//===-- StraightLineStrengthReduce.cpp - ------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements straight-line strength reduction (SLSR). Unlike loop // strength reduction, this algorithm is designed to reduce arithmetic // redundancy in straight-line code instead of loops. It has proven to be // effective in simplifying arithmetic statements derived from an unrolled loop. // It can also simplify the logic of SeparateConstOffsetFromGEP. // // There are many optimizations we can perform in the domain of SLSR. This file // for now contains only an initial step. Specifically, we look for strength // reduction candidates in two forms: // // Form 1: (B + i) * S // Form 2: &B[i * S] // // where S is an integer variable, and i is a constant integer. If we found two // candidates // // S1: X = (B + i) * S // S2: Y = (B + i') * S // // or // // S1: X = &B[i * S] // S2: Y = &B[i' * S] // // and S1 dominates S2, we call S1 a basis of S2, and can replace S2 with // // Y = X + (i' - i) * S // // or // // Y = &X[(i' - i) * S] // // where (i' - i) * S is folded to the extent possible. When S2 has multiple // bases, we pick the one that is closest to S2, or S2's "immediate" basis. // // TODO: // // - Handle candidates in the form of B + i * S // // - Floating point arithmetics when fast math is enabled. // // - SLSR may decrease ILP at the architecture level. Targets that are very // sensitive to ILP may want to disable it. Having SLSR to consider ILP is // left as future work. #include #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Module.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" using namespace llvm; using namespace PatternMatch; namespace { class StraightLineStrengthReduce : public FunctionPass { public: // SLSR candidate. Such a candidate must be in the form of // (Base + Index) * Stride // or // Base[..][Index * Stride][..] struct Candidate : public ilist_node { enum Kind { Invalid, // reserved for the default constructor Mul, // (B + i) * S GEP, // &B[..][i * S][..] }; Candidate() : CandidateKind(Invalid), Base(nullptr), Index(nullptr), Stride(nullptr), Ins(nullptr), Basis(nullptr) {} Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S, Instruction *I) : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I), Basis(nullptr) {} Kind CandidateKind; const SCEV *Base; // Note that Index and Stride of a GEP candidate may not have the same // integer type. In that case, during rewriting, Stride will be // sign-extended or truncated to Index's type. ConstantInt *Index; Value *Stride; // The instruction this candidate corresponds to. It helps us to rewrite a // candidate with respect to its immediate basis. Note that one instruction // can corresponds to multiple candidates depending on how you associate the // expression. For instance, // // (a + 1) * (b + 2) // // can be treated as // // // // or // // Instruction *Ins; // Points to the immediate basis of this candidate, or nullptr if we cannot // find any basis for this candidate. Candidate *Basis; }; static char ID; StraightLineStrengthReduce() : FunctionPass(ID), DL(nullptr), DT(nullptr), TTI(nullptr) { initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); // We do not modify the shape of the CFG. AU.setPreservesCFG(); } bool doInitialization(Module &M) override { DL = &M.getDataLayout(); return false; } bool runOnFunction(Function &F) override; private: // Returns true if Basis is a basis for C, i.e., Basis dominates C and they // share the same base and stride. bool isBasisFor(const Candidate &Basis, const Candidate &C); // Checks whether I is in a candidate form. If so, adds all the matching forms // to Candidates, and tries to find the immediate basis for each of them. void allocateCandidateAndFindBasis(Instruction *I); // Allocate candidates and find bases for Mul instructions. void allocateCandidateAndFindBasisForMul(Instruction *I); // Splits LHS into Base + Index and, if succeeds, calls // allocateCandidateAndFindBasis. void allocateCandidateAndFindBasisForMul(Value *LHS, Value *RHS, Instruction *I); // Allocate candidates and find bases for GetElementPtr instructions. void allocateCandidateAndFindBasisForGEP(GetElementPtrInst *GEP); // A helper function that scales Idx with ElementSize before invoking // allocateCandidateAndFindBasis. void allocateCandidateAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize, Instruction *I); // Adds the given form to Candidates, and finds its immediate // basis. void allocateCandidateAndFindBasis(Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S, Instruction *I); // Rewrites candidate C with respect to Basis. void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis); // A helper function that factors ArrayIdx to a product of a stride and a // constant index, and invokes allocateCandidateAndFindBasis with the // factorings. void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize, GetElementPtrInst *GEP); // Emit code that computes the "bump" from Basis to C. If the candidate is a // GEP and the bump is not divisible by the element size of the GEP, this // function sets the BumpWithUglyGEP flag to notify its caller to bump the // basis using an ugly GEP. static Value *emitBump(const Candidate &Basis, const Candidate &C, IRBuilder<> &Builder, const DataLayout *DL, bool &BumpWithUglyGEP); const DataLayout *DL; DominatorTree *DT; ScalarEvolution *SE; TargetTransformInfo *TTI; ilist Candidates; // Temporarily holds all instructions that are unlinked (but not deleted) by // rewriteCandidateWithBasis. These instructions will be actually removed // after all rewriting finishes. DenseSet UnlinkedInstructions; }; } // anonymous namespace char StraightLineStrengthReduce::ID = 0; INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr", "Straight line strength reduction", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr", "Straight line strength reduction", false, false) FunctionPass *llvm::createStraightLineStrengthReducePass() { return new StraightLineStrengthReduce(); } bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis, const Candidate &C) { return (Basis.Ins != C.Ins && // skip the same instruction // Basis must dominate C in order to rewrite C with respect to Basis. DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) && // They share the same base, stride, and candidate kind. Basis.Base == C.Base && Basis.Stride == C.Stride && Basis.CandidateKind == C.CandidateKind); } static bool isCompletelyFoldable(GetElementPtrInst *GEP, const TargetTransformInfo *TTI, const DataLayout *DL) { GlobalVariable *BaseGV = nullptr; int64_t BaseOffset = 0; bool HasBaseReg = false; int64_t Scale = 0; if (GlobalVariable *GV = dyn_cast(GEP->getPointerOperand())) BaseGV = GV; else HasBaseReg = true; gep_type_iterator GTI = gep_type_begin(GEP); for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I, ++GTI) { if (isa(*GTI)) { int64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); if (ConstantInt *ConstIdx = dyn_cast(*I)) { BaseOffset += ConstIdx->getSExtValue() * ElementSize; } else { // Needs scale register. if (Scale != 0) { // No addressing mode takes two scale registers. return false; } Scale = ElementSize; } } else { StructType *STy = cast(*GTI); uint64_t Field = cast(*I)->getZExtValue(); BaseOffset += DL->getStructLayout(STy)->getElementOffset(Field); } } return TTI->isLegalAddressingMode(GEP->getType()->getElementType(), BaseGV, BaseOffset, HasBaseReg, Scale); } // TODO: We currently implement an algorithm whose time complexity is linear to // the number of existing candidates. However, a better algorithm exists. We // could depth-first search the dominator tree, and maintain a hash table that // contains all candidates that dominate the node being traversed. This hash // table is indexed by the base and the stride of a candidate. Therefore, // finding the immediate basis of a candidate boils down to one hash-table look // up. void StraightLineStrengthReduce::allocateCandidateAndFindBasis( Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S, Instruction *I) { if (GetElementPtrInst *GEP = dyn_cast(I)) { // If &B[Idx * S] fits into an addressing mode, do not turn it into // non-free computation. if (isCompletelyFoldable(GEP, TTI, DL)) return; } Candidate C(CT, B, Idx, S, I); // Try to compute the immediate basis of C. unsigned NumIterations = 0; // Limit the scan radius to avoid running forever. static const unsigned MaxNumIterations = 50; for (auto Basis = Candidates.rbegin(); Basis != Candidates.rend() && NumIterations < MaxNumIterations; ++Basis, ++NumIterations) { if (isBasisFor(*Basis, C)) { C.Basis = &(*Basis); break; } } // Regardless of whether we find a basis for C, we need to push C to the // candidate list. Candidates.push_back(C); } void StraightLineStrengthReduce::allocateCandidateAndFindBasis(Instruction *I) { switch (I->getOpcode()) { case Instruction::Mul: allocateCandidateAndFindBasisForMul(I); break; case Instruction::GetElementPtr: allocateCandidateAndFindBasisForGEP(cast(I)); break; } } void StraightLineStrengthReduce::allocateCandidateAndFindBasisForMul( Value *LHS, Value *RHS, Instruction *I) { Value *B = nullptr; ConstantInt *Idx = nullptr; // Only handle the canonical operand ordering. if (match(LHS, m_Add(m_Value(B), m_ConstantInt(Idx)))) { // If LHS is in the form of "Base + Index", then I is in the form of // "(Base + Index) * RHS". allocateCandidateAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I); } else { // Otherwise, at least try the form (LHS + 0) * RHS. ConstantInt *Zero = ConstantInt::get(cast(I->getType()), 0); allocateCandidateAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS, I); } } void StraightLineStrengthReduce::allocateCandidateAndFindBasisForMul( Instruction *I) { // Try matching (B + i) * S. // TODO: we could extend SLSR to float and vector types. if (!isa(I->getType())) return; Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); allocateCandidateAndFindBasisForMul(LHS, RHS, I); if (LHS != RHS) { // Symmetrically, try to split RHS to Base + Index. allocateCandidateAndFindBasisForMul(RHS, LHS, I); } } void StraightLineStrengthReduce::allocateCandidateAndFindBasisForGEP( const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize, Instruction *I) { // I = B + sext(Idx *nsw S) *nsw ElementSize // = B + (sext(Idx) * ElementSize) * sext(S) // Casting to IntegerType is safe because we skipped vector GEPs. IntegerType *IntPtrTy = cast(DL->getIntPtrType(I->getType())); ConstantInt *ScaledIdx = ConstantInt::get( IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true); allocateCandidateAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I); } void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize, GetElementPtrInst *GEP) { // At least, ArrayIdx = ArrayIdx *s 1. allocateCandidateAndFindBasisForGEP( Base, ConstantInt::get(cast(ArrayIdx->getType()), 1), ArrayIdx, ElementSize, GEP); Value *LHS = nullptr; ConstantInt *RHS = nullptr; // TODO: handle shl. e.g., we could treat (S << 2) as (S * 4). // // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx // itself. This would allow us to handle the shl case for free. However, // matching SCEVs has two issues: // // 1. this would complicate rewriting because the rewriting procedure // would have to translate SCEVs back to IR instructions. This translation // is difficult when LHS is further evaluated to a composite SCEV. // // 2. ScalarEvolution is designed to be control-flow oblivious. It tends // to strip nsw/nuw flags which are critical for SLSR to trace into // sext'ed multiplication. if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) { // SLSR is currently unsafe if i * S may overflow. // GEP = Base + sext(LHS *nsw RHS) *nsw ElementSize allocateCandidateAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP); } } void StraightLineStrengthReduce::allocateCandidateAndFindBasisForGEP( GetElementPtrInst *GEP) { // TODO: handle vector GEPs if (GEP->getType()->isVectorTy()) return; const SCEV *GEPExpr = SE->getSCEV(GEP); Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); gep_type_iterator GTI = gep_type_begin(GEP); for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) { if (!isa(*GTI++)) continue; Value *ArrayIdx = *I; // Compute the byte offset of this index. uint64_t ElementSize = DL->getTypeAllocSize(*GTI); const SCEV *ElementSizeExpr = SE->getSizeOfExpr(IntPtrTy, *GTI); const SCEV *ArrayIdxExpr = SE->getSCEV(ArrayIdx); ArrayIdxExpr = SE->getTruncateOrSignExtend(ArrayIdxExpr, IntPtrTy); const SCEV *LocalOffset = SE->getMulExpr(ArrayIdxExpr, ElementSizeExpr, SCEV::FlagNSW); // The base of this candidate equals GEPExpr less the byte offset of this // index. const SCEV *Base = SE->getMinusSCEV(GEPExpr, LocalOffset); factorArrayIndex(ArrayIdx, Base, ElementSize, GEP); // When ArrayIdx is the sext of a value, we try to factor that value as // well. Handling this case is important because array indices are // typically sign-extended to the pointer size. Value *TruncatedArrayIdx = nullptr; if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx)))) factorArrayIndex(TruncatedArrayIdx, Base, ElementSize, GEP); } } // A helper function that unifies the bitwidth of A and B. static void unifyBitWidth(APInt &A, APInt &B) { if (A.getBitWidth() < B.getBitWidth()) A = A.sext(B.getBitWidth()); else if (A.getBitWidth() > B.getBitWidth()) B = B.sext(A.getBitWidth()); } Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis, const Candidate &C, IRBuilder<> &Builder, const DataLayout *DL, bool &BumpWithUglyGEP) { APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue(); unifyBitWidth(Idx, BasisIdx); APInt IndexOffset = Idx - BasisIdx; BumpWithUglyGEP = false; if (Basis.CandidateKind == Candidate::GEP) { APInt ElementSize( IndexOffset.getBitWidth(), DL->getTypeAllocSize( cast(Basis.Ins)->getType()->getElementType())); APInt Q, R; APInt::sdivrem(IndexOffset, ElementSize, Q, R); if (R.getSExtValue() == 0) IndexOffset = Q; else BumpWithUglyGEP = true; } // Compute Bump = C - Basis = (i' - i) * S. // Common case 1: if (i' - i) is 1, Bump = S. if (IndexOffset.getSExtValue() == 1) return C.Stride; // Common case 2: if (i' - i) is -1, Bump = -S. if (IndexOffset.getSExtValue() == -1) return Builder.CreateNeg(C.Stride); // Otherwise, Bump = (i' - i) * sext/trunc(S). ConstantInt *Delta = ConstantInt::get(Basis.Ins->getContext(), IndexOffset); Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, Delta->getType()); return Builder.CreateMul(ExtendedStride, Delta); } void StraightLineStrengthReduce::rewriteCandidateWithBasis( const Candidate &C, const Candidate &Basis) { assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base && C.Stride == Basis.Stride); // An instruction can correspond to multiple candidates. Therefore, instead of // simply deleting an instruction when we rewrite it, we mark its parent as // nullptr (i.e. unlink it) so that we can skip the candidates whose // instruction is already rewritten. if (!C.Ins->getParent()) return; IRBuilder<> Builder(C.Ins); bool BumpWithUglyGEP; Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP); Value *Reduced = nullptr; // equivalent to but weaker than C.Ins switch (C.CandidateKind) { case Candidate::Mul: Reduced = Builder.CreateAdd(Basis.Ins, Bump); break; case Candidate::GEP: { Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType()); if (BumpWithUglyGEP) { // C = (char *)Basis + Bump unsigned AS = Basis.Ins->getType()->getPointerAddressSpace(); Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS); Reduced = Builder.CreateBitCast(Basis.Ins, CharTy); // We only considered inbounds GEP as candidates. Reduced = Builder.CreateInBoundsGEP(Reduced, Bump); Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType()); } else { // C = gep Basis, Bump // Canonicalize bump to pointer size. Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy); Reduced = Builder.CreateInBoundsGEP(Basis.Ins, Bump); } } break; default: llvm_unreachable("C.CandidateKind is invalid"); }; Reduced->takeName(C.Ins); C.Ins->replaceAllUsesWith(Reduced); C.Ins->dropAllReferences(); // Unlink C.Ins so that we can skip other candidates also corresponding to // C.Ins. The actual deletion is postponed to the end of runOnFunction. C.Ins->removeFromParent(); UnlinkedInstructions.insert(C.Ins); } bool StraightLineStrengthReduce::runOnFunction(Function &F) { if (skipOptnoneFunction(F)) return false; TTI = &getAnalysis().getTTI(F); DT = &getAnalysis().getDomTree(); SE = &getAnalysis(); // Traverse the dominator tree in the depth-first order. This order makes sure // all bases of a candidate are in Candidates when we process it. for (auto node = GraphTraits::nodes_begin(DT); node != GraphTraits::nodes_end(DT); ++node) { for (auto &I : *node->getBlock()) allocateCandidateAndFindBasis(&I); } // Rewrite candidates in the reverse depth-first order. This order makes sure // a candidate being rewritten is not a basis for any other candidate. while (!Candidates.empty()) { const Candidate &C = Candidates.back(); if (C.Basis != nullptr) { rewriteCandidateWithBasis(C, *C.Basis); } Candidates.pop_back(); } // Delete all unlink instructions. for (auto I : UnlinkedInstructions) { delete I; } bool Ret = !UnlinkedInstructions.empty(); UnlinkedInstructions.clear(); return Ret; }