//===-- ConstantHandling.h - Stuff for manipulating constants ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the declarations of some cool operators that allow you // to do natural things with constant pool values. // // Unfortunately we can't overload operators on pointer types (like this:) // // inline bool operator==(const Constant *V1, const Constant *V2) // // so we must make due with references, even though it leads to some butt ugly // looking code downstream. *sigh* (ex: Constant *Result = *V1 + *v2; ) // //===----------------------------------------------------------------------===// // // WARNING: These operators may return a null object if I don't know how to // perform the specified operation on the specified constant types. // //===----------------------------------------------------------------------===// // // Implementation notes: // This library is implemented this way for a reason: In most cases, we do // not want to have to link the constant mucking code into an executable. // We do, however want to tie some of this into the main type system, as an // optional component. By using a mutable cache member in the Type class, we // get exactly the kind of behavior we want. // // In the end, we get performance almost exactly the same as having a virtual // function dispatch, but we don't have to put our virtual functions into the // "Type" class, and we can implement functionality with templates. Good deal. // //===----------------------------------------------------------------------===// #ifndef LLVM_CONSTANTHANDLING_H #define LLVM_CONSTANTHANDLING_H #include "llvm/Constants.h" #include "llvm/Type.h" namespace llvm { class PointerType; //===----------------------------------------------------------------------===// // Implement == and != directly... //===----------------------------------------------------------------------===// inline ConstantBool *operator==(const Constant &V1, const Constant &V2) { assert(V1.getType() == V2.getType() && "Constant types must be identical!"); return ConstantBool::get(&V1 == &V2); } inline ConstantBool *operator!=(const Constant &V1, const Constant &V2) { return ConstantBool::get(&V1 != &V2); } //===----------------------------------------------------------------------===// // Implement all other operators indirectly through TypeRules system //===----------------------------------------------------------------------===// class ConstRules : public Annotation { protected: inline ConstRules() : Annotation(AID) {} // Can only be subclassed... public: static AnnotationID AID; // AnnotationID for this class // Binary Operators... virtual Constant *add(const Constant *V1, const Constant *V2) const = 0; virtual Constant *sub(const Constant *V1, const Constant *V2) const = 0; virtual Constant *mul(const Constant *V1, const Constant *V2) const = 0; virtual Constant *div(const Constant *V1, const Constant *V2) const = 0; virtual Constant *rem(const Constant *V1, const Constant *V2) const = 0; virtual Constant *op_and(const Constant *V1, const Constant *V2) const = 0; virtual Constant *op_or (const Constant *V1, const Constant *V2) const = 0; virtual Constant *op_xor(const Constant *V1, const Constant *V2) const = 0; virtual Constant *shl(const Constant *V1, const Constant *V2) const = 0; virtual Constant *shr(const Constant *V1, const Constant *V2) const = 0; virtual ConstantBool *lessthan(const Constant *V1, const Constant *V2) const = 0; // Casting operators. ick virtual ConstantBool *castToBool (const Constant *V) const = 0; virtual ConstantSInt *castToSByte (const Constant *V) const = 0; virtual ConstantUInt *castToUByte (const Constant *V) const = 0; virtual ConstantSInt *castToShort (const Constant *V) const = 0; virtual ConstantUInt *castToUShort(const Constant *V) const = 0; virtual ConstantSInt *castToInt (const Constant *V) const = 0; virtual ConstantUInt *castToUInt (const Constant *V) const = 0; virtual ConstantSInt *castToLong (const Constant *V) const = 0; virtual ConstantUInt *castToULong (const Constant *V) const = 0; virtual ConstantFP *castToFloat (const Constant *V) const = 0; virtual ConstantFP *castToDouble(const Constant *V) const = 0; virtual Constant *castToPointer(const Constant *V, const PointerType *Ty) const = 0; inline Constant *castTo(const Constant *V, const Type *Ty) const { switch (Ty->getPrimitiveID()) { case Type::BoolTyID: return castToBool(V); case Type::UByteTyID: return castToUByte(V); case Type::SByteTyID: return castToSByte(V); case Type::UShortTyID: return castToUShort(V); case Type::ShortTyID: return castToShort(V); case Type::UIntTyID: return castToUInt(V); case Type::IntTyID: return castToInt(V); case Type::ULongTyID: return castToULong(V); case Type::LongTyID: return castToLong(V); case Type::FloatTyID: return castToFloat(V); case Type::DoubleTyID: return castToDouble(V); case Type::PointerTyID: return castToPointer(V, reinterpret_cast(Ty)); default: return 0; } } // ConstRules::get - A type will cache its own type rules if one is needed... // we just want to make sure to hit the cache instead of doing it indirectly, // if possible... // static inline ConstRules *get(const Constant &V1, const Constant &V2) { if (isa(V1) || isa(V2)) return getConstantExprRules(); return static_cast(V1.getType()->getOrCreateAnnotation(AID)); } private: static ConstRules *getConstantExprRules(); static Annotation *find(AnnotationID AID, const Annotable *Ty, void *); ConstRules(const ConstRules &); // Do not implement ConstRules &operator=(const ConstRules &); // Do not implement }; // Unary operators... inline Constant *operator~(const Constant &V) { assert(V.getType()->isIntegral() && "Cannot invert non-integral constant!"); return ConstRules::get(V, V)->op_xor(&V, ConstantInt::getAllOnesValue(V.getType())); } inline Constant *operator-(const Constant &V) { return ConstRules::get(V, V)->sub(Constant::getNullValue(V.getType()), &V); } // Standard binary operators... inline Constant *operator+(const Constant &V1, const Constant &V2) { assert(V1.getType() == V2.getType() && "Constant types must be identical!"); return ConstRules::get(V1, V2)->add(&V1, &V2); } inline Constant *operator-(const Constant &V1, const Constant &V2) { assert(V1.getType() == V2.getType() && "Constant types must be identical!"); return ConstRules::get(V1, V2)->sub(&V1, &V2); } inline Constant *operator*(const Constant &V1, const Constant &V2) { assert(V1.getType() == V2.getType() && "Constant types must be identical!"); return ConstRules::get(V1, V2)->mul(&V1, &V2); } inline Constant *operator/(const Constant &V1, const Constant &V2) { assert(V1.getType() == V2.getType() && "Constant types must be identical!"); return ConstRules::get(V1, V2)->div(&V1, &V2); } inline Constant *operator%(const Constant &V1, const Constant &V2) { assert(V1.getType() == V2.getType() && "Constant types must be identical!"); return ConstRules::get(V1, V2)->rem(&V1, &V2); } // Logical Operators... inline Constant *operator&(const Constant &V1, const Constant &V2) { assert(V1.getType() == V2.getType() && "Constant types must be identical!"); return ConstRules::get(V1, V2)->op_and(&V1, &V2); } inline Constant *operator|(const Constant &V1, const Constant &V2) { assert(V1.getType() == V2.getType() && "Constant types must be identical!"); return ConstRules::get(V1, V2)->op_or(&V1, &V2); } inline Constant *operator^(const Constant &V1, const Constant &V2) { assert(V1.getType() == V2.getType() && "Constant types must be identical!"); return ConstRules::get(V1, V2)->op_xor(&V1, &V2); } // Shift Instructions... inline Constant *operator<<(const Constant &V1, const Constant &V2) { assert(V1.getType()->isInteger() && V2.getType() == Type::UByteTy); return ConstRules::get(V1, V2)->shl(&V1, &V2); } inline Constant *operator>>(const Constant &V1, const Constant &V2) { assert(V1.getType()->isInteger() && V2.getType() == Type::UByteTy); return ConstRules::get(V1, V2)->shr(&V1, &V2); } inline ConstantBool *operator<(const Constant &V1, const Constant &V2) { assert(V1.getType() == V2.getType() && "Constant types must be identical!"); return ConstRules::get(V1, V2)->lessthan(&V1, &V2); } //===----------------------------------------------------------------------===// // Implement 'derived' operators based on what we already have... //===----------------------------------------------------------------------===// inline ConstantBool *operator>(const Constant &V1, const Constant &V2) { return V2 < V1; } inline ConstantBool *operator>=(const Constant &V1, const Constant &V2) { if (ConstantBool *V = (V1 < V2)) return V->inverted(); // !(V1 < V2) return 0; } inline ConstantBool *operator<=(const Constant &V1, const Constant &V2) { if (ConstantBool *V = (V1 > V2)) return V->inverted(); // !(V1 > V2) return 0; } //===----------------------------------------------------------------------===// // Implement higher level instruction folding type instructions //===----------------------------------------------------------------------===// // ConstantFoldInstruction - Attempt to constant fold the specified instruction. // If successful, the constant result is returned, if not, null is returned. // Constant *ConstantFoldInstruction(Instruction *I); // Constant fold various types of instruction... Constant *ConstantFoldCastInstruction(const Constant *V, const Type *DestTy); Constant *ConstantFoldBinaryInstruction(unsigned Opcode, const Constant *V1, const Constant *V2); Constant *ConstantFoldShiftInstruction(unsigned Opcode, const Constant *V1, const Constant *V2); Constant *ConstantFoldGetElementPtr(const Constant *C, const std::vector &IdxList); } // End llvm namespace #endif