summaryrefslogtreecommitdiffstats
path: root/include/llvm/ADT/APFloat.h
blob: bf814e00b16c8babdcbff40e5d942d56e27f6009 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
//===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief
/// This file declares a class to represent arbitrary precision floating point
/// values and provide a variety of arithmetic operations on them.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_APFLOAT_H
#define LLVM_ADT_APFLOAT_H

#include "llvm/ADT/APInt.h"

namespace llvm {

struct fltSemantics;
class APSInt;
class StringRef;

/// Enum that represents what fraction of the LSB truncated bits of an fp number
/// represent.
///
/// This essentially combines the roles of guard and sticky bits.
enum lostFraction { // Example of truncated bits:
  lfExactlyZero,    // 000000
  lfLessThanHalf,   // 0xxxxx  x's not all zero
  lfExactlyHalf,    // 100000
  lfMoreThanHalf    // 1xxxxx  x's not all zero
};

/// \brief A self-contained host- and target-independent arbitrary-precision
/// floating-point software implementation.
///
/// APFloat uses bignum integer arithmetic as provided by static functions in
/// the APInt class.  The library will work with bignum integers whose parts are
/// any unsigned type at least 16 bits wide, but 64 bits is recommended.
///
/// Written for clarity rather than speed, in particular with a view to use in
/// the front-end of a cross compiler so that target arithmetic can be correctly
/// performed on the host.  Performance should nonetheless be reasonable,
/// particularly for its intended use.  It may be useful as a base
/// implementation for a run-time library during development of a faster
/// target-specific one.
///
/// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
/// implemented operations.  Currently implemented operations are add, subtract,
/// multiply, divide, fused-multiply-add, conversion-to-float,
/// conversion-to-integer and conversion-from-integer.  New rounding modes
/// (e.g. away from zero) can be added with three or four lines of code.
///
/// Four formats are built-in: IEEE single precision, double precision,
/// quadruple precision, and x87 80-bit extended double (when operating with
/// full extended precision).  Adding a new format that obeys IEEE semantics
/// only requires adding two lines of code: a declaration and definition of the
/// format.
///
/// All operations return the status of that operation as an exception bit-mask,
/// so multiple operations can be done consecutively with their results or-ed
/// together.  The returned status can be useful for compiler diagnostics; e.g.,
/// inexact, underflow and overflow can be easily diagnosed on constant folding,
/// and compiler optimizers can determine what exceptions would be raised by
/// folding operations and optimize, or perhaps not optimize, accordingly.
///
/// At present, underflow tininess is detected after rounding; it should be
/// straight forward to add support for the before-rounding case too.
///
/// The library reads hexadecimal floating point numbers as per C99, and
/// correctly rounds if necessary according to the specified rounding mode.
/// Syntax is required to have been validated by the caller.  It also converts
/// floating point numbers to hexadecimal text as per the C99 %a and %A
/// conversions.  The output precision (or alternatively the natural minimal
/// precision) can be specified; if the requested precision is less than the
/// natural precision the output is correctly rounded for the specified rounding
/// mode.
///
/// It also reads decimal floating point numbers and correctly rounds according
/// to the specified rounding mode.
///
/// Conversion to decimal text is not currently implemented.
///
/// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
/// signed exponent, and the significand as an array of integer parts.  After
/// normalization of a number of precision P the exponent is within the range of
/// the format, and if the number is not denormal the P-th bit of the
/// significand is set as an explicit integer bit.  For denormals the most
/// significant bit is shifted right so that the exponent is maintained at the
/// format's minimum, so that the smallest denormal has just the least
/// significant bit of the significand set.  The sign of zeroes and infinities
/// is significant; the exponent and significand of such numbers is not stored,
/// but has a known implicit (deterministic) value: 0 for the significands, 0
/// for zero exponent, all 1 bits for infinity exponent.  For NaNs the sign and
/// significand are deterministic, although not really meaningful, and preserved
/// in non-conversion operations.  The exponent is implicitly all 1 bits.
///
/// APFloat does not provide any exception handling beyond default exception
/// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
/// by encoding Signaling NaNs with the first bit of its trailing significand as
/// 0.
///
/// TODO
/// ====
///
/// Some features that may or may not be worth adding:
///
/// Binary to decimal conversion (hard).
///
/// Optional ability to detect underflow tininess before rounding.
///
/// New formats: x87 in single and double precision mode (IEEE apart from
/// extended exponent range) (hard).
///
/// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
///
class APFloat {
public:

  /// A signed type to represent a floating point numbers unbiased exponent.
  typedef signed short ExponentType;

  /// \name Floating Point Semantics.
  /// @{

  static const fltSemantics IEEEhalf;
  static const fltSemantics IEEEsingle;
  static const fltSemantics IEEEdouble;
  static const fltSemantics IEEEquad;
  static const fltSemantics PPCDoubleDouble;
  static const fltSemantics x87DoubleExtended;

  /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
  /// anything real.
  static const fltSemantics Bogus;

  /// @}

  static unsigned int semanticsPrecision(const fltSemantics &);

  /// IEEE-754R 5.11: Floating Point Comparison Relations.
  enum cmpResult {
    cmpLessThan,
    cmpEqual,
    cmpGreaterThan,
    cmpUnordered
  };

  /// IEEE-754R 4.3: Rounding-direction attributes.
  enum roundingMode {
    rmNearestTiesToEven,
    rmTowardPositive,
    rmTowardNegative,
    rmTowardZero,
    rmNearestTiesToAway
  };

  /// IEEE-754R 7: Default exception handling.
  ///
  /// opUnderflow or opOverflow are always returned or-ed with opInexact.
  enum opStatus {
    opOK = 0x00,
    opInvalidOp = 0x01,
    opDivByZero = 0x02,
    opOverflow = 0x04,
    opUnderflow = 0x08,
    opInexact = 0x10
  };

  /// Category of internally-represented number.
  enum fltCategory {
    fcInfinity,
    fcNaN,
    fcNormal,
    fcZero
  };

  /// Convenience enum used to construct an uninitialized APFloat.
  enum uninitializedTag {
    uninitialized
  };

  /// \name Constructors
  /// @{

  APFloat(const fltSemantics &); // Default construct to 0.0
  APFloat(const fltSemantics &, StringRef);
  APFloat(const fltSemantics &, integerPart);
  APFloat(const fltSemantics &, uninitializedTag);
  APFloat(const fltSemantics &, const APInt &);
  explicit APFloat(double d);
  explicit APFloat(float f);
  APFloat(const APFloat &);
  APFloat(APFloat &&);
  ~APFloat();

  /// @}

  /// \brief Returns whether this instance allocated memory.
  bool needsCleanup() const { return partCount() > 1; }

  /// \name Convenience "constructors"
  /// @{

  /// Factory for Positive and Negative Zero.
  ///
  /// \param Negative True iff the number should be negative.
  static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
    APFloat Val(Sem, uninitialized);
    Val.makeZero(Negative);
    return Val;
  }

  /// Factory for Positive and Negative Infinity.
  ///
  /// \param Negative True iff the number should be negative.
  static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
    APFloat Val(Sem, uninitialized);
    Val.makeInf(Negative);
    return Val;
  }

  /// Factory for QNaN values.
  ///
  /// \param Negative - True iff the NaN generated should be negative.
  /// \param type - The unspecified fill bits for creating the NaN, 0 by
  /// default.  The value is truncated as necessary.
  static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
                        unsigned type = 0) {
    if (type) {
      APInt fill(64, type);
      return getQNaN(Sem, Negative, &fill);
    } else {
      return getQNaN(Sem, Negative, nullptr);
    }
  }

  /// Factory for QNaN values.
  static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
                         const APInt *payload = nullptr) {
    return makeNaN(Sem, false, Negative, payload);
  }

  /// Factory for SNaN values.
  static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
                         const APInt *payload = nullptr) {
    return makeNaN(Sem, true, Negative, payload);
  }

  /// Returns the largest finite number in the given semantics.
  ///
  /// \param Negative - True iff the number should be negative
  static APFloat getLargest(const fltSemantics &Sem, bool Negative = false);

  /// Returns the smallest (by magnitude) finite number in the given semantics.
  /// Might be denormalized, which implies a relative loss of precision.
  ///
  /// \param Negative - True iff the number should be negative
  static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false);

  /// Returns the smallest (by magnitude) normalized finite number in the given
  /// semantics.
  ///
  /// \param Negative - True iff the number should be negative
  static APFloat getSmallestNormalized(const fltSemantics &Sem,
                                       bool Negative = false);

  /// Returns a float which is bitcasted from an all one value int.
  ///
  /// \param BitWidth - Select float type
  /// \param isIEEE   - If 128 bit number, select between PPC and IEEE
  static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false);

  /// @}

  /// Used to insert APFloat objects, or objects that contain APFloat objects,
  /// into FoldingSets.
  void Profile(FoldingSetNodeID &NID) const;

  /// \brief Used by the Bitcode serializer to emit APInts to Bitcode.
  void Emit(Serializer &S) const;

  /// \brief Used by the Bitcode deserializer to deserialize APInts.
  static APFloat ReadVal(Deserializer &D);

  /// \name Arithmetic
  /// @{

  opStatus add(const APFloat &, roundingMode);
  opStatus subtract(const APFloat &, roundingMode);
  opStatus multiply(const APFloat &, roundingMode);
  opStatus divide(const APFloat &, roundingMode);
  /// IEEE remainder.
  opStatus remainder(const APFloat &);
  /// C fmod, or llvm frem.
  opStatus mod(const APFloat &, roundingMode);
  opStatus fusedMultiplyAdd(const APFloat &, const APFloat &, roundingMode);
  opStatus roundToIntegral(roundingMode);
  /// IEEE-754R 5.3.1: nextUp/nextDown.
  opStatus next(bool nextDown);

  /// \brief Operator+ overload which provides the default
  /// \c nmNearestTiesToEven rounding mode and *no* error checking.
  APFloat operator+(const APFloat &RHS) const {
    APFloat Result = *this;
    Result.add(RHS, rmNearestTiesToEven);
    return Result;
  }

  /// \brief Operator- overload which provides the default
  /// \c nmNearestTiesToEven rounding mode and *no* error checking.
  APFloat operator-(const APFloat &RHS) const {
    APFloat Result = *this;
    Result.subtract(RHS, rmNearestTiesToEven);
    return Result;
  }

  /// \brief Operator* overload which provides the default
  /// \c nmNearestTiesToEven rounding mode and *no* error checking.
  APFloat operator*(const APFloat &RHS) const {
    APFloat Result = *this;
    Result.multiply(RHS, rmNearestTiesToEven);
    return Result;
  }

  /// \brief Operator/ overload which provides the default
  /// \c nmNearestTiesToEven rounding mode and *no* error checking.
  APFloat operator/(const APFloat &RHS) const {
    APFloat Result = *this;
    Result.divide(RHS, rmNearestTiesToEven);
    return Result;
  }

  /// @}

  /// \name Sign operations.
  /// @{

  void changeSign();
  void clearSign();
  void copySign(const APFloat &);

  /// \brief A static helper to produce a copy of an APFloat value with its sign
  /// copied from some other APFloat.
  static APFloat copySign(APFloat Value, const APFloat &Sign) {
    Value.copySign(Sign);
    return std::move(Value);
  }

  /// @}

  /// \name Conversions
  /// @{

  opStatus convert(const fltSemantics &, roundingMode, bool *);
  opStatus convertToInteger(integerPart *, unsigned int, bool, roundingMode,
                            bool *) const;
  opStatus convertToInteger(APSInt &, roundingMode, bool *) const;
  opStatus convertFromAPInt(const APInt &, bool, roundingMode);
  opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
                                          bool, roundingMode);
  opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
                                          bool, roundingMode);
  opStatus convertFromString(StringRef, roundingMode);
  APInt bitcastToAPInt() const;
  double convertToDouble() const;
  float convertToFloat() const;

  /// @}

  /// The definition of equality is not straightforward for floating point, so
  /// we won't use operator==.  Use one of the following, or write whatever it
  /// is you really mean.
  bool operator==(const APFloat &) const = delete;

  /// IEEE comparison with another floating point number (NaNs compare
  /// unordered, 0==-0).
  cmpResult compare(const APFloat &) const;

  /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
  bool bitwiseIsEqual(const APFloat &) const;

  /// Write out a hexadecimal representation of the floating point value to DST,
  /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
  /// Return the number of characters written, excluding the terminating NUL.
  unsigned int convertToHexString(char *dst, unsigned int hexDigits,
                                  bool upperCase, roundingMode) const;

  /// \name IEEE-754R 5.7.2 General operations.
  /// @{

  /// IEEE-754R isSignMinus: Returns true if and only if the current value is
  /// negative.
  ///
  /// This applies to zeros and NaNs as well.
  bool isNegative() const { return sign; }

  /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
  ///
  /// This implies that the current value of the float is not zero, subnormal,
  /// infinite, or NaN following the definition of normality from IEEE-754R.
  bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }

  /// Returns true if and only if the current value is zero, subnormal, or
  /// normal.
  ///
  /// This means that the value is not infinite or NaN.
  bool isFinite() const { return !isNaN() && !isInfinity(); }

  /// Returns true if and only if the float is plus or minus zero.
  bool isZero() const { return category == fcZero; }

  /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
  /// denormal.
  bool isDenormal() const;

  /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
  bool isInfinity() const { return category == fcInfinity; }

  /// Returns true if and only if the float is a quiet or signaling NaN.
  bool isNaN() const { return category == fcNaN; }

  /// Returns true if and only if the float is a signaling NaN.
  bool isSignaling() const;

  /// @}

  /// \name Simple Queries
  /// @{

  fltCategory getCategory() const { return category; }
  const fltSemantics &getSemantics() const { return *semantics; }
  bool isNonZero() const { return category != fcZero; }
  bool isFiniteNonZero() const { return isFinite() && !isZero(); }
  bool isPosZero() const { return isZero() && !isNegative(); }
  bool isNegZero() const { return isZero() && isNegative(); }

  /// Returns true if and only if the number has the smallest possible non-zero
  /// magnitude in the current semantics.
  bool isSmallest() const;

  /// Returns true if and only if the number has the largest possible finite
  /// magnitude in the current semantics.
  bool isLargest() const;

  /// @}

  APFloat &operator=(const APFloat &);
  APFloat &operator=(APFloat &&);

  /// \brief Overload to compute a hash code for an APFloat value.
  ///
  /// Note that the use of hash codes for floating point values is in general
  /// frought with peril. Equality is hard to define for these values. For
  /// example, should negative and positive zero hash to different codes? Are
  /// they equal or not? This hash value implementation specifically
  /// emphasizes producing different codes for different inputs in order to
  /// be used in canonicalization and memoization. As such, equality is
  /// bitwiseIsEqual, and 0 != -0.
  friend hash_code hash_value(const APFloat &Arg);

  /// Converts this value into a decimal string.
  ///
  /// \param FormatPrecision The maximum number of digits of
  ///   precision to output.  If there are fewer digits available,
  ///   zero padding will not be used unless the value is
  ///   integral and small enough to be expressed in
  ///   FormatPrecision digits.  0 means to use the natural
  ///   precision of the number.
  /// \param FormatMaxPadding The maximum number of zeros to
  ///   consider inserting before falling back to scientific
  ///   notation.  0 means to always use scientific notation.
  ///
  /// Number       Precision    MaxPadding      Result
  /// ------       ---------    ----------      ------
  /// 1.01E+4              5             2       10100
  /// 1.01E+4              4             2       1.01E+4
  /// 1.01E+4              5             1       1.01E+4
  /// 1.01E-2              5             2       0.0101
  /// 1.01E-2              4             2       0.0101
  /// 1.01E-2              4             1       1.01E-2
  void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
                unsigned FormatMaxPadding = 3) const;

  /// If this value has an exact multiplicative inverse, store it in inv and
  /// return true.
  bool getExactInverse(APFloat *inv) const;

  /// \brief Enumeration of \c ilogb error results.
  enum IlogbErrorKinds {
    IEK_Zero = INT_MIN+1,
    IEK_NaN = INT_MIN,
    IEK_Inf = INT_MAX
  };

  /// \brief Returns the exponent of the internal representation of the APFloat.
  ///
  /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)).
  /// For special APFloat values, this returns special error codes:
  ///
  ///   NaN -> \c IEK_NaN
  ///   0   -> \c IEK_Zero
  ///   Inf -> \c IEK_Inf
  ///
  friend int ilogb(const APFloat &Arg) {
    if (Arg.isNaN())
      return IEK_NaN;
    if (Arg.isZero())
      return IEK_Zero;
    if (Arg.isInfinity())
      return IEK_Inf;

    return Arg.exponent;
  }

  /// \brief Returns: X * 2^Exp for integral exponents.
  friend APFloat scalbn(APFloat X, int Exp);

private:

  /// \name Simple Queries
  /// @{

  integerPart *significandParts();
  const integerPart *significandParts() const;
  unsigned int partCount() const;

  /// @}

  /// \name Significand operations.
  /// @{

  integerPart addSignificand(const APFloat &);
  integerPart subtractSignificand(const APFloat &, integerPart);
  lostFraction addOrSubtractSignificand(const APFloat &, bool subtract);
  lostFraction multiplySignificand(const APFloat &, const APFloat *);
  lostFraction divideSignificand(const APFloat &);
  void incrementSignificand();
  void initialize(const fltSemantics *);
  void shiftSignificandLeft(unsigned int);
  lostFraction shiftSignificandRight(unsigned int);
  unsigned int significandLSB() const;
  unsigned int significandMSB() const;
  void zeroSignificand();
  /// Return true if the significand excluding the integral bit is all ones.
  bool isSignificandAllOnes() const;
  /// Return true if the significand excluding the integral bit is all zeros.
  bool isSignificandAllZeros() const;

  /// @}

  /// \name Arithmetic on special values.
  /// @{

  opStatus addOrSubtractSpecials(const APFloat &, bool subtract);
  opStatus divideSpecials(const APFloat &);
  opStatus multiplySpecials(const APFloat &);
  opStatus modSpecials(const APFloat &);

  /// @}

  /// \name Special value setters.
  /// @{

  void makeLargest(bool Neg = false);
  void makeSmallest(bool Neg = false);
  void makeNaN(bool SNaN = false, bool Neg = false,
               const APInt *fill = nullptr);
  static APFloat makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
                         const APInt *fill);
  void makeInf(bool Neg = false);
  void makeZero(bool Neg = false);

  /// @}

  /// \name Miscellany
  /// @{

  bool convertFromStringSpecials(StringRef str);
  opStatus normalize(roundingMode, lostFraction);
  opStatus addOrSubtract(const APFloat &, roundingMode, bool subtract);
  cmpResult compareAbsoluteValue(const APFloat &) const;
  opStatus handleOverflow(roundingMode);
  bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
  opStatus convertToSignExtendedInteger(integerPart *, unsigned int, bool,
                                        roundingMode, bool *) const;
  opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
                                    roundingMode);
  opStatus convertFromHexadecimalString(StringRef, roundingMode);
  opStatus convertFromDecimalString(StringRef, roundingMode);
  char *convertNormalToHexString(char *, unsigned int, bool,
                                 roundingMode) const;
  opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
                                        roundingMode);

  /// @}

  APInt convertHalfAPFloatToAPInt() const;
  APInt convertFloatAPFloatToAPInt() const;
  APInt convertDoubleAPFloatToAPInt() const;
  APInt convertQuadrupleAPFloatToAPInt() const;
  APInt convertF80LongDoubleAPFloatToAPInt() const;
  APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
  void initFromAPInt(const fltSemantics *Sem, const APInt &api);
  void initFromHalfAPInt(const APInt &api);
  void initFromFloatAPInt(const APInt &api);
  void initFromDoubleAPInt(const APInt &api);
  void initFromQuadrupleAPInt(const APInt &api);
  void initFromF80LongDoubleAPInt(const APInt &api);
  void initFromPPCDoubleDoubleAPInt(const APInt &api);

  void assign(const APFloat &);
  void copySignificand(const APFloat &);
  void freeSignificand();

  /// The semantics that this value obeys.
  const fltSemantics *semantics;

  /// A binary fraction with an explicit integer bit.
  ///
  /// The significand must be at least one bit wider than the target precision.
  union Significand {
    integerPart part;
    integerPart *parts;
  } significand;

  /// The signed unbiased exponent of the value.
  ExponentType exponent;

  /// What kind of floating point number this is.
  ///
  /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
  /// Using the extra bit keeps it from failing under VisualStudio.
  fltCategory category : 3;

  /// Sign bit of the number.
  unsigned int sign : 1;
};

/// See friend declarations above.
///
/// These additional declarations are required in order to compile LLVM with IBM
/// xlC compiler.
hash_code hash_value(const APFloat &Arg);
APFloat scalbn(APFloat X, int Exp);

/// \brief Returns the absolute value of the argument.
inline APFloat abs(APFloat X) {
  X.clearSign();
  return X;
}

/// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if
/// both are not NaN. If either argument is a NaN, returns the other argument.
LLVM_READONLY
inline APFloat minnum(const APFloat &A, const APFloat &B) {
  if (A.isNaN())
    return B;
  if (B.isNaN())
    return A;
  return (B.compare(A) == APFloat::cmpLessThan) ? B : A;
}

/// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if
/// both are not NaN. If either argument is a NaN, returns the other argument.
LLVM_READONLY
inline APFloat maxnum(const APFloat &A, const APFloat &B) {
  if (A.isNaN())
    return B;
  if (B.isNaN())
    return A;
  return (A.compare(B) == APFloat::cmpLessThan) ? B : A;
}

} // namespace llvm

#endif // LLVM_ADT_APFLOAT_H