//===- TailDuplication.cpp - Simplify CFG through tail duplication --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass performs a limited form of tail duplication, intended to simplify // CFGs by removing some unconditional branches. This pass is necessary to // straighten out loops created by the C front-end, but also is capable of // making other code nicer. After this pass is run, the CFG simplify pass // should be run to clean up the mess. // // This pass could be enhanced in the future to use profile information to be // more aggressive. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "tailduplicate" #include "llvm/Transforms/Scalar.h" #include "llvm/Constant.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" #include "llvm/Pass.h" #include "llvm/Type.h" #include "llvm/Support/CFG.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/SmallPtrSet.h" #include using namespace llvm; STATISTIC(NumEliminated, "Number of unconditional branches eliminated"); static cl::opt TailDupThreshold("taildup-threshold", cl::desc("Max block size to tail duplicate"), cl::init(1), cl::Hidden); namespace { class TailDup : public FunctionPass { bool runOnFunction(Function &F); public: static char ID; // Pass identification, replacement for typeid TailDup() : FunctionPass(&ID) {} private: inline bool shouldEliminateUnconditionalBranch(TerminatorInst *, unsigned); inline void eliminateUnconditionalBranch(BranchInst *BI); SmallPtrSet CycleDetector; }; } char TailDup::ID = 0; INITIALIZE_PASS(TailDup, "tailduplicate", "Tail Duplication", false, false); // Public interface to the Tail Duplication pass FunctionPass *llvm::createTailDuplicationPass() { return new TailDup(); } /// runOnFunction - Top level algorithm - Loop over each unconditional branch in /// the function, eliminating it if it looks attractive enough. CycleDetector /// prevents infinite loops by checking that we aren't redirecting a branch to /// a place it already pointed to earlier; see PR 2323. bool TailDup::runOnFunction(Function &F) { bool Changed = false; CycleDetector.clear(); for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { if (shouldEliminateUnconditionalBranch(I->getTerminator(), TailDupThreshold)) { eliminateUnconditionalBranch(cast(I->getTerminator())); Changed = true; } else { ++I; CycleDetector.clear(); } } return Changed; } /// shouldEliminateUnconditionalBranch - Return true if this branch looks /// attractive to eliminate. We eliminate the branch if the destination basic /// block has <= 5 instructions in it, not counting PHI nodes. In practice, /// since one of these is a terminator instruction, this means that we will add /// up to 4 instructions to the new block. /// /// We don't count PHI nodes in the count since they will be removed when the /// contents of the block are copied over. /// bool TailDup::shouldEliminateUnconditionalBranch(TerminatorInst *TI, unsigned Threshold) { BranchInst *BI = dyn_cast(TI); if (!BI || !BI->isUnconditional()) return false; // Not an uncond branch! BasicBlock *Dest = BI->getSuccessor(0); if (Dest == BI->getParent()) return false; // Do not loop infinitely! // Do not inline a block if we will just get another branch to the same block! TerminatorInst *DTI = Dest->getTerminator(); if (BranchInst *DBI = dyn_cast(DTI)) if (DBI->isUnconditional() && DBI->getSuccessor(0) == Dest) return false; // Do not loop infinitely! // FIXME: DemoteRegToStack cannot yet demote invoke instructions to the stack, // because doing so would require breaking critical edges. This should be // fixed eventually. if (!DTI->use_empty()) return false; // Do not bother with blocks with only a single predecessor: simplify // CFG will fold these two blocks together! pred_iterator PI = pred_begin(Dest), PE = pred_end(Dest); ++PI; if (PI == PE) return false; // Exactly one predecessor! BasicBlock::iterator I = Dest->getFirstNonPHI(); for (unsigned Size = 0; I != Dest->end(); ++I) { if (Size == Threshold) return false; // The block is too large. // Don't tail duplicate call instructions. They are very large compared to // other instructions. if (isa(I) || isa(I)) return false; // Also alloca and malloc. if (isa(I)) return false; // Some vector instructions can expand into a number of instructions. if (isa(I) || isa(I) || isa(I)) return false; // Only count instructions that are not debugger intrinsics. if (!isa(I)) ++Size; } // Do not tail duplicate a block that has thousands of successors into a block // with a single successor if the block has many other predecessors. This can // cause an N^2 explosion in CFG edges (and PHI node entries), as seen in // cases that have a large number of indirect gotos. unsigned NumSuccs = DTI->getNumSuccessors(); if (NumSuccs > 8) { unsigned TooMany = 128; if (NumSuccs >= TooMany) return false; TooMany = TooMany/NumSuccs; for (; PI != PE; ++PI) if (TooMany-- == 0) return false; } // If this unconditional branch is a fall-through, be careful about // tail duplicating it. In particular, we don't want to taildup it if the // original block will still be there after taildup is completed: doing so // would eliminate the fall-through, requiring unconditional branches. Function::iterator DestI = Dest; if (&*--DestI == BI->getParent()) { // The uncond branch is a fall-through. Tail duplication of the block is // will eliminate the fall-through-ness and end up cloning the terminator // at the end of the Dest block. Since the original Dest block will // continue to exist, this means that one or the other will not be able to // fall through. One typical example that this helps with is code like: // if (a) // foo(); // if (b) // foo(); // Cloning the 'if b' block into the end of the first foo block is messy. // The messy case is when the fall-through block falls through to other // blocks. This is what we would be preventing if we cloned the block. DestI = Dest; if (++DestI != Dest->getParent()->end()) { BasicBlock *DestSucc = DestI; // If any of Dest's successors are fall-throughs, don't do this xform. for (succ_iterator SI = succ_begin(Dest), SE = succ_end(Dest); SI != SE; ++SI) if (*SI == DestSucc) return false; } } // Finally, check that we haven't redirected to this target block earlier; // there are cases where we loop forever if we don't check this (PR 2323). if (!CycleDetector.insert(Dest)) return false; return true; } /// FindObviousSharedDomOf - We know there is a branch from SrcBlock to /// DestBlock, and that SrcBlock is not the only predecessor of DstBlock. If we /// can find a predecessor of SrcBlock that is a dominator of both SrcBlock and /// DstBlock, return it. static BasicBlock *FindObviousSharedDomOf(BasicBlock *SrcBlock, BasicBlock *DstBlock) { // SrcBlock must have a single predecessor. pred_iterator PI = pred_begin(SrcBlock), PE = pred_end(SrcBlock); if (PI == PE || ++PI != PE) return 0; BasicBlock *SrcPred = *pred_begin(SrcBlock); // Look at the predecessors of DstBlock. One of them will be SrcBlock. If // there is only one other pred, get it, otherwise we can't handle it. PI = pred_begin(DstBlock); PE = pred_end(DstBlock); BasicBlock *DstOtherPred = 0; BasicBlock *P = *PI; if (P == SrcBlock) { if (++PI == PE) return 0; DstOtherPred = *PI; if (++PI != PE) return 0; } else { DstOtherPred = P; if (++PI == PE || *PI != SrcBlock || ++PI != PE) return 0; } // We can handle two situations here: "if then" and "if then else" blocks. An // 'if then' situation is just where DstOtherPred == SrcPred. if (DstOtherPred == SrcPred) return SrcPred; // Check to see if we have an "if then else" situation, which means that // DstOtherPred will have a single predecessor and it will be SrcPred. PI = pred_begin(DstOtherPred); PE = pred_end(DstOtherPred); if (PI != PE && *PI == SrcPred) { if (++PI != PE) return 0; // Not a single pred. return SrcPred; // Otherwise, it's an "if then" situation. Return the if. } // Otherwise, this is something we can't handle. return 0; } /// eliminateUnconditionalBranch - Clone the instructions from the destination /// block into the source block, eliminating the specified unconditional branch. /// If the destination block defines values used by successors of the dest /// block, we may need to insert PHI nodes. /// void TailDup::eliminateUnconditionalBranch(BranchInst *Branch) { BasicBlock *SourceBlock = Branch->getParent(); BasicBlock *DestBlock = Branch->getSuccessor(0); assert(SourceBlock != DestBlock && "Our predicate is broken!"); DEBUG(dbgs() << "TailDuplication[" << SourceBlock->getParent()->getName() << "]: Eliminating branch: " << *Branch); // See if we can avoid duplicating code by moving it up to a dominator of both // blocks. if (BasicBlock *DomBlock = FindObviousSharedDomOf(SourceBlock, DestBlock)) { DEBUG(dbgs() << "Found shared dominator: " << DomBlock->getName() << "\n"); // If there are non-phi instructions in DestBlock that have no operands // defined in DestBlock, and if the instruction has no side effects, we can // move the instruction to DomBlock instead of duplicating it. BasicBlock::iterator BBI = DestBlock->getFirstNonPHI(); while (!isa(BBI)) { Instruction *I = BBI++; bool CanHoist = I->isSafeToSpeculativelyExecute() && !I->mayReadFromMemory(); if (CanHoist) { for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) if (Instruction *OpI = dyn_cast(I->getOperand(op))) if (OpI->getParent() == DestBlock || (isa(OpI) && OpI->getParent() == DomBlock)) { CanHoist = false; break; } if (CanHoist) { // Remove from DestBlock, move right before the term in DomBlock. DestBlock->getInstList().remove(I); DomBlock->getInstList().insert(DomBlock->getTerminator(), I); DEBUG(dbgs() << "Hoisted: " << *I); } } } } // Tail duplication can not update SSA properties correctly if the values // defined in the duplicated tail are used outside of the tail itself. For // this reason, we spill all values that are used outside of the tail to the // stack. for (BasicBlock::iterator I = DestBlock->begin(); I != DestBlock->end(); ++I) if (I->isUsedOutsideOfBlock(DestBlock)) { // We found a use outside of the tail. Create a new stack slot to // break this inter-block usage pattern. DemoteRegToStack(*I); } // We are going to have to map operands from the original block B to the new // copy of the block B'. If there are PHI nodes in the DestBlock, these PHI // nodes also define part of this mapping. Loop over these PHI nodes, adding // them to our mapping. // std::map ValueMapping; BasicBlock::iterator BI = DestBlock->begin(); bool HadPHINodes = isa(BI); for (; PHINode *PN = dyn_cast(BI); ++BI) ValueMapping[PN] = PN->getIncomingValueForBlock(SourceBlock); // Clone the non-phi instructions of the dest block into the source block, // keeping track of the mapping... // for (; BI != DestBlock->end(); ++BI) { Instruction *New = BI->clone(); New->setName(BI->getName()); SourceBlock->getInstList().push_back(New); ValueMapping[BI] = New; } // Now that we have built the mapping information and cloned all of the // instructions (giving us a new terminator, among other things), walk the new // instructions, rewriting references of old instructions to use new // instructions. // BI = Branch; ++BI; // Get an iterator to the first new instruction for (; BI != SourceBlock->end(); ++BI) for (unsigned i = 0, e = BI->getNumOperands(); i != e; ++i) { std::map::const_iterator I = ValueMapping.find(BI->getOperand(i)); if (I != ValueMapping.end()) BI->setOperand(i, I->second); } // Next we check to see if any of the successors of DestBlock had PHI nodes. // If so, we need to add entries to the PHI nodes for SourceBlock now. for (succ_iterator SI = succ_begin(DestBlock), SE = succ_end(DestBlock); SI != SE; ++SI) { BasicBlock *Succ = *SI; for (BasicBlock::iterator PNI = Succ->begin(); isa(PNI); ++PNI) { PHINode *PN = cast(PNI); // Ok, we have a PHI node. Figure out what the incoming value was for the // DestBlock. Value *IV = PN->getIncomingValueForBlock(DestBlock); // Remap the value if necessary... std::map::const_iterator I = ValueMapping.find(IV); if (I != ValueMapping.end()) IV = I->second; PN->addIncoming(IV, SourceBlock); } } // Next, remove the old branch instruction, and any PHI node entries that we // had. BI = Branch; ++BI; // Get an iterator to the first new instruction DestBlock->removePredecessor(SourceBlock); // Remove entries in PHI nodes... SourceBlock->getInstList().erase(Branch); // Destroy the uncond branch... // Final step: now that we have finished everything up, walk the cloned // instructions one last time, constant propagating and DCE'ing them, because // they may not be needed anymore. // if (HadPHINodes) { while (BI != SourceBlock->end()) { Instruction *Inst = BI++; if (isInstructionTriviallyDead(Inst)) Inst->eraseFromParent(); else if (Constant *C = ConstantFoldInstruction(Inst)) { Inst->replaceAllUsesWith(C); Inst->eraseFromParent(); } } } ++NumEliminated; // We just killed a branch! }