uint64_t Offset) { IntegerType *Ty = cast(V->getType()); if (Ty == IntPromotionTy) return IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment()); assert(Ty->getBitWidth() < IntPromotionTy->getBitWidth() && "Cannot insert a larger integer!"); V = IRB.CreateZExt(V, IntPromotionTy, getName(".ext")); assert(Offset >= NewAllocaBeginOffset && "Out of bounds offset"); uint64_t RelOffset = Offset - NewAllocaBeginOffset; assert(TD.getTypeStoreSize(Ty) + RelOffset <= TD.getTypeStoreSize(IntPromotionTy) && "Element store outside of alloca store"); uint64_t ShAmt = 8*RelOffset; if (TD.isBigEndian()) ShAmt = 8*(TD.getTypeStoreSize(IntPromotionTy) - TD.getTypeStoreSize(Ty) - RelOffset); if (ShAmt) V = IRB.CreateShl(V, ShAmt, getName(".shift")); APInt Mask = ~Ty->getMask().zext(IntPromotionTy->getBitWidth()).shl(ShAmt); Value *Old = IRB.CreateAnd(IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), getName(".oldload")), Mask, getName(".mask")); return IRB.CreateAlignedStore(IRB.CreateOr(Old, V, getName(".insert")), &NewAI, NewAI.getAlignment()); } void deleteIfTriviallyDead(Value *V) { Instruction *I = cast(V); if (isInstructionTriviallyDead(I)) Pass.DeadInsts.push_back(I); } bool rewriteVectorizedLoadInst(IRBuilder<> &IRB, LoadInst &LI, Value *OldOp) { Value *Result; if (LI.getType() == VecTy->getElementType() || BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) { Result = IRB.CreateExtractElement( IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), getName(".load")), getIndex(IRB, BeginOffset), getName(".extract")); } else { Result = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), getName(".load")); } if (Result->getType() != LI.getType()) Result = convertValue(TD, IRB, Result, LI.getType()); LI.replaceAllUsesWith(Result); Pass.DeadInsts.push_back(&LI); DEBUG(dbgs() << " to: " << *Result << "\n"); return true; } bool rewriteIntegerLoad(IRBuilder<> &IRB, LoadInst &LI) { assert(!LI.isVolatile()); Value *Result = extractInteger(IRB, cast(LI.getType()), BeginOffset); LI.replaceAllUsesWith(Result); Pass.DeadInsts.push_back(&LI); DEBUG(dbgs() << " to: " << *Result << "\n"); return true; } bool visitLoadInst(LoadInst &LI) { DEBUG(dbgs() << " original: " << LI << "\n"); Value *OldOp = LI.getOperand(0); assert(OldOp == OldPtr); IRBuilder<> IRB(&LI); if (VecTy) return rewriteVectorizedLoadInst(IRB, LI, OldOp); if (IntPromotionTy) return rewriteIntegerLoad(IRB, LI); if (BeginOffset == NewAllocaBeginOffset && canConvertValue(TD, NewAllocaTy, LI.getType())) { Value *NewLI = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), LI.isVolatile(), getName(".load")); Value *NewV = convertValue(TD, IRB, NewLI, LI.getType()); LI.replaceAllUsesWith(NewV); Pass.DeadInsts.push_back(&LI); DEBUG(dbgs() << " to: " << *NewLI << "\n"); return !LI.isVolatile(); } Value *NewPtr = getAdjustedAllocaPtr(IRB, LI.getPointerOperand()->getType()); LI.setOperand(0, NewPtr); LI.setAlignment(getPartitionTypeAlign(LI.getType())); DEBUG(dbgs() << " to: " << LI << "\n"); deleteIfTriviallyDead(OldOp); return NewPtr == &NewAI && !LI.isVolatile(); } bool rewriteVectorizedStoreInst(IRBuilder<> &IRB, StoreInst &SI, Value *OldOp) { Value *V = SI.getValueOperand(); if (V->getType() == ElementTy || BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) { if (V->getType() != ElementTy) V = convertValue(TD, IRB, V, ElementTy); LoadInst *LI = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), getName(".load")); V = IRB.CreateInsertElement(LI, V, getIndex(IRB, BeginOffset), getName(".insert")); } else if (V->getType() != VecTy) { V = convertValue(TD, IRB, V, VecTy); } StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment()); Pass.DeadInsts.push_back(&SI); (void)Store; DEBUG(dbgs() << " to: " << *Store << "\n"); return true; } bool rewriteIntegerStore(IRBuilder<> &IRB, StoreInst &SI) { assert(!SI.isVolatile()); StoreInst *Store = insertInteger(IRB, SI.getValueOperand(), BeginOffset); Pass.DeadInsts.push_back(&SI); (void)Store; DEBUG(dbgs() << " to: " << *Store << "\n"); return true; } bool visitStoreInst(StoreInst &SI) { DEBUG(dbgs() << " original: " << SI << "\n"); Value *OldOp = SI.getOperand(1); assert(OldOp == OldPtr); IRBuilder<> IRB(&SI); if (VecTy) return rewriteVectorizedStoreInst(IRB, SI, OldOp); if (IntPromotionTy) return rewriteIntegerStore(IRB, SI); Type *ValueTy = SI.getValueOperand()->getType(); // Strip all inbounds GEPs and pointer casts to try to dig out any root // alloca that should be re-examined after promoting this alloca. if (ValueTy->isPointerTy()) if (AllocaInst *AI = dyn_cast(SI.getValueOperand() ->stripInBoundsOffsets())) Pass.PostPromotionWorklist.insert(AI); if (BeginOffset == NewAllocaBeginOffset && canConvertValue(TD, ValueTy, NewAllocaTy)) { Value *NewV = convertValue(TD, IRB, SI.getValueOperand(), NewAllocaTy); StoreInst *NewSI = IRB.CreateAlignedStore(NewV, &NewAI, NewAI.getAlignment(), SI.isVolatile()); (void)NewSI; Pass.DeadInsts.push_back(&SI); DEBUG(dbgs() << " to: " << *NewSI << "\n"); return !SI.isVolatile(); } Value *NewPtr = getAdjustedAllocaPtr(IRB, SI.getPointerOperand()->getType()); SI.setOperand(1, NewPtr); SI.setAlignment(getPartitionTypeAlign(SI.getValueOperand()->getType())); DEBUG(dbgs() << " to: " << SI << "\n"); deleteIfTriviallyDead(OldOp); return NewPtr == &NewAI && !SI.isVolatile(); } bool visitMemSetInst(MemSetInst &II) { DEBUG(dbgs() << " original: " << II << "\n"); IRBuilder<> IRB(&II); assert(II.getRawDest() == OldPtr); // If the memset has a variable size, it cannot be split, just adjust the // pointer to the new alloca. if (!isa(II.getLength())) { II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType())); Type *CstTy = II.getAlignmentCst()->getType(); II.setAlignment(ConstantInt::get(CstTy, getPartitionAlign())); deleteIfTriviallyDead(OldPtr); return false; } // Record this instruction for deletion. if (Pass.DeadSplitInsts.insert(&II)) Pass.DeadInsts.push_back(&II); Type *AllocaTy = NewAI.getAllocatedType(); Type *ScalarTy = AllocaTy->getScalarType(); // If this doesn't map cleanly onto the alloca type, and that type isn't // a single value type, just emit a memset. if (!VecTy && (BeginOffset != NewAllocaBeginOffset || EndOffset != NewAllocaEndOffset || !AllocaTy->isSingleValueType() || !TD.isLegalInteger(TD.getTypeSizeInBits(ScalarTy)))) { Type *SizeTy = II.getLength()->getType(); Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset); CallInst *New = IRB.CreateMemSet(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()), II.getValue(), Size, getPartitionAlign(), II.isVolatile()); (void)New; DEBUG(dbgs() << " to: " << *New << "\n"); return false; } // If we can represent this as a simple value, we have to build the actual // value to store, which requires expanding the byte present in memset to // a sensible representation for the alloca type. This is essentially // splatting the byte to a sufficiently wide integer, bitcasting to the // desired scalar type, and splatting it across any desired vector type. Value *V = II.getValue(); IntegerType *VTy = cast(V->getType()); Type *IntTy = Type::getIntNTy(VTy->getContext(), TD.getTypeSizeInBits(ScalarTy)); if (TD.getTypeSizeInBits(ScalarTy) > VTy->getBitWidth()) V = IRB.CreateMul(IRB.CreateZExt(V, IntTy, getName(".zext")), ConstantExpr::getUDiv( Constant::getAllOnesValue(IntTy), ConstantExpr::getZExt( Constant::getAllOnesValue(V->getType()), IntTy)), getName(".isplat")); if (V->getType() != ScalarTy) { if (ScalarTy->isPointerTy()) V = IRB.CreateIntToPtr(V, ScalarTy); else if (ScalarTy->isPrimitiveType() || ScalarTy->isVectorTy()) V = IRB.CreateBitCast(V, ScalarTy); else if (ScalarTy->isIntegerTy()) llvm_unreachable("Computed different integer types with equal widths"); else llvm_unreachable("Invalid scalar type"); } // If this is an element-wide memset of a vectorizable alloca, insert it. if (VecTy && (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset)) { StoreInst *Store = IRB.CreateAlignedStore( IRB.CreateInsertElement(IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), getName(".load")), V, getIndex(IRB, BeginOffset), getName(".insert")), &NewAI, NewAI.getAlignment()); (void)Store; DEBUG(dbgs() << " to: " << *Store << "\n"); return true; } // Splat to a vector if needed. if (VectorType *VecTy = dyn_cast(AllocaTy)) { VectorType *SplatSourceTy = VectorType::get(V->getType(), 1); V = IRB.CreateShuffleVector( IRB.CreateInsertElement(UndefValue::get(SplatSourceTy), V, IRB.getInt32(0), getName(".vsplat.insert")), UndefValue::get(SplatSourceTy), ConstantVector::getSplat(VecTy->getNumElements(), IRB.getInt32(0)), getName(".vsplat.shuffle")); assert(V->getType() == VecTy); } Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(), II.isVolatile()); (void)New; DEBUG(dbgs() << " to: " << *New << "\n"); return !II.isVolatile(); } bool visitMemTransferInst(MemTransferInst &II) { // Rewriting of memory transfer instructions can be a bit tricky. We break // them into two categories: split intrinsics and unsplit intrinsics. DEBUG(dbgs() << " original: " << II << "\n"); IRBuilder<> IRB(&II); assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr); bool IsDest = II.getRawDest() == OldPtr; const AllocaPartitioning::MemTransferOffsets &MTO = P.getMemTransferOffsets(II); // Compute the relative offset within the transfer. unsigned IntPtrWidth = TD.getPointerSizeInBits(); APInt RelOffset(IntPtrWidth, BeginOffset - (IsDest ? MTO.DestBegin : MTO.SourceBegin)); unsigned Align = II.getAlignment(); if (Align > 1) Align = MinAlign(RelOffset.zextOrTrunc(64).getZExtValue(), MinAlign(II.getAlignment(), getPartitionAlign())); // For unsplit intrinsics, we simply modify the source and destination // pointers in place. This isn't just an optimization, it is a matter of // correctness. With unsplit intrinsics we may be dealing with transfers // within a single alloca before SROA ran, or with transfers that have // a variable length. We may also be dealing with memmove instead of // memcpy, and so simply updating the pointers is the necessary for us to // update both source and dest of a single call. if (!MTO.IsSplittable) { Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource(); if (IsDest) II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType())); else II.setSource(getAdjustedAllocaPtr(IRB, II.getRawSource()->getType())); Type *CstTy = II.getAlignmentCst()->getType(); II.setAlignment(ConstantInt::get(CstTy, Align)); DEBUG(dbgs() << " to: " << II << "\n"); deleteIfTriviallyDead(OldOp); return false; } // For split transfer intrinsics we have an incredibly useful assurance: // the source and destination do not reside within the same alloca, and at // least one of them does not escape. This means that we can replace // memmove with memcpy, and we don't need to worry about all manner of // downsides to splitting and transforming the operations. // If this doesn't map cleanly onto the alloca type, and that type isn't // a single value type, just emit a memcpy. bool EmitMemCpy = !VecTy && (BeginOffset != NewAllocaBeginOffset || EndOffset != NewAllocaEndOffset || !NewAI.getAllocatedType()->isSingleValueType()); // If we're just going to emit a memcpy, the alloca hasn't changed, and the // size hasn't been shrunk based on analysis of the viable range, this is // a no-op. if (EmitMemCpy && &OldAI == &NewAI) { uint64_t OrigBegin = IsDest ? MTO.DestBegin : MTO.SourceBegin; uint64_t OrigEnd = IsDest ? MTO.DestEnd : MTO.SourceEnd; // Ensure the start lines up. assert(BeginOffset == OrigBegin); (void)OrigBegin; // Rewrite the size as needed. if (EndOffset != OrigEnd) II.setLength(ConstantInt::get(II.getLength()->getType(), EndOffset - BeginOffset)); return false; } // Record this instruction for deletion. if (Pass.DeadSplitInsts.insert(&II)) Pass.DeadInsts.push_back(&II); bool IsVectorElement = VecTy && (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset); Type *OtherPtrTy = IsDest ? II.getRawSource()->getType() : II.getRawDest()->getType(); if (!EmitMemCpy) OtherPtrTy = IsVectorElement ? VecTy->getElementType()->getPointerTo() : NewAI.getType(); // Compute the other pointer, folding as much as possible to produce // a single, simple GEP in most cases. Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest(); OtherPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy, getName("." + OtherPtr->getName())); // Strip all inbounds GEPs and pointer casts to try to dig out any root // alloca that should be re-examined after rewriting this instruction. if (AllocaInst *AI = dyn_cast(OtherPtr->stripInBoundsOffsets())) Pass.Worklist.insert(AI); if (EmitMemCpy) { Value *OurPtr = getAdjustedAllocaPtr(IRB, IsDest ? II.getRawDest()->getType() : II.getRawSource()->getType()); Type *SizeTy = II.getLength()->getType(); Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset); CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr, IsDest ? OtherPtr : OurPtr, Size, Align, II.isVolatile()); (void)New; DEBUG(dbgs() << " to: " << *New << "\n"); return false; } // Note that we clamp the alignment to 1 here as a 0 alignment for a memcpy // is equivalent to 1, but that isn't true if we end up rewriting this as // a load or store. if (!Align) Align = 1; Value *SrcPtr = OtherPtr; Value *DstPtr = &NewAI; if (!IsDest) std::swap(SrcPtr, DstPtr); Value *Src; if (IsVectorElement && !IsDest) { // We have to extract rather than load. Src = IRB.CreateExtractElement( IRB.CreateAlignedLoad(SrcPtr, Align, getName(".copyload")), getIndex(IRB, BeginOffset), getName(".copyextract")); } else { Src = IRB.CreateAlignedLoad(SrcPtr, Align, II.isVolatile(), getName(".copyload")); } if (IsVectorElement && IsDest) { // We have to insert into a loaded copy before storing. Src = IRB.CreateInsertElement( IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), getName(".load")), Src, getIndex(IRB, BeginOffset), getName(".insert")); } StoreInst *Store = cast( IRB.CreateAlignedStore(Src, DstPtr, Align, II.isVolatile())); (void)Store; DEBUG(dbgs() << " to: " << *Store << "\n"); return !II.isVolatile(); } bool visitIntrinsicInst(IntrinsicInst &II) { assert(II.getIntrinsicID() == Intrinsic::lifetime_start || II.getIntrinsicID() == Intrinsic::lifetime_end); DEBUG(dbgs() << " original: " << II << "\n"); IRBuilder<> IRB(&II); assert(II.getArgOperand(1) == OldPtr); // Record this instruction for deletion. if (Pass.DeadSplitInsts.insert(&II)) Pass.DeadInsts.push_back(&II); ConstantInt *Size = ConstantInt::get(cast(II.getArgOperand(0)->getType()), EndOffset - BeginOffset); Value *Ptr = getAdjustedAllocaPtr(IRB, II.getArgOperand(1)->getType()); Value *New; if (II.getIntrinsicID() == Intrinsic::lifetime_start) New = IRB.CreateLifetimeStart(Ptr, Size); else New = IRB.CreateLifetimeEnd(Ptr, Size); DEBUG(dbgs() << " to: " << *New << "\n"); return true; } bool visitPHINode(PHINode &PN) { DEBUG(dbgs() << " original: " << PN << "\n"); // We would like to compute a new pointer in only one place, but have it be // as local as possible to the PHI. To do that, we re-use the location of // the old pointer, which necessarily must be in the right position to // dominate the PHI. IRBuilder<> PtrBuilder(cast(OldPtr)); Value *NewPtr = getAdjustedAllocaPtr(PtrBuilder, OldPtr->getType()); // Replace the operands which were using the old pointer. User::op_iterator OI = PN.op_begin(), OE = PN.op_end(); for (; OI != OE; ++OI) if (*OI == OldPtr) *OI = NewPtr; DEBUG(dbgs() << " to: " << PN << "\n"); deleteIfTriviallyDead(OldPtr); return false; } bool visitSelectInst(SelectInst &SI) { DEBUG(dbgs() << " original: " << SI << "\n"); IRBuilder<> IRB(&SI); // Find the operand we need to rewrite here. bool IsTrueVal = SI.getTrueValue() == OldPtr; if (IsTrueVal) assert(SI.getFalseValue() != OldPtr && "Pointer is both operands!"); else assert(SI.getFalseValue() == OldPtr && "Pointer isn't an operand!"); Value *NewPtr = getAdjustedAllocaPtr(IRB, OldPtr->getType()); SI.setOperand(IsTrueVal ? 1 : 2, NewPtr); DEBUG(dbgs() << " to: " << SI << "\n"); deleteIfTriviallyDead(OldPtr); return false; } }; } namespace { /// \brief Visitor to rewrite aggregate loads and stores as scalar. /// /// This pass aggressively rewrites all aggregate loads and stores on /// a particular pointer (or any pointer derived from it which we can identify) /// with scalar loads and stores. class AggLoadStoreRewriter : public InstVisitor { // Befriend the base class so it can delegate to private visit methods. friend class llvm::InstVisitor; const DataLayout &TD; /// Queue of pointer uses to analyze and potentially rewrite. SmallVector Queue; /// Set to prevent us from cycling with phi nodes and loops. SmallPtrSet Visited; /// The current pointer use being rewritten. This is used to dig up the used /// value (as opposed to the user). Use *U; public: AggLoadStoreRewriter(const DataLayout &TD) : TD(TD) {} /// Rewrite loads and stores through a pointer and all pointers derived from /// it. bool rewrite(Instruction &I) { DEBUG(dbgs() << " Rewriting FCA loads and stores...\n"); enqueueUsers(I); bool Changed = false; while (!Queue.empty()) { U = Queue.pop_back_val(); Changed |= visit(cast(U->getUser())); } return Changed; } private: /// Enqueue all the users of the given instruction for further processing. /// This uses a set to de-duplicate users. void enqueueUsers(Instruction &I) { for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ++UI) if (Visited.insert(*UI)) Queue.push_back(&UI.getUse()); } // Conservative default is to not rewrite anything. bool visitInstruction(Instruction &I) { return false; } /// \brief Generic recursive split emission class. template class OpSplitter { protected: /// The builder used to form new instructions. IRBuilder<> IRB; /// The indices which to be used with insert- or extractvalue to select the /// appropriate value within the aggregate. SmallVector Indices; /// The indices to a GEP instruction which will move Ptr to the correct slot /// within the aggregate. SmallVector GEPIndices; /// The base pointer of the original op, used as a base for GEPing the /// split operations. Value *Ptr; /// Initialize the splitter with an insertion point, Ptr and start with a /// single zero GEP index. OpSplitter(Instruction *InsertionPoint, Value *Ptr) : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {} public: /// \brief Generic recursive split emission routine. /// /// This method recursively splits an aggregate op (load or store) into /// scalar or vector ops. It splits recursively until it hits a single value /// and emits that single value operation via the template argument. /// /// The logic of this routine relies on GEPs and insertvalue and /// extractvalue all operating with the same fundamental index list, merely /// formatted differently (GEPs need actual values). /// /// \param Ty The type being split recursively into smaller ops. /// \param Agg The aggregate value being built up or stored, depending on /// whether this is splitting a load or a store respectively. void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) { if (Ty->isSingleValueType()) return static_cast(this)->emitFunc(Ty, Agg, Name); if (ArrayType *ATy = dyn_cast(Ty)) { unsigned OldSize = Indices.size(); (void)OldSize; for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size; ++Idx) { assert(Indices.size() == OldSize && "Did not return to the old size"); Indices.push_back(Idx); GEPIndices.push_back(IRB.getInt32(Idx)); emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx)); GEPIndices.pop_back(); Indices.pop_back(); } return; } if (StructType *STy = dyn_cast(Ty)) { unsigned OldSize = Indices.size(); (void)OldSize; for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size; ++Idx) { assert(Indices.size() == OldSize && "Did not return to the old size"); Indices.push_back(Idx); GEPIndices.push_back(IRB.getInt32(Idx)); emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx)); GEPIndices.pop_back(); Indices.pop_back(); } return; } llvm_unreachable("Only arrays and structs are aggregate loadable types"); } }; struct LoadOpSplitter : public OpSplitter { LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr) : OpSplitter(InsertionPoint, Ptr) {} /// Emit a leaf load of a single value. This is called at the leaves of the /// recursive emission to actually load values. void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) { assert(Ty->isSingleValueType()); // Load the single value and insert it using the indices. Value *Load = IRB.CreateLoad(IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"), Name + ".load"); Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert"); DEBUG(dbgs() << " to: " << *Load << "\n"); } }; bool visitLoadInst(LoadInst &LI) { assert(LI.getPointerOperand() == *U); if (!LI.isSimple() || LI.getType()->isSingleValueType()) return false; // We have an aggregate being loaded, split it apart. DEBUG(dbgs() << " original: " << LI << "\n"); LoadOpSplitter Splitter(&LI, *U); Value *V = UndefValue::get(LI.getType()); Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca"); LI.replaceAllUsesWith(V); LI.eraseFromParent(); return true; } struct StoreOpSplitter : public OpSplitter { StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr) : OpSplitter(InsertionPoint, Ptr) {} /// Emit a leaf store of a single value. This is called at the leaves of the /// recursive emission to actually produce stores. void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) { assert(Ty->isSingleValueType()); // Extract the single value and store it using the indices. Value *Store = IRB.CreateStore( IRB.CreateExtractValue(Agg, Indices, Name + ".extract"), IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep")); (void)Store; DEBUG(dbgs() << " to: " << *Store << "\n"); } }; bool visitStoreInst(StoreInst &SI) { if (!SI.isSimple() || SI.getPointerOperand() != *U) return false; Value *V = SI.getValueOperand(); if (V->getType()->isSingleValueType()) return false; // We have an aggregate being stored, split it apart. DEBUG(dbgs() << " original: " << SI << "\n"); StoreOpSplitter Splitter(&SI, *U); Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca"); SI.eraseFromParent(); return true; } bool visitBitCastInst(BitCastInst &BC) { enqueueUsers(BC); return false; } bool visitGetElementPtrInst(GetElementPtrInst &GEPI) { enqueueUsers(GEPI); return false; } bool visitPHINode(PHINode &PN) { enqueueUsers(PN); return false; } bool visitSelectInst(SelectInst &SI) { enqueueUsers(SI); return false; } }; } /// \brief Strip aggregate type wrapping. /// /// This removes no-op aggregate types wrapping an underlying type. It will /// strip as many layers of types as it can without changing either the type /// size or the allocated size. static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) { if (Ty->isSingleValueType()) return Ty; uint64_t AllocSize = DL.getTypeAllocSize(Ty); uint64_t TypeSize = DL.getTypeSizeInBits(Ty); Type *InnerTy; if (ArrayType *ArrTy = dyn_cast(Ty)) { InnerTy = ArrTy->getElementType(); } else if (StructType *STy = dyn_cast(Ty)) { const StructLayout *SL = DL.getStructLayout(STy); unsigned Index = SL->getElementContainingOffset(0); InnerTy = STy->getElementType(Index); } else { return Ty; } if (AllocSize > DL.getTypeAllocSize(InnerTy) || TypeSize > DL.getTypeSizeInBits(InnerTy)) return Ty; return stripAggregateTypeWrapping(DL, InnerTy); } /// \brief Try to find a partition of the aggregate type passed in for a given /// offset and size. /// /// This recurses through the aggregate type and tries to compute a subtype /// based on the offset and size. When the offset and size span a sub-section /// of an array, it will even compute a new array type for that sub-section, /// and the same for structs. /// /// Note that this routine is very strict and tries to find a partition of the /// type which produces the *exact* right offset and size. It is not forgiving /// when the size or offset cause either end of type-based partition to be off. /// Also, this is a best-effort routine. It is reasonable to give up and not /// return a type if necessary. static Type *getTypePartition(const DataLayout &TD, Type *Ty, uint64_t Offset, uint64_t Size) { if (Offset == 0 && TD.getTypeAllocSize(Ty) == Size) return stripAggregateTypeWrapping(TD, Ty); if (SequentialType *SeqTy = dyn_cast(Ty)) { // We can't partition pointers... if (SeqTy->isPointerTy()) return 0; Type *ElementTy = SeqTy->getElementType(); uint64_t ElementSize = TD.getTypeAllocSize(ElementTy); uint64_t NumSkippedElements = Offset / ElementSize; if (ArrayType *ArrTy = dyn_cast(SeqTy)) if (NumSkippedElements >= ArrTy->getNumElements()) return 0; if (VectorType *VecTy = dyn_cast(SeqTy)) if (NumSkippedElements >= VecTy->getNumElements()) return 0; Offset -= NumSkippedElements * ElementSize; // First check if we need to recurse. if (Offset > 0 || Size < ElementSize) { // Bail if the partition ends in a different array element. if ((Offset + Size) > ElementSize) return 0; // Recurse through the element type trying to peel off offset bytes. return getTypePartition(TD, ElementTy, Offset, Size); } assert(Offset == 0); if (Size == ElementSize) return stripAggregateTypeWrapping(TD, ElementTy); assert(Size > ElementSize); uint64_t NumElements = Size / ElementSize; if (NumElements * ElementSize != Size) return 0; return ArrayType::get(ElementTy, NumElements); } StructType *STy = dyn_cast(Ty); if (!STy) return 0; const StructLayout *SL = TD.getStructLayout(STy); if (Offset >= SL->getSizeInBytes()) return 0; uint64_t EndOffset = Offset + Size; if (EndOffset > SL->getSizeInBytes()) return 0; unsigned Index = SL->getElementContainingOffset(Offset); Offset -= SL->getElementOffset(Index); Type *ElementTy = STy->getElementType(Index); uint64_t ElementSize = TD.getTypeAllocSize(ElementTy); if (Offset >= ElementSize) return 0; // The offset points into alignment padding. // See if any partition must be contained by the element. if (Offset > 0 || Size < ElementSize) { if ((Offset + Size) > ElementSize) return 0; return getTypePartition(TD, ElementTy, Offset, Size); } assert(Offset == 0); if (Size == ElementSize) return stripAggregateTypeWrapping(TD, ElementTy); StructType::element_iterator EI = STy->element_begin() + Index, EE = STy->element_end(); if (EndOffset < SL->getSizeInBytes()) { unsigned EndIndex = SL->getElementContainingOffset(EndOffset); if (Index == EndIndex) return 0; // Within a single element and its padding. // Don't try to form "natural" types if the elements don't line up with the // expected size. // FIXME: We could potentially recurse down through the last element in the // sub-struct to find a natural end point. if (SL->getElementOffset(EndIndex) != EndOffset) return 0; assert(Index < EndIndex); EE = STy->element_begin() + EndIndex; } // Try to build up a sub-structure. SmallVector ElementTys; do { ElementTys.push_back(*EI++); } while (EI != EE); StructType *SubTy = StructType::get(STy->getContext(), ElementTys, STy->isPacked()); const StructLayout *SubSL = TD.getStructLayout(SubTy); if (Size != SubSL->getSizeInBytes()) return 0; // The sub-struct doesn't have quite the size needed. return SubTy; } /// \brief Rewrite an alloca partition's users. /// /// This routine drives both of the rewriting goals of the SROA pass. It tries /// to rewrite uses of an alloca partition to be conducive for SSA value /// promotion. If the partition needs a new, more refined alloca, this will /// build that new alloca, preserving as much type information as possible, and /// rewrite the uses of the old alloca to point at the new one and have the /// appropriate new offsets. It also evaluates how successful the rewrite was /// at enabling promotion and if it was successful queues the alloca to be /// promoted. bool SROA::rewriteAllocaPartition(AllocaInst &AI, AllocaPartitioning &P, AllocaPartitioning::iterator PI) { uint64_t AllocaSize = PI->EndOffset - PI->BeginOffset; bool IsLive = false; for (AllocaPartitioning::use_iterator UI = P.use_begin(PI), UE = P.use_end(PI); UI != UE && !IsLive; ++UI) if (UI->U) IsLive = true; if (!IsLive) return false; // No live uses left of this partition. DEBUG(dbgs() << "Speculating PHIs and selects in partition " << "[" << PI->BeginOffset << "," << PI->EndOffset << ")\n"); PHIOrSelectSpeculator Speculator(*TD, P, *this); DEBUG(dbgs() << " speculating "); DEBUG(P.print(dbgs(), PI, "")); Speculator.visitUsers(PI); // Try to compute a friendly type for this partition of the alloca. This // won't always succeed, in which case we fall back to a legal integer type // or an i8 array of an appropriate size. Type *AllocaTy = 0; if (Type *PartitionTy = P.getCommonType(PI)) if (TD->getTypeAllocSize(PartitionTy) >= AllocaSize) AllocaTy = PartitionTy; if (!AllocaTy) if (Type *PartitionTy = getTypePartition(*TD, AI.getAllocatedType(), PI->BeginOffset, AllocaSize)) AllocaTy = PartitionTy; if ((!AllocaTy || (AllocaTy->isArrayTy() && AllocaTy->getArrayElementType()->isIntegerTy())) && TD->isLegalInteger(AllocaSize * 8)) AllocaTy = Type::getIntNTy(*C, AllocaSize * 8); if (!AllocaTy) AllocaTy = ArrayType::get(Type::getInt8Ty(*C), AllocaSize); assert(TD->getTypeAllocSize(AllocaTy) >= AllocaSize); // Check for the case where we're going to rewrite to a new alloca of the // exact same type as the original, and with the same access offsets. In that // case, re-use the existing alloca, but still run through the rewriter to // performe phi and select speculation. AllocaInst *NewAI; if (AllocaTy == AI.getAllocatedType()) { assert(PI->BeginOffset == 0 && "Non-zero begin offset but same alloca type"); assert(PI == P.begin() && "Begin offset is zero on later partition"); NewAI = &AI; } else { unsigned Alignment = AI.getAlignment(); if (!Alignment) { // The minimum alignment which users can rely on when the explicit // alignment is omitted or zero is that required by the ABI for this // type. Alignment = TD->getABITypeAlignment(AI.getAllocatedType()); } Alignment = MinAlign(Alignment, PI->BeginOffset); // If we will get at least this much alignment from the type alone, leave // the alloca's alignment unconstrained. if (Alignment <= TD->getABITypeAlignment(AllocaTy)) Alignment = 0; NewAI = new AllocaInst(AllocaTy, 0, Alignment, AI.getName() + ".sroa." + Twine(PI - P.begin()), &AI); ++NumNewAllocas; } DEBUG(dbgs() << "Rewriting alloca partition " << "[" << PI->BeginOffset << "," << PI->EndOffset << ") to: " << *NewAI << "\n"); // Track the high watermark of the post-promotion worklist. We will reset it // to this point if the alloca is not in fact scheduled for promotion. unsigned PPWOldSize = PostPromotionWorklist.size(); AllocaPartitionRewriter Rewriter(*TD, P, PI, *this, AI, *NewAI, PI->BeginOffset, PI->EndOffset); DEBUG(dbgs() << " rewriting "); DEBUG(P.print(dbgs(), PI, "")); bool Promotable = Rewriter.visitUsers(P.use_begin(PI), P.use_end(PI)); if (Promotable) { DEBUG(dbgs() << " and queuing for promotion\n"); PromotableAllocas.push_back(NewAI); } else if (NewAI != &AI) { // If we can't promote the alloca, iterate on it to check for new // refinements exposed by splitting the current alloca. Don't iterate on an // alloca which didn't actually change and didn't get promoted. Worklist.insert(NewAI); } // Drop any post-promotion work items if promotion didn't happen. if (!Promotable) while (PostPromotionWorklist.size() > PPWOldSize) PostPromotionWorklist.pop_back(); return true; } /// \brief Walks the partitioning of an alloca rewriting uses of each partition. bool SROA::splitAlloca(AllocaInst &AI, AllocaPartitioning &P) { bool Changed = false; for (AllocaPartitioning::iterator PI = P.begin(), PE = P.end(); PI != PE; ++PI) Changed |= rewriteAllocaPartition(AI, P, PI); return Changed; } /// \brief Analyze an alloca for SROA. /// /// This analyzes the alloca to ensure we can reason about it, builds /// a partitioning of the alloca, and then hands it off to be split and /// rewritten as needed. bool SROA::runOnAlloca(AllocaInst &AI) { DEBUG(dbgs() << "SROA alloca: " << AI << "\n"); ++NumAllocasAnalyzed; // Special case dead allocas, as they're trivial. if (AI.use_empty()) { AI.eraseFromParent(); return true; } // Skip alloca forms that this analysis can't handle. if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() || TD->getTypeAllocSize(AI.getAllocatedType()) == 0) return false; bool Changed = false; // First, split any FCA loads and stores touching this alloca to promote // better splitting and promotion opportunities. AggLoadStoreRewriter AggRewriter(*TD); Changed |= AggRewriter.rewrite(AI); // Build the partition set using a recursive instruction-visiting builder. AllocaPartitioning P(*TD, AI); DEBUG(P.print(dbgs())); if (P.isEscaped()) return Changed; // Delete all the dead users of this alloca before splitting and rewriting it. for (AllocaPartitioning::dead_user_iterator DI = P.dead_user_begin(), DE = P.dead_user_end(); DI != DE; ++DI) { Changed = true; (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType())); DeadInsts.push_back(*DI); } for (AllocaPartitioning::dead_op_iterator DO = P.dead_op_begin(), DE = P.dead_op_end(); DO != DE; ++DO) { Value *OldV = **DO; // Clobber the use with an undef value. **DO = UndefValue::get(OldV->getType()); if (Instruction *OldI = dyn_cast(OldV)) if (isInstructionTriviallyDead(OldI)) { Changed = true; DeadInsts.push_back(OldI); } } // No partitions to split. Leave the dead alloca for a later pass to clean up. if (P.begin() == P.end()) return Changed; return splitAlloca(AI, P) || Changed; } /// \brief Delete the dead instructions accumulated in this run. /// /// Recursively deletes the dead instructions we've accumulated. This is done /// at the very end to maximize locality of the recursive delete and to /// minimize the problems of invalidated instruction pointers as such pointers /// are used heavily in the intermediate stages of the algorithm. /// /// We also record the alloca instructions deleted here so that they aren't /// subsequently handed to mem2reg to promote. void SROA::deleteDeadInstructions(SmallPtrSet &DeletedAllocas) { DeadSplitInsts.clear(); while (!DeadInsts.empty()) { Instruction *I = DeadInsts.pop_back_val(); DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n"); for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) if (Instruction *U = dyn_cast(*OI)) { // Zero out the operand and see if it becomes trivially dead. *OI = 0; if (isInstructionTriviallyDead(U)) DeadInsts.push_back(U); } if (AllocaInst *AI = dyn_cast(I)) DeletedAllocas.insert(AI); ++NumDeleted; I->eraseFromParent(); } } /// \brief Promote the allocas, using the best available technique. /// /// This attempts to promote whatever allocas have been identified as viable in /// the PromotableAllocas list. If that list is empty, there is nothing to do. /// If there is a domtree available, we attempt to promote using the full power /// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is /// based on the SSAUpdater utilities. This function returns whether any /// promotion occured. bool SROA::promoteAllocas(Function &F) { if (PromotableAllocas.empty()) return false; NumPromoted += PromotableAllocas.size(); if (DT && !ForceSSAUpdater) { DEBUG(dbgs() << "Promoting allocas with mem2reg...\n"); PromoteMemToReg(PromotableAllocas, *DT); PromotableAllocas.clear(); return true; } DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n"); SSAUpdater SSA; DIBuilder DIB(*F.getParent()); SmallVector Insts; for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) { AllocaInst *AI = PromotableAllocas[Idx]; for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end(); UI != UE;) { Instruction *I = cast(*UI++); // FIXME: Currently the SSAUpdater infrastructure doesn't reason about // lifetime intrinsics and so we strip them (and the bitcasts+GEPs // leading to them) here. Eventually it should use them to optimize the // scalar values produced. if (isa(I) || isa(I)) { assert(onlyUsedByLifetimeMarkers(I) && "Found a bitcast used outside of a lifetime marker."); while (!I->use_empty()) cast(*I->use_begin())->eraseFromParent(); I->eraseFromParent(); continue; } if (IntrinsicInst *II = dyn_cast(I)) { assert(II->getIntrinsicID() == Intrinsic::lifetime_start || II->getIntrinsicID() == Intrinsic::lifetime_end); II->eraseFromParent(); continue; } Insts.push_back(I); } AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts); Insts.clear(); } PromotableAllocas.clear(); return true; } namespace { /// \brief A predicate to test whether an alloca belongs to a set. class IsAllocaInSet { typedef SmallPtrSet SetType; const SetType &Set; public: typedef AllocaInst *argument_type; IsAllocaInSet(const SetType &Set) : Set(Set) {} bool operator()(AllocaInst *AI) const { return Set.count(AI); } }; } bool SROA::runOnFunction(Function &F) { DEBUG(dbgs() << "SROA function: " << F.getName() << "\n"); C = &F.getContext(); TD = getAnalysisIfAvailable(); if (!TD) { DEBUG(dbgs() << " Skipping SROA -- no target data!\n"); return false; } DT = getAnalysisIfAvailable(); BasicBlock &EntryBB = F.getEntryBlock(); for (BasicBlock::iterator I = EntryBB.begin(), E = llvm::prior(EntryBB.end()); I != E; ++I) if (AllocaInst *AI = dyn_cast(I)) Worklist.insert(AI); bool Changed = false; // A set of deleted alloca instruction pointers which should be removed from // the list of promotable allocas. SmallPtrSet DeletedAllocas; do { while (!Worklist.empty()) { Changed |= runOnAlloca(*Worklist.pop_back_val()); deleteDeadInstructions(DeletedAllocas); // Remove the deleted allocas from various lists so that we don't try to // continue processing them. if (!DeletedAllocas.empty()) { Worklist.remove_if(IsAllocaInSet(DeletedAllocas)); PostPromotionWorklist.remove_if(IsAllocaInSet(DeletedAllocas)); PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(), PromotableAllocas.end(), IsAllocaInSet(DeletedAllocas)), PromotableAllocas.end()); DeletedAllocas.clear(); } } Changed |= promoteAllocas(F); Worklist = PostPromotionWorklist; PostPromotionWorklist.clear(); } while (!Worklist.empty()); return Changed; } void SROA::getAnalysisUsage(AnalysisUsage &AU) const { if (RequiresDomTree) AU.addRequired(); AU.setPreservesCFG(); }