summaryrefslogtreecommitdiffstats
path: root/include/llvm/ADT/STLExtras.h
blob: 28c46e3d99a0e3fd4749fa22849f82bf67acb1f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
//===- STLExtras.h - Useful functions when working with the STL -*- C++ -*-===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file contains some templates that are useful if you are working with the
// STL at all.
//
// No library is required when using these functinons.
//
//===----------------------------------------------------------------------===//

#ifndef SUPPORT_STLEXTRAS_H
#define SUPPORT_STLEXTRAS_H

#include <functional>
#include "Support/iterator"
#include "boost/type_traits/transform_traits.hpp"

//===----------------------------------------------------------------------===//
//     Extra additions to <functional>
//===----------------------------------------------------------------------===//

// bind_obj - Often times you want to apply the member function of an object
// as a unary functor.  This macro is shorthand that makes it happen less
// verbosely.
//
// Example:
//  struct Summer { void accumulate(int x); }
//  vector<int> Numbers;
//  Summer MyS;
//  for_each(Numbers.begin(), Numbers.end(),
//           bind_obj(&MyS, &Summer::accumulate));
//
// TODO: When I get lots of extra time, convert this from an evil macro
//
#define bind_obj(OBJ, METHOD) std::bind1st(std::mem_fun(METHOD), OBJ)


// bitwise_or - This is a simple functor that applys operator| on its two 
// arguments to get a boolean result.
//
template<class Ty>
struct bitwise_or : public std::binary_function<Ty, Ty, bool> {
  bool operator()(const Ty& left, const Ty& right) const {
    return left | right;
  }
};


// deleter - Very very very simple method that is used to invoke operator
// delete on something.  It is used like this: 
//
//   for_each(V.begin(), B.end(), deleter<Interval>);
//
template <class T> 
static inline void deleter(T *Ptr) { 
  delete Ptr; 
}



//===----------------------------------------------------------------------===//
//     Extra additions to <iterator>
//===----------------------------------------------------------------------===//

// mapped_iterator - This is a simple iterator adapter that causes a function to
// be dereferenced whenever operator* is invoked on the iterator.
//
// It turns out that this is disturbingly similar to boost::transform_iterator
//
#if 1
template <class RootIt, class UnaryFunc>
class mapped_iterator {
  RootIt current;
  UnaryFunc Fn;
public:
  typedef typename std::iterator_traits<RootIt>::iterator_category
          iterator_category;
  typedef typename std::iterator_traits<RootIt>::difference_type
          difference_type;
  typedef typename UnaryFunc::result_type value_type;

  typedef void pointer;
  //typedef typename UnaryFunc::result_type *pointer;
  typedef void reference;        // Can't modify value returned by fn

  typedef RootIt iterator_type;
  typedef mapped_iterator<RootIt, UnaryFunc> _Self;

  inline RootIt &getCurrent() const { return current; }

  inline explicit mapped_iterator(const RootIt &I, UnaryFunc F)
    : current(I), Fn(F) {}
  inline mapped_iterator(const mapped_iterator &It)
    : current(It.current), Fn(It.Fn) {}

  inline value_type operator*() const {   // All this work to do this 
    return Fn(*current);         // little change
  }

  _Self& operator++() { ++current; return *this; }
  _Self& operator--() { --current; return *this; }
  _Self  operator++(int) { _Self __tmp = *this; ++current; return __tmp; }
  _Self  operator--(int) { _Self __tmp = *this; --current; return __tmp; }
  _Self  operator+    (difference_type n) const { return _Self(current + n); }
  _Self& operator+=   (difference_type n) { current += n; return *this; }
  _Self  operator-    (difference_type n) const { return _Self(current - n); }
  _Self& operator-=   (difference_type n) { current -= n; return *this; }
  reference operator[](difference_type n) const { return *(*this + n); }  

  inline bool operator!=(const _Self &X) const { return !operator==(X); }
  inline bool operator==(const _Self &X) const { return current == X.current; }
  inline bool operator< (const _Self &X) const { return current <  X.current; }

  inline difference_type operator-(const _Self &X) const {
    return current - X.current;
  }
};

template <class _Iterator, class Func>
inline mapped_iterator<_Iterator, Func> 
operator+(typename mapped_iterator<_Iterator, Func>::difference_type N,
          const mapped_iterator<_Iterator, Func>& X) {
  return mapped_iterator<_Iterator, Func>(X.getCurrent() - N);
}

#else

// This fails to work, because some iterators are not classes, for example
// vector iterators are commonly value_type **'s
template <class RootIt, class UnaryFunc>
class mapped_iterator : public RootIt {
  UnaryFunc Fn;
public:
  typedef typename UnaryFunc::result_type value_type;
  typedef typename UnaryFunc::result_type *pointer;
  typedef void reference;        // Can't modify value returned by fn

  typedef mapped_iterator<RootIt, UnaryFunc> _Self;
  typedef RootIt super;
  inline explicit mapped_iterator(const RootIt &I) : super(I) {}
  inline mapped_iterator(const super &It) : super(It) {}

  inline value_type operator*() const {     // All this work to do 
    return Fn(super::operator*());   // this little thing
  }
};
#endif

// map_iterator - Provide a convenient way to create mapped_iterators, just like
// make_pair is useful for creating pairs...
//
template <class ItTy, class FuncTy>
inline mapped_iterator<ItTy, FuncTy> map_iterator(const ItTy &I, FuncTy F) {
  return mapped_iterator<ItTy, FuncTy>(I, F);
}


//===----------------------------------------------------------------------===//
//     Extra additions to <algorithm>
//===----------------------------------------------------------------------===//

// apply_until - Apply a functor to a sequence continually, unless the
// functor returns true.  Return true if the functor returned true, return false
// if the functor never returned true.
//
template <class InputIt, class Function>
bool apply_until(InputIt First, InputIt Last, Function Func) {
  for ( ; First != Last; ++First)
    if (Func(*First)) return true;
  return false;
}


// reduce - Reduce a sequence values into a single value, given an initial
// value and an operator.
//
template <class InputIt, class Function, class ValueType>
ValueType reduce(InputIt First, InputIt Last, Function Func, ValueType Value) {
  for ( ; First != Last; ++First)
    Value = Func(*First, Value);
  return Value;
}

#if 1   // This is likely to be more efficient

// reduce_apply - Reduce the result of applying a function to each value in a
// sequence, given an initial value, an operator, a function, and a sequence.
//
template <class InputIt, class Function, class ValueType, class TransFunc>
inline ValueType reduce_apply(InputIt First, InputIt Last, Function Func, 
			      ValueType Value, TransFunc XForm) {
  for ( ; First != Last; ++First)
    Value = Func(XForm(*First), Value);
  return Value;
}

#else  // This is arguably more elegant

// reduce_apply - Reduce the result of applying a function to each value in a
// sequence, given an initial value, an operator, a function, and a sequence.
//
template <class InputIt, class Function, class ValueType, class TransFunc>
inline ValueType reduce_apply2(InputIt First, InputIt Last, Function Func, 
			       ValueType Value, TransFunc XForm) {
  return reduce(map_iterator(First, XForm), map_iterator(Last, XForm),
		Func, Value);
}
#endif


// reduce_apply_bool - Reduce the result of applying a (bool returning) function
// to each value in a sequence.  All of the bools returned by the mapped
// function are bitwise or'd together, and the result is returned.
//
template <class InputIt, class Function>
inline bool reduce_apply_bool(InputIt First, InputIt Last, Function Func) {
  return reduce_apply(First, Last, bitwise_or<bool>(), false, Func);
}


// map - This function maps the specified input sequence into the specified
// output iterator, applying a unary function in between.
//
template <class InIt, class OutIt, class Functor>
inline OutIt mapto(InIt Begin, InIt End, OutIt Dest, Functor F) {
  return copy(map_iterator(Begin, F), map_iterator(End, F), Dest);
}


//===----------------------------------------------------------------------===//
//     Extra additions to <utility>
//===----------------------------------------------------------------------===//

// tie - this function ties two objects and returns a temporary object
// that is assignable from a std::pair. This can be used to make code
// more readable when using values returned from functions bundled in
// a std::pair. Since an example is worth 1000 words:
//
// typedef std::map<int, int> Int2IntMap;
// 
// Int2IntMap myMap;
// Int2IntMap::iterator where;
// bool inserted;
// tie(where, inserted) = myMap.insert(std::make_pair(123,456));
//
// if (inserted)
//   // do stuff
// else
//   // do other stuff

namespace
{
  template <typename T1, typename T2>
  struct tier {
    typedef typename boost::add_reference<T1>::type first_type;
    typedef typename boost::add_reference<T2>::type second_type;

    first_type first;
    second_type second;

    tier(first_type f, second_type s) : first(f), second(s) { }
    tier& operator=(const std::pair<T1, T2>& p) {
      first = p.first;
      second = p.second;
      return *this;
    }
  };
}

template <typename T1, typename T2>
inline tier<T1, T2> tie(T1& f, T2& s) {
  return tier<T1, T2>(f, s);
}

#endif