summaryrefslogtreecommitdiffstats
path: root/include/llvm/ADT/ImmutableSet.h
blob: a0a28df2a360d1f53f3d80b0cadebe8392245b15 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
//===--- ImmutableSet.h - Immutable (functional) set interface --*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Ted Kremenek and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ImutAVLTree and ImmutableSet classes.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_IMSET_H
#define LLVM_ADT_IMSET_H

#include "llvm/Support/Allocator.h"
#include "llvm/ADT/FoldingSet.h"
#include <cassert>

namespace llvm {
  
//===----------------------------------------------------------------------===//    
// Immutable AVL-Tree Definition.
//===----------------------------------------------------------------------===//

template <typename ImutInfo> class ImutAVLFactory;

template <typename ImutInfo> class ImutAVLTreeInOrderIterator;
  
template <typename ImutInfo >
class ImutAVLTree : public FoldingSetNode {
public:
  typedef typename ImutInfo::key_type_ref   key_type_ref;
  typedef typename ImutInfo::value_type     value_type;
  typedef typename ImutInfo::value_type_ref value_type_ref;

  typedef ImutAVLFactory<ImutInfo>          Factory;
  friend class ImutAVLFactory<ImutInfo>;
  
  typedef ImutAVLTreeInOrderIterator<ImutInfo>  iterator;
  
  //===----------------------------------------------------===//  
  // Public Interface.
  //===----------------------------------------------------===//  
  
  /// getLeft - Returns a pointer to the left subtree.  This value
  ///  is NULL if there is no left subtree.
  ImutAVLTree* getLeft() const { 
    assert (!isMutable() && "Node is incorrectly marked mutable.");
    
    return reinterpret_cast<ImutAVLTree*>(Left);
  }
  
  /// getRight - Returns a pointer to the right subtree.  This value is
  ///  NULL if there is no right subtree.
  ImutAVLTree* getRight() const { return Right; }  
  
  
  /// getHeight - Returns the height of the tree.  A tree with no subtrees
  ///  has a height of 1.
  unsigned getHeight() const { return Height; }  
  
  /// getValue - Returns the data value associated with the tree node.
  const value_type& getValue() const { return Value; }
  
  /// find - Finds the subtree associated with the specified key value.
  ///  This method returns NULL if no matching subtree is found.
  ImutAVLTree* find(key_type_ref K) {
    ImutAVLTree *T = this;
    
    while (T) {
      key_type_ref CurrentKey = ImutInfo::KeyOfValue(T->getValue());
      
      if (ImutInfo::isEqual(K,CurrentKey))
        return T;
      else if (ImutInfo::isLess(K,CurrentKey))
        T = T->getLeft();
      else
        T = T->getRight();
    }
    
    return NULL;
  }
  
  /// size - Returns the number of nodes in the tree, which includes
  ///  both leaves and non-leaf nodes.
  unsigned size() const {
    unsigned n = 1;
    
    if (const ImutAVLTree* L = getLeft())  n += L->size();
    if (const ImutAVLTree* R = getRight()) n += R->size();
    
    return n;
  }
  
  /// begin - Returns an iterator that iterates over the nodes of the tree
  ///  in an inorder traversal.  The returned iterator thus refers to the
  ///  the tree node with the minimum data element.
  iterator begin() const { return iterator(this); }
  
  /// end - Returns an iterator for the tree that denotes the end of an
  ///  inorder traversal.
  iterator end() const { return iterator(); }
  
  /// isEqual - Compares two trees for structural equality and returns true
  ///   if they are equal.  This worst case performance of this operation is
  //    linear in the sizes of the trees.
  bool isEqual(const ImutAVLTree& RHS) const {
    if (&RHS == this)
      return true;
    
    iterator LItr = begin(), LEnd = end();
    iterator RItr = RHS.begin(), REnd = RHS.end();
    
    while (LItr != LEnd && RItr != REnd) {
      if (*LItr == *RItr) {
        LItr.SkipSubTree();
        RItr.SkipSubTree();
        continue;
      }
      
      // FIXME: need to compare data values, not key values, but our
      // traits don't support this yet.
      if (!ImutInfo::isEqual(ImutInfo::KeyOfValue(LItr->getValue()),
                             ImutInfo::KeyOfValue(RItr->getValue())))
        return false;
      
      ++LItr;
      ++RItr;
    }
    
    return LItr == LEnd && RItr == REnd;
  }

  /// isNotEqual - Compares two trees for structural inequality.  Performance
  ///  is the same is isEqual.
  bool isNotEqual(const ImutAVLTree& RHS) const { return !isEqual(RHS); }
  
  /// contains - Returns true if this tree contains a subtree (node) that
  ///  has an data element that matches the specified key.  Complexity
  ///  is logarithmic in the size of the tree.
  bool contains(const key_type_ref K) { return (bool) find(K); }
  
  /// foreach - A member template the accepts invokes operator() on a functor
  ///  object (specifed by Callback) for every node/subtree in the tree.
  ///  Nodes are visited using an inorder traversal.
  template <typename Callback>
  void foreach(Callback& C) {
    if (ImutAVLTree* L = getLeft()) L->foreach(C);
    
    C(Value);    
    
    if (ImutAVLTree* R = getRight()) R->foreach(C);
  }
  
  /// verify - A utility method that checks that the balancing and
  ///  ordering invariants of the tree are satisifed.  It is a recursive
  ///  method that returns the height of the tree, which is then consumed
  ///  by the enclosing verify call.  External callers should ignore the
  ///  return value.  An invalid tree will cause an assertion to fire in
  ///  a debug build.
  unsigned verify() const {
    unsigned HL = getLeft() ? getLeft()->verify() : 0;
    unsigned HR = getRight() ? getRight()->verify() : 0;
    
    assert (getHeight() == ( HL > HR ? HL : HR ) + 1 
            && "Height calculation wrong.");
    
    assert ((HL > HR ? HL-HR : HR-HL) <= 2
            && "Balancing invariant violated.");
    
    
    assert (!getLeft()
            || ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()),
                                ImutInfo::KeyOfValue(getValue()))
            && "Value in left child is not less that current value.");
    
    
    assert (!getRight()
            || ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()),
                                ImutInfo::KeyOfValue(getRight()->getValue()))
            && "Current value is not less that value of right child.");
    
    return getHeight();
  }  
  
  //===----------------------------------------------------===//  
  // Internal Values.
  //===----------------------------------------------------===//
  
private:
  uintptr_t        Left;
  ImutAVLTree*     Right;
  unsigned         Height;
  value_type       Value;
  
  //===----------------------------------------------------===//  
  // Profiling or FoldingSet.
  //===----------------------------------------------------===//
  
  static inline
  void Profile(FoldingSetNodeID& ID, ImutAVLTree* L, ImutAVLTree* R,
               value_type_ref V) {    
    ID.AddPointer(L);
    ID.AddPointer(R);
    ImutInfo::Profile(ID,V);
  }
  
public:
  
  void Profile(FoldingSetNodeID& ID) {
    Profile(ID,getSafeLeft(),getRight(),getValue());    
  }
  
  //===----------------------------------------------------===//    
  // Internal methods (node manipulation; used by Factory).
  //===----------------------------------------------------===//
  
private:
  
  ImutAVLTree(ImutAVLTree* l, ImutAVLTree* r, value_type_ref v, unsigned height)
  : Left(reinterpret_cast<uintptr_t>(l) | 0x1),
  Right(r), Height(height), Value(v) {}
  
  bool isMutable() const { return Left & 0x1; }
  
  ImutAVLTree* getSafeLeft() const { 
    return reinterpret_cast<ImutAVLTree*>(Left & ~0x1);
  }
  
  // Mutating operations.  A tree root can be manipulated as long as
  // its reference has not "escaped" from internal methods of a
  // factory object (see below).  When a tree pointer is externally
  // viewable by client code, the internal "mutable bit" is cleared
  // to mark the tree immutable.  Note that a tree that still has
  // its mutable bit set may have children (subtrees) that are themselves
  // immutable.
  
  void RemoveMutableFlag() {
    assert (Left & 0x1 && "Mutable flag already removed.");
    Left &= ~0x1;
  }
  
  void setLeft(ImutAVLTree* NewLeft) {
    assert (isMutable());
    Left = reinterpret_cast<uintptr_t>(NewLeft) | 0x1;
  }
  
  void setRight(ImutAVLTree* NewRight) {
    assert (isMutable());
    Right = NewRight;
  }
  
  void setHeight(unsigned h) {
    assert (isMutable());
    Height = h;
  }
};

//===----------------------------------------------------------------------===//    
// Immutable AVL-Tree Factory class.
//===----------------------------------------------------------------------===//

template <typename ImutInfo >  
class ImutAVLFactory {
  typedef ImutAVLTree<ImutInfo> TreeTy;
  typedef typename TreeTy::value_type_ref value_type_ref;
  typedef typename TreeTy::key_type_ref   key_type_ref;
  
  typedef FoldingSet<TreeTy> CacheTy;
  
  CacheTy Cache;  
  BumpPtrAllocator Allocator;    
  
  //===--------------------------------------------------===//    
  // Public interface.
  //===--------------------------------------------------===//
  
public:
  ImutAVLFactory() {}
  
  TreeTy* Add(TreeTy* T, value_type_ref V) {
    T = Add_internal(V,T);
    MarkImmutable(T);
    return T;
  }
  
  TreeTy* Remove(TreeTy* T, key_type_ref V) {
    T = Remove_internal(V,T);
    MarkImmutable(T);
    return T;
  }
  
  TreeTy* GetEmptyTree() const { return NULL; }
  
  //===--------------------------------------------------===//    
  // A bunch of quick helper functions used for reasoning
  // about the properties of trees and their children.
  // These have succinct names so that the balancing code
  // is as terse (and readable) as possible.
  //===--------------------------------------------------===//
private:
  
  bool           isEmpty(TreeTy* T) const { return !T; }
  unsigned        Height(TreeTy* T) const { return T ? T->getHeight() : 0; }  
  TreeTy*           Left(TreeTy* T) const { return T->getSafeLeft(); }
  TreeTy*          Right(TreeTy* T) const { return T->getRight(); }  
  value_type_ref   Value(TreeTy* T) const { return T->Value; }
  
  unsigned IncrementHeight(TreeTy* L, TreeTy* R) const {
    unsigned hl = Height(L);
    unsigned hr = Height(R);
    return ( hl > hr ? hl : hr ) + 1;
  }
  
  //===--------------------------------------------------===//    
  // "CreateNode" is used to generate new tree roots that link
  // to other trees.  The functon may also simply move links
  // in an existing root if that root is still marked mutable.
  // This is necessary because otherwise our balancing code
  // would leak memory as it would create nodes that are
  // then discarded later before the finished tree is
  // returned to the caller.
  //===--------------------------------------------------===//
  
  TreeTy* CreateNode(TreeTy* L, value_type_ref V, TreeTy* R) {
    FoldingSetNodeID ID;      
    TreeTy::Profile(ID,L,R,V);      
    void* InsertPos;
    
    if (TreeTy* T = Cache.FindNodeOrInsertPos(ID,InsertPos))
      return T;
    
    assert (InsertPos != NULL);
    
    // FIXME: more intelligent calculation of alignment.
    TreeTy* T = (TreeTy*) Allocator.Allocate(sizeof(*T),16);
    new (T) TreeTy(L,R,V,IncrementHeight(L,R));
    
    Cache.InsertNode(T,InsertPos);
    return T;      
  }
  
  TreeTy* CreateNode(TreeTy* L, TreeTy* OldTree, TreeTy* R) {      
    assert (!isEmpty(OldTree));
    
    if (OldTree->isMutable()) {
      OldTree->setLeft(L);
      OldTree->setRight(R);
      OldTree->setHeight(IncrementHeight(L,R));
      return OldTree;
    }
    else return CreateNode(L, Value(OldTree), R);
  }
  
  /// Balance - Used by Add_internal and Remove_internal to
  ///  balance a newly created tree.
  TreeTy* Balance(TreeTy* L, value_type_ref V, TreeTy* R) {
    
    unsigned hl = Height(L);
    unsigned hr = Height(R);
    
    if (hl > hr + 2) {
      assert (!isEmpty(L) &&
              "Left tree cannot be empty to have a height >= 2.");
      
      TreeTy* LL = Left(L);
      TreeTy* LR = Right(L);
      
      if (Height(LL) >= Height(LR))
        return CreateNode(LL, L, CreateNode(LR,V,R));
      
      assert (!isEmpty(LR) &&
              "LR cannot be empty because it has a height >= 1.");
      
      TreeTy* LRL = Left(LR);
      TreeTy* LRR = Right(LR);
      
      return CreateNode(CreateNode(LL,L,LRL), LR, CreateNode(LRR,V,R));                              
    }
    else if (hr > hl + 2) {
      assert (!isEmpty(R) &&
              "Right tree cannot be empty to have a height >= 2.");
      
      TreeTy* RL = Left(R);
      TreeTy* RR = Right(R);
      
      if (Height(RR) >= Height(RL))
        return CreateNode(CreateNode(L,V,RL), R, RR);
      
      assert (!isEmpty(RL) &&
              "RL cannot be empty because it has a height >= 1.");
      
      TreeTy* RLL = Left(RL);
      TreeTy* RLR = Right(RL);
      
      return CreateNode(CreateNode(L,V,RLL), RL, CreateNode(RLR,R,RR));
    }
    else
      return CreateNode(L,V,R);
  }
  
  /// Add_internal - Creates a new tree that includes the specified
  ///  data and the data from the original tree.  If the original tree
  ///  already contained the data item, the original tree is returned.
  TreeTy* Add_internal(value_type_ref V, TreeTy* T) {
    if (isEmpty(T))
      return CreateNode(T, V, T);
    
    assert (!T->isMutable());
    
    key_type_ref K = ImutInfo::KeyOfValue(V);
    key_type_ref KCurrent = ImutInfo::KeyOfValue(Value(T));
    
    if (ImutInfo::isEqual(K,KCurrent))
      return CreateNode(Left(T), V, Right(T));
    else if (ImutInfo::isLess(K,KCurrent))
      return Balance(Add_internal(V,Left(T)), Value(T), Right(T));
    else
      return Balance(Left(T), Value(T), Add_internal(V,Right(T)));
  }
  
  /// Remove_interal - Creates a new tree that includes all the data
  ///  from the original tree except the specified data.  If the
  ///  specified data did not exist in the original tree, the original
  ///  tree is returned.
  TreeTy* Remove_internal(key_type_ref K, TreeTy* T) {
    if (isEmpty(T))
      return T;
    
    assert (!T->isMutable());
    
    key_type_ref KCurrent = ImutInfo::KeyOfValue(Value(T));
    
    if (ImutInfo::isEqual(K,KCurrent))
      return CombineLeftRightTrees(Left(T),Right(T));
    else if (ImutInfo::isLess(K,KCurrent))
      return Balance(Remove_internal(K,Left(T)), Value(T), Right(T));
    else
      return Balance(Left(T), Value(T), Remove_internal(K,Right(T)));
  }
  
  TreeTy* CombineLeftRightTrees(TreeTy* L, TreeTy* R) {
    if (isEmpty(L)) return R;      
    if (isEmpty(R)) return L;
    
    TreeTy* OldNode;          
    TreeTy* NewRight = RemoveMinBinding(R,OldNode);
    return Balance(L,Value(OldNode),NewRight);
  }
  
  TreeTy* RemoveMinBinding(TreeTy* T, TreeTy*& NodeRemoved) {
    assert (!isEmpty(T));
    
    if (isEmpty(Left(T))) {
      NodeRemoved = T;
      return Right(T);
    }
    
    return Balance(RemoveMinBinding(Left(T),NodeRemoved),Value(T),Right(T));
  }    
  
  /// MarkImmutable - Clears the mutable bits of a root and all of its
  ///  descendants.
  void MarkImmutable(TreeTy* T) {
    if (!T || !T->isMutable())
      return;
    
    T->RemoveMutableFlag();
    MarkImmutable(Left(T));
    MarkImmutable(Right(T));
  }
};
  
  
//===----------------------------------------------------------------------===//    
// Immutable AVL-Tree Iterators.
//===----------------------------------------------------------------------===//  

template <typename ImutInfo>
class ImutAVLTreeGenericIterator {
  SmallVector<uintptr_t,20> stack;
public:
  enum VisitFlag { VisitedNone=0x0, VisitedLeft=0x1, VisitedRight=0x3, 
                   Flags=0x3 };
  
  typedef ImutAVLTree<ImutInfo> TreeTy;      
  typedef ImutAVLTreeGenericIterator<ImutInfo> _Self;

  inline ImutAVLTreeGenericIterator() {}
  inline ImutAVLTreeGenericIterator(const TreeTy* Root) {
    if (Root) stack.push_back(reinterpret_cast<uintptr_t>(Root));
  }  
  
  TreeTy* operator*() const {
    assert (!stack.empty());    
    return reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
  }
  
  uintptr_t getVisitState() {
    assert (!stack.empty());
    return stack.back() & Flags;
  }
  
  
  bool AtEnd() const { return stack.empty(); }

  bool AtBeginning() const { 
    return stack.size() == 1 && getVisitState() == VisitedNone;
  }
  
  void SkipToParent() {
    assert (!stack.empty());
    stack.pop_back();
    
    if (stack.empty())
      return;
    
    switch (getVisitState()) {
      case VisitedNone:
        stack.back() |= VisitedLeft;
        break;
      case VisitedLeft:
        stack.back() |= VisitedRight;
        break;
      default:
        assert (false && "Unreachable.");            
    }
  }
  
  inline bool operator==(const _Self& x) const {
    if (stack.size() != x.stack.size())
      return false;
    
    for (unsigned i = 0 ; i < stack.size(); i++)
      if (stack[i] != x.stack[i])
        return false;
    
    return true;
  }
  
  inline bool operator!=(const _Self& x) const { return !operator==(x); }  
  
  _Self& operator++() {
    assert (!stack.empty());
    
    TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
    assert (Current);
    
    switch (getVisitState()) {
      case VisitedNone:
        if (TreeTy* L = Current->getLeft())
          stack.push_back(reinterpret_cast<uintptr_t>(L));
        else
          stack.back() |= VisitedLeft;
        
        break;
        
      case VisitedLeft:
        if (TreeTy* R = Current->getRight())
          stack.push_back(reinterpret_cast<uintptr_t>(R));
        else
          stack.back() |= VisitedRight;
        
        break;
        
      case VisitedRight:
        SkipToParent();        
        break;
        
      default:
        assert (false && "Unreachable.");
    }
    
    return *this;
  }
  
  _Self& operator--() {
    assert (!stack.empty());
    
    TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
    assert (Current);
    
    switch (getVisitState()) {
      case VisitedNone:
        stack.pop_back();
        break;
        
      case VisitedLeft:                
        stack.back() &= ~Flags; // Set state to "VisitedNone."
        
        if (TreeTy* L = Current->getLeft())
          stack.push_back(reinterpret_cast<uintptr_t>(L) | VisitedRight);
          
        break;
        
      case VisitedRight:        
        stack.back() &= ~Flags;
        stack.back() |= VisitedLeft;
        
        if (TreeTy* R = Current->getRight())
          stack.push_back(reinterpret_cast<uintptr_t>(R) | VisitedRight);
          
        break;
        
      default:
        assert (false && "Unreachable.");
    }
    
    return *this;
  }
};
  
template <typename ImutInfo>
class ImutAVLTreeInOrderIterator {
  typedef ImutAVLTreeGenericIterator<ImutInfo> InternalIteratorTy;
  InternalIteratorTy InternalItr;

public:
  typedef ImutAVLTree<ImutInfo> TreeTy;
  typedef ImutAVLTreeInOrderIterator<ImutInfo> _Self;

  ImutAVLTreeInOrderIterator(const TreeTy* Root) : InternalItr(Root) { 
    if (Root) operator++(); // Advance to first element.
  }
  
  ImutAVLTreeInOrderIterator() : InternalItr() {}

  inline bool operator==(const _Self& x) const {
    return InternalItr == x.InternalItr;
  }
  
  inline bool operator!=(const _Self& x) const { return !operator==(x); }  
  
  inline TreeTy* operator*() { return *InternalItr; }
  inline TreeTy* operator->() { return *InternalItr; }
  
  inline _Self& operator++() { 
    do ++InternalItr;
    while (!InternalItr.AtEnd() && 
           InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);

    return *this;
  }
  
  inline _Self& operator--() { 
    do --InternalItr;
    while (!InternalItr.AtBeginning() && 
           InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
    
    return *this;
  }
  
  inline void SkipSubTree() {
    InternalItr.SkipToParent();
    
    while (!InternalItr.AtEnd() &&
           InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft)
      ++InternalItr;        
  }
};
    
//===----------------------------------------------------------------------===//    
// Trait classes for Profile information.
//===----------------------------------------------------------------------===//

/// Generic profile template.  The default behavior is to invoke the
/// profile method of an object.  Specializations for primitive integers
/// and generic handling of pointers is done below.
template <typename T>
struct ImutProfileInfo {
  typedef const T  value_type;
  typedef const T& value_type_ref;
  
  static inline void Profile(FoldingSetNodeID& ID, value_type_ref X) {
    X.Profile(ID);
  }  
};

/// Profile traits for integers.
template <typename T>
struct ImutProfileInteger {    
  typedef const T  value_type;
  typedef const T& value_type_ref;
  
  static inline void Profile(FoldingSetNodeID& ID, value_type_ref X) {
    ID.AddInteger(X);
  }  
};

#define PROFILE_INTEGER_INFO(X)\
template<> struct ImutProfileInfo<X> : ImutProfileInteger<X> {};

PROFILE_INTEGER_INFO(char)
PROFILE_INTEGER_INFO(unsigned char)
PROFILE_INTEGER_INFO(short)
PROFILE_INTEGER_INFO(unsigned short)
PROFILE_INTEGER_INFO(unsigned)
PROFILE_INTEGER_INFO(signed)
PROFILE_INTEGER_INFO(long)
PROFILE_INTEGER_INFO(unsigned long)
PROFILE_INTEGER_INFO(long long)
PROFILE_INTEGER_INFO(unsigned long long)

#undef PROFILE_INTEGER_INFO

/// Generic profile trait for pointer types.  We treat pointers as
/// references to unique objects.
template <typename T>
struct ImutProfileInfo<T*> {
  typedef const T*   value_type;
  typedef value_type value_type_ref;
  
  static inline void Profile(FoldingSetNodeID &ID, value_type_ref X) {
    ID.AddPointer(X);
  }
};

//===----------------------------------------------------------------------===//    
// Trait classes that contain element comparison operators and type
//  definitions used by ImutAVLTree, ImmutableSet, and ImmutableMap.  These
//  inherit from the profile traits (ImutProfileInfo) to include operations
//  for element profiling.
//===----------------------------------------------------------------------===//


/// ImutContainerInfo - Generic definition of comparison operations for
///   elements of immutable containers that defaults to using
///   std::equal_to<> and std::less<> to perform comparison of elements.
template <typename T>
struct ImutContainerInfo : public ImutProfileInfo<T> {
  typedef typename ImutProfileInfo<T>::value_type      value_type;
  typedef typename ImutProfileInfo<T>::value_type_ref  value_type_ref;
  typedef value_type      key_type;
  typedef value_type_ref  key_type_ref;
  
  static inline key_type_ref KeyOfValue(value_type_ref D) { return D; }
  
  static inline bool isEqual(key_type_ref LHS, key_type_ref RHS) { 
    return std::equal_to<key_type>()(LHS,RHS);
  }
  
  static inline bool isLess(key_type_ref LHS, key_type_ref RHS) {
    return std::less<key_type>()(LHS,RHS);
  }
};

/// ImutContainerInfo - Specialization for pointer values to treat pointers
///  as references to unique objects.  Pointers are thus compared by
///  their addresses.
template <typename T>
struct ImutContainerInfo<T*> : public ImutProfileInfo<T*> {
  typedef typename ImutProfileInfo<T*>::value_type      value_type;
  typedef typename ImutProfileInfo<T*>::value_type_ref  value_type_ref;
  typedef value_type      key_type;
  typedef value_type_ref  key_type_ref;
  
  static inline key_type_ref KeyOfValue(value_type_ref D) { return D; }
  
  static inline bool isEqual(key_type_ref LHS, key_type_ref RHS) {
    return LHS == RHS;
  }
  
  static inline bool isLess(key_type_ref LHS, key_type_ref RHS) {
    return LHS < RHS;
  }
};

//===----------------------------------------------------------------------===//    
// Immutable Set
//===----------------------------------------------------------------------===//

template <typename ValT, typename ValInfo = ImutContainerInfo<ValT> >
class ImmutableSet {
public:
  typedef typename ValInfo::value_type      value_type;
  typedef typename ValInfo::value_type_ref  value_type_ref;
  
private:  
  typedef ImutAVLTree<ValInfo> TreeTy;
  TreeTy* Root;
  
  ImmutableSet(TreeTy* R) : Root(R) {}
  
public:
  
  class Factory {
    typename TreeTy::Factory F;
    
  public:
    Factory() {}
    
    /// GetEmptySet - Returns an immutable set that contains no elements.
    ImmutableSet GetEmptySet() { return ImmutableSet(F.GetEmptyTree()); }
    
    /// Add - Creates a new immutable set that contains all of the values
    ///  of the original set with the addition of the specified value.  If
    ///  the original set already included the value, then the original set is
    ///  returned and no memory is allocated.  The time and space complexity
    ///  of this operation is logarithmic in the size of the original set.
    ///  The memory allocated to represent the set is released when the
    ///  factory object that created the set is destroyed.
    ImmutableSet Add(ImmutableSet Old, value_type_ref V) {
      return ImmutableSet(F.Add(Old.Root,V));
    }
    
    /// Remove - Creates a new immutable set that contains all of the values
    ///  of the original set with the exception of the specified value.  If
    ///  the original set did not contain the value, the original set is
    ///  returned and no memory is allocated.  The time and space complexity
    ///  of this operation is logarithmic in the size of the original set.
    ///  The memory allocated to represent the set is released when the
    ///  factory object that created the set is destroyed.
    ImmutableSet Remove(ImmutableSet Old, value_type_ref V) {
      return ImmutableSet(F.Remove(Old.Root,V));
    }
    
  private:
    Factory(const Factory& RHS) {};
    void operator=(const Factory& RHS) {};    
  };
  
  friend class Factory;

  /// contains - Returns true if the set contains the specified value.
  bool contains(const value_type_ref V) const {
    return Root ? Root->contains(V) : false;
  }
  
  bool operator==(ImmutableSet RHS) const {
    return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
  }
  
  bool operator!=(ImmutableSet RHS) const {
    return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
  }
  
  /// isEmpty - Return true if the set contains no elements.
  bool isEmpty() const { return !Root; }
  
  template <typename Callback>
  void foreach(Callback& C) { if (Root) Root->foreach(C); }
  
  template <typename Callback>
  void foreach() { if (Root) { Callback C; Root->foreach(C); } }
  
  //===--------------------------------------------------===//    
  // For testing.
  //===--------------------------------------------------===//  
  
  void verify() const { if (Root) Root->verify(); }
  unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
};

} // end namespace llvm

#endif