//===- opt.cpp - The LLVM Modular Optimizer -------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Optimizations may be specified an arbitrary number of times on the command // line, They are run in the order specified. // //===----------------------------------------------------------------------===// #include "BreakpointPrinter.h" #include "NewPMDriver.h" #include "PassPrinters.h" #include "llvm/ADT/Triple.h" #include "llvm/Analysis/CallGraph.h" #include "llvm/Analysis/CallGraphSCCPass.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/RegionPass.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Bitcode/BitcodeWriterPass.h" #include "llvm/CodeGen/CommandFlags.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/IRPrintingPasses.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/LegacyPassNameParser.h" #include "llvm/IR/Module.h" #include "llvm/IR/Verifier.h" #include "llvm/IRReader/IRReader.h" #include "llvm/InitializePasses.h" #include "llvm/LinkAllIR.h" #include "llvm/LinkAllPasses.h" #include "llvm/MC/SubtargetFeature.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/Support/Debug.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Host.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/PluginLoader.h" #include "llvm/Support/PrettyStackTrace.h" #include "llvm/Support/Signals.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/SystemUtils.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Support/ToolOutputFile.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Transforms/IPO/PassManagerBuilder.h" #include <algorithm> #include <memory> using namespace llvm; using namespace opt_tool; // The OptimizationList is automatically populated with registered Passes by the // PassNameParser. // static cl::list<const PassInfo*, bool, PassNameParser> PassList(cl::desc("Optimizations available:")); // This flag specifies a textual description of the optimization pass pipeline // to run over the module. This flag switches opt to use the new pass manager // infrastructure, completely disabling all of the flags specific to the old // pass management. static cl::opt<std::string> PassPipeline( "passes", cl::desc("A textual description of the pass pipeline for optimizing"), cl::Hidden); // Other command line options... // static cl::opt<std::string> InputFilename(cl::Positional, cl::desc("<input bitcode file>"), cl::init("-"), cl::value_desc("filename")); static cl::opt<std::string> OutputFilename("o", cl::desc("Override output filename"), cl::value_desc("filename")); static cl::opt<bool> Force("f", cl::desc("Enable binary output on terminals")); static cl::opt<bool> PrintEachXForm("p", cl::desc("Print module after each transformation")); static cl::opt<bool> NoOutput("disable-output", cl::desc("Do not write result bitcode file"), cl::Hidden); static cl::opt<bool> OutputAssembly("S", cl::desc("Write output as LLVM assembly")); static cl::opt<bool> NoVerify("disable-verify", cl::desc("Do not verify result module"), cl::Hidden); static cl::opt<bool> VerifyEach("verify-each", cl::desc("Verify after each transform")); static cl::opt<bool> StripDebug("strip-debug", cl::desc("Strip debugger symbol info from translation unit")); static cl::opt<bool> DisableInline("disable-inlining", cl::desc("Do not run the inliner pass")); static cl::opt<bool> DisableOptimizations("disable-opt", cl::desc("Do not run any optimization passes")); static cl::opt<bool> StandardLinkOpts("std-link-opts", cl::desc("Include the standard link time optimizations")); static cl::opt<bool> OptLevelO1("O1", cl::desc("Optimization level 1. Similar to clang -O1")); static cl::opt<bool> OptLevelO2("O2", cl::desc("Optimization level 2. Similar to clang -O2")); static cl::opt<bool> OptLevelOs("Os", cl::desc("Like -O2 with extra optimizations for size. Similar to clang -Os")); static cl::opt<bool> OptLevelOz("Oz", cl::desc("Like -Os but reduces code size further. Similar to clang -Oz")); static cl::opt<bool> OptLevelO3("O3", cl::desc("Optimization level 3. Similar to clang -O3")); static cl::opt<std::string> TargetTriple("mtriple", cl::desc("Override target triple for module")); static cl::opt<bool> UnitAtATime("funit-at-a-time", cl::desc("Enable IPO. This corresponds to gcc's -funit-at-a-time"), cl::init(true)); static cl::opt<bool> DisableLoopUnrolling("disable-loop-unrolling", cl::desc("Disable loop unrolling in all relevant passes"), cl::init(false)); static cl::opt<bool> DisableLoopVectorization("disable-loop-vectorization", cl::desc("Disable the loop vectorization pass"), cl::init(false)); static cl::opt<bool> DisableSLPVectorization("disable-slp-vectorization", cl::desc("Disable the slp vectorization pass"), cl::init(false)); static cl::opt<bool> DisableSimplifyLibCalls("disable-simplify-libcalls", cl::desc("Disable simplify-libcalls")); static cl::opt<bool> Quiet("q", cl::desc("Obsolete option"), cl::Hidden); static cl::alias QuietA("quiet", cl::desc("Alias for -q"), cl::aliasopt(Quiet)); static cl::opt<bool> AnalyzeOnly("analyze", cl::desc("Only perform analysis, no optimization")); static cl::opt<bool> PrintBreakpoints("print-breakpoints-for-testing", cl::desc("Print select breakpoints location for testing")); static cl::opt<std::string> DefaultDataLayout("default-data-layout", cl::desc("data layout string to use if not specified by module"), cl::value_desc("layout-string"), cl::init("")); static cl::opt<bool> PreserveBitcodeUseListOrder( "preserve-bc-uselistorder", cl::desc("Preserve use-list order when writing LLVM bitcode."), cl::init(true), cl::Hidden); static cl::opt<bool> PreserveAssemblyUseListOrder( "preserve-ll-uselistorder", cl::desc("Preserve use-list order when writing LLVM assembly."), cl::init(false), cl::Hidden); static inline void addPass(legacy::PassManagerBase &PM, Pass *P) { // Add the pass to the pass manager... PM.add(P); // If we are verifying all of the intermediate steps, add the verifier... if (VerifyEach) PM.add(createVerifierPass()); } /// This routine adds optimization passes based on selected optimization level, /// OptLevel. /// /// OptLevel - Optimization Level static void AddOptimizationPasses(legacy::PassManagerBase &MPM, legacy::FunctionPassManager &FPM, unsigned OptLevel, unsigned SizeLevel) { FPM.add(createVerifierPass()); // Verify that input is correct PassManagerBuilder Builder; Builder.OptLevel = OptLevel; Builder.SizeLevel = SizeLevel; if (DisableInline) { // No inlining pass } else if (OptLevel > 1) { Builder.Inliner = createFunctionInliningPass(OptLevel, SizeLevel); } else { Builder.Inliner = createAlwaysInlinerPass(); } Builder.DisableUnitAtATime = !UnitAtATime; Builder.DisableUnrollLoops = (DisableLoopUnrolling.getNumOccurrences() > 0) ? DisableLoopUnrolling : OptLevel == 0; // This is final, unless there is a #pragma vectorize enable if (DisableLoopVectorization) Builder.LoopVectorize = false; // If option wasn't forced via cmd line (-vectorize-loops, -loop-vectorize) else if (!Builder.LoopVectorize) Builder.LoopVectorize = OptLevel > 1 && SizeLevel < 2; // When #pragma vectorize is on for SLP, do the same as above Builder.SLPVectorize = DisableSLPVectorization ? false : OptLevel > 1 && SizeLevel < 2; Builder.populateFunctionPassManager(FPM); Builder.populateModulePassManager(MPM); } static void AddStandardLinkPasses(legacy::PassManagerBase &PM) { PassManagerBuilder Builder; Builder.VerifyInput = true; if (DisableOptimizations) Builder.OptLevel = 0; if (!DisableInline) Builder.Inliner = createFunctionInliningPass(); Builder.populateLTOPassManager(PM); } //===----------------------------------------------------------------------===// // CodeGen-related helper functions. // static CodeGenOpt::Level GetCodeGenOptLevel() { if (OptLevelO1) return CodeGenOpt::Less; if (OptLevelO2) return CodeGenOpt::Default; if (OptLevelO3) return CodeGenOpt::Aggressive; return CodeGenOpt::None; } // Returns the TargetMachine instance or zero if no triple is provided. static TargetMachine* GetTargetMachine(Triple TheTriple) { std::string Error; const Target *TheTarget = TargetRegistry::lookupTarget(MArch, TheTriple, Error); // Some modules don't specify a triple, and this is okay. if (!TheTarget) { return nullptr; } // Package up features to be passed to target/subtarget std::string FeaturesStr; if (MAttrs.size() || MCPU == "native") { SubtargetFeatures Features; // If user asked for the 'native' CPU, we need to autodetect features. // This is necessary for x86 where the CPU might not support all the // features the autodetected CPU name lists in the target. For example, // not all Sandybridge processors support AVX. if (MCPU == "native") { StringMap<bool> HostFeatures; if (sys::getHostCPUFeatures(HostFeatures)) for (auto &F : HostFeatures) Features.AddFeature(F.first(), F.second); } for (unsigned i = 0; i != MAttrs.size(); ++i) Features.AddFeature(MAttrs[i]); FeaturesStr = Features.getString(); } if (MCPU == "native") MCPU = sys::getHostCPUName(); return TheTarget->createTargetMachine(TheTriple.getTriple(), MCPU, FeaturesStr, InitTargetOptionsFromCodeGenFlags(), RelocModel, CMModel, GetCodeGenOptLevel()); } #ifdef LINK_POLLY_INTO_TOOLS namespace polly { void initializePollyPasses(llvm::PassRegistry &Registry); } #endif //===----------------------------------------------------------------------===// // main for opt // int main(int argc, char **argv) { sys::PrintStackTraceOnErrorSignal(); llvm::PrettyStackTraceProgram X(argc, argv); // Enable debug stream buffering. EnableDebugBuffering = true; llvm_shutdown_obj Y; // Call llvm_shutdown() on exit. LLVMContext &Context = getGlobalContext(); InitializeAllTargets(); InitializeAllTargetMCs(); InitializeAllAsmPrinters(); // Initialize passes PassRegistry &Registry = *PassRegistry::getPassRegistry(); initializeCore(Registry); initializeScalarOpts(Registry); initializeObjCARCOpts(Registry); initializeVectorization(Registry); initializeIPO(Registry); initializeAnalysis(Registry); initializeIPA(Registry); initializeTransformUtils(Registry); initializeInstCombine(Registry); initializeInstrumentation(Registry); initializeTarget(Registry); // For codegen passes, only passes that do IR to IR transformation are // supported. initializeCodeGenPreparePass(Registry); initializeAtomicExpandPass(Registry); initializeRewriteSymbolsPass(Registry); initializeWinEHPreparePass(Registry); initializeDwarfEHPreparePass(Registry); #ifdef LINK_POLLY_INTO_TOOLS polly::initializePollyPasses(Registry); #endif cl::ParseCommandLineOptions(argc, argv, "llvm .bc -> .bc modular optimizer and analysis printer\n"); if (AnalyzeOnly && NoOutput) { errs() << argv[0] << ": analyze mode conflicts with no-output mode.\n"; return 1; } SMDiagnostic Err; // Load the input module... std::unique_ptr<Module> M = parseIRFile(InputFilename, Err, Context); if (!M) { Err.print(argv[0], errs()); return 1; } // Strip debug info before running the verifier. if (StripDebug) StripDebugInfo(*M); // Immediately run the verifier to catch any problems before starting up the // pass pipelines. Otherwise we can crash on broken code during // doInitialization(). if (!NoVerify && verifyModule(*M, &errs())) { errs() << argv[0] << ": " << InputFilename << ": error: input module is broken!\n"; return 1; } // If we are supposed to override the target triple, do so now. if (!TargetTriple.empty()) M->setTargetTriple(Triple::normalize(TargetTriple)); // Figure out what stream we are supposed to write to... std::unique_ptr<tool_output_file> Out; if (NoOutput) { if (!OutputFilename.empty()) errs() << "WARNING: The -o (output filename) option is ignored when\n" "the --disable-output option is used.\n"; } else { // Default to standard output. if (OutputFilename.empty()) OutputFilename = "-"; std::error_code EC; Out.reset(new tool_output_file(OutputFilename, EC, sys::fs::F_None)); if (EC) { errs() << EC.message() << '\n'; return 1; } } Triple ModuleTriple(M->getTargetTriple()); TargetMachine *Machine = nullptr; if (ModuleTriple.getArch()) Machine = GetTargetMachine(ModuleTriple); std::unique_ptr<TargetMachine> TM(Machine); // If the output is set to be emitted to standard out, and standard out is a // console, print out a warning message and refuse to do it. We don't // impress anyone by spewing tons of binary goo to a terminal. if (!Force && !NoOutput && !AnalyzeOnly && !OutputAssembly) if (CheckBitcodeOutputToConsole(Out->os(), !Quiet)) NoOutput = true; if (PassPipeline.getNumOccurrences() > 0) { OutputKind OK = OK_NoOutput; if (!NoOutput) OK = OutputAssembly ? OK_OutputAssembly : OK_OutputBitcode; VerifierKind VK = VK_VerifyInAndOut; if (NoVerify) VK = VK_NoVerifier; else if (VerifyEach) VK = VK_VerifyEachPass; // The user has asked to use the new pass manager and provided a pipeline // string. Hand off the rest of the functionality to the new code for that // layer. return runPassPipeline(argv[0], Context, *M, TM.get(), Out.get(), PassPipeline, OK, VK, PreserveAssemblyUseListOrder, PreserveBitcodeUseListOrder) ? 0 : 1; } // Create a PassManager to hold and optimize the collection of passes we are // about to build. // legacy::PassManager Passes; // Add an appropriate TargetLibraryInfo pass for the module's triple. TargetLibraryInfoImpl TLII(ModuleTriple); // The -disable-simplify-libcalls flag actually disables all builtin optzns. if (DisableSimplifyLibCalls) TLII.disableAllFunctions(); Passes.add(new TargetLibraryInfoWrapperPass(TLII)); // Add an appropriate DataLayout instance for this module. const DataLayout &DL = M->getDataLayout(); if (DL.isDefault() && !DefaultDataLayout.empty()) { M->setDataLayout(DefaultDataLayout); } // Add internal analysis passes from the target machine. Passes.add(createTargetTransformInfoWrapperPass(TM ? TM->getTargetIRAnalysis() : TargetIRAnalysis())); std::unique_ptr<legacy::FunctionPassManager> FPasses; if (OptLevelO1 || OptLevelO2 || OptLevelOs || OptLevelOz || OptLevelO3) { FPasses.reset(new legacy::FunctionPassManager(M.get())); FPasses->add(createTargetTransformInfoWrapperPass( TM ? TM->getTargetIRAnalysis() : TargetIRAnalysis())); } if (PrintBreakpoints) { // Default to standard output. if (!Out) { if (OutputFilename.empty()) OutputFilename = "-"; std::error_code EC; Out = llvm::make_unique<tool_output_file>(OutputFilename, EC, sys::fs::F_None); if (EC) { errs() << EC.message() << '\n'; return 1; } } Passes.add(createBreakpointPrinter(Out->os())); NoOutput = true; } // Create a new optimization pass for each one specified on the command line for (unsigned i = 0; i < PassList.size(); ++i) { if (StandardLinkOpts && StandardLinkOpts.getPosition() < PassList.getPosition(i)) { AddStandardLinkPasses(Passes); StandardLinkOpts = false; } if (OptLevelO1 && OptLevelO1.getPosition() < PassList.getPosition(i)) { AddOptimizationPasses(Passes, *FPasses, 1, 0); OptLevelO1 = false; } if (OptLevelO2 && OptLevelO2.getPosition() < PassList.getPosition(i)) { AddOptimizationPasses(Passes, *FPasses, 2, 0); OptLevelO2 = false; } if (OptLevelOs && OptLevelOs.getPosition() < PassList.getPosition(i)) { AddOptimizationPasses(Passes, *FPasses, 2, 1); OptLevelOs = false; } if (OptLevelOz && OptLevelOz.getPosition() < PassList.getPosition(i)) { AddOptimizationPasses(Passes, *FPasses, 2, 2); OptLevelOz = false; } if (OptLevelO3 && OptLevelO3.getPosition() < PassList.getPosition(i)) { AddOptimizationPasses(Passes, *FPasses, 3, 0); OptLevelO3 = false; } const PassInfo *PassInf = PassList[i]; Pass *P = nullptr; if (PassInf->getTargetMachineCtor()) P = PassInf->getTargetMachineCtor()(TM.get()); else if (PassInf->getNormalCtor()) P = PassInf->getNormalCtor()(); else errs() << argv[0] << ": cannot create pass: " << PassInf->getPassName() << "\n"; if (P) { PassKind Kind = P->getPassKind(); addPass(Passes, P); if (AnalyzeOnly) { switch (Kind) { case PT_BasicBlock: Passes.add(createBasicBlockPassPrinter(PassInf, Out->os(), Quiet)); break; case PT_Region: Passes.add(createRegionPassPrinter(PassInf, Out->os(), Quiet)); break; case PT_Loop: Passes.add(createLoopPassPrinter(PassInf, Out->os(), Quiet)); break; case PT_Function: Passes.add(createFunctionPassPrinter(PassInf, Out->os(), Quiet)); break; case PT_CallGraphSCC: Passes.add(createCallGraphPassPrinter(PassInf, Out->os(), Quiet)); break; default: Passes.add(createModulePassPrinter(PassInf, Out->os(), Quiet)); break; } } } if (PrintEachXForm) Passes.add( createPrintModulePass(errs(), "", PreserveAssemblyUseListOrder)); } if (StandardLinkOpts) { AddStandardLinkPasses(Passes); StandardLinkOpts = false; } if (OptLevelO1) AddOptimizationPasses(Passes, *FPasses, 1, 0); if (OptLevelO2) AddOptimizationPasses(Passes, *FPasses, 2, 0); if (OptLevelOs) AddOptimizationPasses(Passes, *FPasses, 2, 1); if (OptLevelOz) AddOptimizationPasses(Passes, *FPasses, 2, 2); if (OptLevelO3) AddOptimizationPasses(Passes, *FPasses, 3, 0); if (OptLevelO1 || OptLevelO2 || OptLevelOs || OptLevelOz || OptLevelO3) { FPasses->doInitialization(); for (Function &F : *M) FPasses->run(F); FPasses->doFinalization(); } // Check that the module is well formed on completion of optimization if (!NoVerify && !VerifyEach) Passes.add(createVerifierPass()); // Write bitcode or assembly to the output as the last step... if (!NoOutput && !AnalyzeOnly) { if (OutputAssembly) Passes.add( createPrintModulePass(Out->os(), "", PreserveAssemblyUseListOrder)); else Passes.add( createBitcodeWriterPass(Out->os(), PreserveBitcodeUseListOrder)); } // Before executing passes, print the final values of the LLVM options. cl::PrintOptionValues(); // Now that we have all of the passes ready, run them. Passes.run(*M); // Declare success. if (!NoOutput || PrintBreakpoints) Out->keep(); return 0; }