summaryrefslogtreecommitdiffstats
path: root/include/llvm/ADT/DenseMap.h
blob: fd3f346891b45318b272a8f439b46490a7959220 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
//===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the DenseMap class.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_DENSEMAP_H
#define LLVM_ADT_DENSEMAP_H

#include "llvm/Support/DataTypes.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <utility>

namespace llvm {
  
template<typename T>
struct DenseMapKeyInfo {
  //static inline T getEmptyKey();
  //static inline T getTombstoneKey();
  //static unsigned getHashValue(const T &Val);
  //static bool isPod()
};

// Provide DenseMapKeyInfo for all pointers.
template<typename T>
struct DenseMapKeyInfo<T*> {
  static inline T* getEmptyKey() { return (T*)-1; }
  static inline T* getTombstoneKey() { return (T*)-2; }
  static unsigned getHashValue(const T *PtrVal) {
    return (unsigned)((uintptr_t)PtrVal >> 4) ^
           (unsigned)((uintptr_t)PtrVal >> 9);
  }
  static bool isPod() { return true; }
};

template<typename KeyT, typename ValueT, 
         typename KeyInfoT = DenseMapKeyInfo<KeyT> >
class DenseMapIterator;
template<typename KeyT, typename ValueT,
         typename KeyInfoT = DenseMapKeyInfo<KeyT> >
class DenseMapConstIterator;

template<typename KeyT, typename ValueT,
         typename KeyInfoT = DenseMapKeyInfo<KeyT> >
class DenseMap {
  typedef std::pair<KeyT, ValueT> BucketT;
  unsigned NumBuckets;
  BucketT *Buckets;
  
  unsigned NumEntries;
  unsigned NumTombstones;
  DenseMap(const DenseMap &); // not implemented.
public:
  explicit DenseMap(unsigned NumInitBuckets = 64) {
    init(NumInitBuckets);
  }
  ~DenseMap() {
    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
    for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
      if (P->first != EmptyKey && P->first != TombstoneKey)
        P->second.~ValueT();
      P->first.~KeyT();
    }
    delete[] (char*)Buckets;
  }
  
  typedef DenseMapIterator<KeyT, ValueT, KeyInfoT> iterator;
  typedef DenseMapConstIterator<KeyT, ValueT, KeyInfoT> const_iterator;
  inline iterator begin() {
     return iterator(Buckets, Buckets+NumBuckets);
  }
  inline iterator end() {
    return iterator(Buckets+NumBuckets, Buckets+NumBuckets);
  }
  inline const_iterator begin() const {
    return const_iterator(Buckets, Buckets+NumBuckets);
  }
  inline const_iterator end() const {
    return const_iterator(Buckets+NumBuckets, Buckets+NumBuckets);
  }
  
  bool empty() const { return NumEntries == 0; }
  unsigned size() const { return NumEntries; }
  
  void clear() {
    // If the capacity of the array is huge, and the # elements used is small,
    // shrink the array.
    if (NumEntries * 4 < NumBuckets && NumBuckets > 64) {
      shrink_and_clear();
      return;
    }
    
    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
    for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
      if (P->first != EmptyKey) {
        if (P->first != TombstoneKey) {
          P->second.~ValueT();
          --NumEntries;
        }
        P->first = EmptyKey;
      }
    }
    assert(NumEntries == 0 && "Node count imbalance!");
    NumTombstones = 0;
  }

  /// count - Return true if the specified key is in the map.
  bool count(const KeyT &Val) const {
    BucketT *TheBucket;
    return LookupBucketFor(Val, TheBucket);
  }
  
  iterator find(const KeyT &Val) {
    BucketT *TheBucket;
    if (LookupBucketFor(Val, TheBucket))
      return iterator(TheBucket, Buckets+NumBuckets);
    return end();
  }
  const_iterator find(const KeyT &Val) const {
    BucketT *TheBucket;
    if (LookupBucketFor(Val, TheBucket))
      return const_iterator(TheBucket, Buckets+NumBuckets);
    return end();
  }
  
  bool insert(const std::pair<KeyT, ValueT> &KV) {
    BucketT *TheBucket;
    if (LookupBucketFor(KV.first, TheBucket))
      return false; // Already in map.
    
    // Otherwise, insert the new element.
    InsertIntoBucket(KV.first, KV.second, TheBucket);
    return true;
  }
  
  bool erase(const KeyT &Val) {
    BucketT *TheBucket;
    if (!LookupBucketFor(Val, TheBucket))
      return false; // not in map.

    TheBucket->second.~ValueT();
    TheBucket->first = getTombstoneKey();
    --NumEntries;
    ++NumTombstones;
    return true;
  }
  bool erase(iterator I) {
    BucketT *TheBucket = &*I;
    TheBucket->second.~ValueT();
    TheBucket->first = getTombstoneKey();
    --NumEntries;
    ++NumTombstones;
    return true;
  }
  
  ValueT &operator[](const KeyT &Key) {
    BucketT *TheBucket;
    if (LookupBucketFor(Key, TheBucket))
      return TheBucket->second;

    return InsertIntoBucket(Key, ValueT(), TheBucket)->second;
  }
  
private:
  BucketT *InsertIntoBucket(const KeyT &Key, const ValueT &Value,
                            BucketT *TheBucket) {
    // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
    // the buckets are empty (meaning that many are filled with tombstones),
    // grow the table.
    //
    // The later case is tricky.  For example, if we had one empty bucket with
    // tons of tombstones, failing lookups (e.g. for insertion) would have to
    // probe almost the entire table until it found the empty bucket.  If the
    // table completely filled with tombstones, no lookup would ever succeed,
    // causing infinite loops in lookup.
    if (NumEntries*4 >= NumBuckets*3 ||
        NumBuckets-(NumEntries+NumTombstones) < NumBuckets/8) {        
      this->grow();
      LookupBucketFor(Key, TheBucket);
    }
    ++NumEntries;
    
    // If we are writing over a tombstone, remember this.
    if (TheBucket->first != getEmptyKey())
      --NumTombstones;
    
    TheBucket->first = Key;
    new (&TheBucket->second) ValueT(Value);
    return TheBucket;
  }

  static unsigned getHashValue(const KeyT &Val) {
    return KeyInfoT::getHashValue(Val);
  }
  static const KeyT getEmptyKey() {
    return KeyInfoT::getEmptyKey();
  }
  static const KeyT getTombstoneKey() {
    return KeyInfoT::getTombstoneKey();
  }
  
  /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
  /// FoundBucket.  If the bucket contains the key and a value, this returns
  /// true, otherwise it returns a bucket with an empty marker or tombstone and
  /// returns false.
  bool LookupBucketFor(const KeyT &Val, BucketT *&FoundBucket) const {
    unsigned BucketNo = getHashValue(Val);
    unsigned ProbeAmt = 1;
    BucketT *BucketsPtr = Buckets;
    
    // FoundTombstone - Keep track of whether we find a tombstone while probing.
    BucketT *FoundTombstone = 0;
    const KeyT EmptyKey = getEmptyKey();
    const KeyT TombstoneKey = getTombstoneKey();
    assert(Val != EmptyKey && Val != TombstoneKey &&
           "Empty/Tombstone value shouldn't be inserted into map!");
      
    while (1) {
      BucketT *ThisBucket = BucketsPtr + (BucketNo & (NumBuckets-1));
      // Found Val's bucket?  If so, return it.
      if (ThisBucket->first == Val) {
        FoundBucket = ThisBucket;
        return true;
      }
      
      // If we found an empty bucket, the key doesn't exist in the set.
      // Insert it and return the default value.
      if (ThisBucket->first == EmptyKey) {
        // If we've already seen a tombstone while probing, fill it in instead
        // of the empty bucket we eventually probed to.
        if (FoundTombstone) ThisBucket = FoundTombstone;
        FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
        return false;
      }
      
      // If this is a tombstone, remember it.  If Val ends up not in the map, we
      // prefer to return it than something that would require more probing.
      if (ThisBucket->first == TombstoneKey && !FoundTombstone)
        FoundTombstone = ThisBucket;  // Remember the first tombstone found.
      
      // Otherwise, it's a hash collision or a tombstone, continue quadratic
      // probing.
      BucketNo += ProbeAmt++;
    }
  }

  void init(unsigned InitBuckets) {
    NumEntries = 0;
    NumTombstones = 0;
    NumBuckets = InitBuckets;
    assert(InitBuckets && (InitBuckets & InitBuckets-1) == 0 &&
           "# initial buckets must be a power of two!");
    Buckets = (BucketT*)new char[sizeof(BucketT)*InitBuckets];
    // Initialize all the keys to EmptyKey.
    const KeyT EmptyKey = getEmptyKey();
    for (unsigned i = 0; i != InitBuckets; ++i)
      new (&Buckets[i].first) KeyT(EmptyKey);
  }
  
  void grow() {
    unsigned OldNumBuckets = NumBuckets;
    BucketT *OldBuckets = Buckets;
    
    // Double the number of buckets.
    NumBuckets <<= 1;
    NumTombstones = 0;
    Buckets = (BucketT*)new char[sizeof(BucketT)*NumBuckets];

    // Initialize all the keys to EmptyKey.
    const KeyT EmptyKey = getEmptyKey();
    for (unsigned i = 0, e = NumBuckets; i != e; ++i)
      new (&Buckets[i].first) KeyT(EmptyKey);

    // Insert all the old elements.
    const KeyT TombstoneKey = getTombstoneKey();
    for (BucketT *B = OldBuckets, *E = OldBuckets+OldNumBuckets; B != E; ++B) {
      if (B->first != EmptyKey && B->first != TombstoneKey) {
        // Insert the key/value into the new table.
        BucketT *DestBucket;
        bool FoundVal = LookupBucketFor(B->first, DestBucket);
        FoundVal = FoundVal; // silence warning.
        assert(!FoundVal && "Key already in new map?");
        DestBucket->first = B->first;
        new (&DestBucket->second) ValueT(B->second);
        
        // Free the value.
        B->second.~ValueT();
      }
      B->first.~KeyT();
    }
    
    // Free the old table.
    delete[] (char*)OldBuckets;
  }
  
  void shrink_and_clear() {
    unsigned OldNumBuckets = NumBuckets;
    BucketT *OldBuckets = Buckets;
    
    // Reduce the number of buckets.
    NumBuckets = NumEntries > 32 ? 1 << (Log2_32_Ceil(NumEntries) + 1)
                                 : 64;
    NumTombstones = 0;
    Buckets = (BucketT*)new char[sizeof(BucketT)*NumBuckets];

    // Initialize all the keys to EmptyKey.
    const KeyT EmptyKey = getEmptyKey();
    for (unsigned i = 0, e = NumBuckets; i != e; ++i)
      new (&Buckets[i].first) KeyT(EmptyKey);

    // Free the old buckets.
    const KeyT TombstoneKey = getTombstoneKey();
    for (BucketT *B = OldBuckets, *E = OldBuckets+OldNumBuckets; B != E; ++B) {
      if (B->first != EmptyKey && B->first != TombstoneKey) {
        // Free the value.
        B->second.~ValueT();
      }
      B->first.~KeyT();
    }
    
    // Free the old table.
    delete[] (char*)OldBuckets;
    
    NumEntries = 0;
  }
};

template<typename KeyT, typename ValueT, typename KeyInfoT>
class DenseMapIterator {
  typedef std::pair<KeyT, ValueT> BucketT;
protected:
  const BucketT *Ptr, *End;
public:
  DenseMapIterator(const BucketT *Pos, const BucketT *E) : Ptr(Pos), End(E) {
    AdvancePastEmptyBuckets();
  }
  
  std::pair<KeyT, ValueT> &operator*() const {
    return *const_cast<BucketT*>(Ptr);
  }
  std::pair<KeyT, ValueT> *operator->() const {
    return const_cast<BucketT*>(Ptr);
  }
  
  bool operator==(const DenseMapIterator &RHS) const {
    return Ptr == RHS.Ptr;
  }
  bool operator!=(const DenseMapIterator &RHS) const {
    return Ptr != RHS.Ptr;
  }
  
  inline DenseMapIterator& operator++() {          // Preincrement
    ++Ptr;
    AdvancePastEmptyBuckets();
    return *this;
  }
  DenseMapIterator operator++(int) {        // Postincrement
    DenseMapIterator tmp = *this; ++*this; return tmp;
  }
  
private:
  void AdvancePastEmptyBuckets() {
    const KeyT Empty = KeyInfoT::getEmptyKey();
    const KeyT Tombstone = KeyInfoT::getTombstoneKey();

    while (Ptr != End && (Ptr->first == Empty || Ptr->first == Tombstone))
      ++Ptr;
  }
};

template<typename KeyT, typename ValueT, typename KeyInfoT>
class DenseMapConstIterator : public DenseMapIterator<KeyT, ValueT, KeyInfoT> {
public:
  DenseMapConstIterator(const std::pair<KeyT, ValueT> *Pos,
                        const std::pair<KeyT, ValueT> *E)
    : DenseMapIterator<KeyT, ValueT, KeyInfoT>(Pos, E) {
  }
  const std::pair<KeyT, ValueT> &operator*() const {
    return *this->Ptr;
  }
  const std::pair<KeyT, ValueT> *operator->() const {
    return this->Ptr;
  }
};

} // end namespace llvm

#endif