summaryrefslogtreecommitdiffstats
path: root/include/llvm/ADT/STLExtras.h
blob: 1cef3933b5d6b2112f5c86f099d07de952bf18a0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains some templates that are useful if you are working with the
// STL at all.
//
// No library is required when using these functions.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_STLEXTRAS_H
#define LLVM_ADT_STLEXTRAS_H

#include "llvm/Support/Compiler.h"
#include <cstddef> // for std::size_t
#include <cstdlib> // for qsort
#include <functional>
#include <iterator>
#include <memory>
#include <utility> // for std::pair

namespace llvm {

//===----------------------------------------------------------------------===//
//     Extra additions to <functional>
//===----------------------------------------------------------------------===//

template<class Ty>
struct identity : public std::unary_function<Ty, Ty> {
  Ty &operator()(Ty &self) const {
    return self;
  }
  const Ty &operator()(const Ty &self) const {
    return self;
  }
};

template<class Ty>
struct less_ptr : public std::binary_function<Ty, Ty, bool> {
  bool operator()(const Ty* left, const Ty* right) const {
    return *left < *right;
  }
};

template<class Ty>
struct greater_ptr : public std::binary_function<Ty, Ty, bool> {
  bool operator()(const Ty* left, const Ty* right) const {
    return *right < *left;
  }
};

/// An efficient, type-erasing, non-owning reference to a callable. This is
/// intended for use as the type of a function parameter that is not used
/// after the function in question returns.
///
/// This class does not own the callable, so it is not in general safe to store
/// a function_ref.
template<typename Fn> class function_ref;

#if LLVM_HAS_VARIADIC_TEMPLATES

template<typename Ret, typename ...Params>
class function_ref<Ret(Params...)> {
  Ret (*callback)(intptr_t callable, Params ...params);
  intptr_t callable;

  template<typename Callable>
  static Ret callback_fn(intptr_t callable, Params ...params) {
    return (*reinterpret_cast<Callable*>(callable))(
        std::forward<Params>(params)...);
  }

public:
  template<typename Callable>
  function_ref(Callable &&callable)
      : callback(callback_fn<typename std::remove_reference<Callable>::type>),
        callable(reinterpret_cast<intptr_t>(&callable)) {}
  Ret operator()(Params ...params) const {
    return callback(callable, std::forward<Params>(params)...);
  }
};

#else

template<typename Ret>
class function_ref<Ret()> {
  Ret (*callback)(intptr_t callable);
  intptr_t callable;

  template<typename Callable>
  static Ret callback_fn(intptr_t callable) {
    return (*reinterpret_cast<Callable*>(callable))();
  }

public:
  template<typename Callable>
  function_ref(Callable &&callable)
      : callback(callback_fn<typename std::remove_reference<Callable>::type>),
        callable(reinterpret_cast<intptr_t>(&callable)) {}
  Ret operator()() const { return callback(callable); }
};

template<typename Ret, typename Param1>
class function_ref<Ret(Param1)> {
  Ret (*callback)(intptr_t callable, Param1 param1);
  intptr_t callable;

  template<typename Callable>
  static Ret callback_fn(intptr_t callable, Param1 param1) {
    return (*reinterpret_cast<Callable*>(callable))(
        std::forward<Param1>(param1));
  }

public:
  template<typename Callable>
  function_ref(Callable &&callable)
      : callback(callback_fn<typename std::remove_reference<Callable>::type>),
        callable(reinterpret_cast<intptr_t>(&callable)) {}
  Ret operator()(Param1 param1) {
    return callback(callable, std::forward<Param1>(param1));
  }
};

template<typename Ret, typename Param1, typename Param2>
class function_ref<Ret(Param1, Param2)> {
  Ret (*callback)(intptr_t callable, Param1 param1, Param2 param2);
  intptr_t callable;

  template<typename Callable>
  static Ret callback_fn(intptr_t callable, Param1 param1, Param2 param2) {
    return (*reinterpret_cast<Callable*>(callable))(
        std::forward<Param1>(param1),
        std::forward<Param2>(param2));
  }

public:
  template<typename Callable>
  function_ref(Callable &&callable)
      : callback(callback_fn<typename std::remove_reference<Callable>::type>),
        callable(reinterpret_cast<intptr_t>(&callable)) {}
  Ret operator()(Param1 param1, Param2 param2) {
    return callback(callable,
                    std::forward<Param1>(param1),
                    std::forward<Param2>(param2));
  }
};

template<typename Ret, typename Param1, typename Param2, typename Param3>
class function_ref<Ret(Param1, Param2, Param3)> {
  Ret (*callback)(intptr_t callable, Param1 param1, Param2 param2, Param3 param3);
  intptr_t callable;

  template<typename Callable>
  static Ret callback_fn(intptr_t callable, Param1 param1, Param2 param2,
                         Param3 param3) {
    return (*reinterpret_cast<Callable*>(callable))(
        std::forward<Param1>(param1),
        std::forward<Param2>(param2),
        std::forward<Param3>(param3));
  }

public:
  template<typename Callable>
  function_ref(Callable &&callable)
      : callback(callback_fn<typename std::remove_reference<Callable>::type>),
        callable(reinterpret_cast<intptr_t>(&callable)) {}
  Ret operator()(Param1 param1, Param2 param2, Param3 param3) {
    return callback(callable,
                    std::forward<Param1>(param1),
                    std::forward<Param2>(param2),
                    std::forward<Param3>(param3));
  }
};

#endif

// deleter - Very very very simple method that is used to invoke operator
// delete on something.  It is used like this:
//
//   for_each(V.begin(), B.end(), deleter<Interval>);
//
template <class T>
inline void deleter(T *Ptr) {
  delete Ptr;
}



//===----------------------------------------------------------------------===//
//     Extra additions to <iterator>
//===----------------------------------------------------------------------===//

// mapped_iterator - This is a simple iterator adapter that causes a function to
// be dereferenced whenever operator* is invoked on the iterator.
//
template <class RootIt, class UnaryFunc>
class mapped_iterator {
  RootIt current;
  UnaryFunc Fn;
public:
  typedef typename std::iterator_traits<RootIt>::iterator_category
          iterator_category;
  typedef typename std::iterator_traits<RootIt>::difference_type
          difference_type;
  typedef typename UnaryFunc::result_type value_type;

  typedef void pointer;
  //typedef typename UnaryFunc::result_type *pointer;
  typedef void reference;        // Can't modify value returned by fn

  typedef RootIt iterator_type;
  typedef mapped_iterator<RootIt, UnaryFunc> _Self;

  inline const RootIt &getCurrent() const { return current; }
  inline const UnaryFunc &getFunc() const { return Fn; }

  inline explicit mapped_iterator(const RootIt &I, UnaryFunc F)
    : current(I), Fn(F) {}

  inline value_type operator*() const {   // All this work to do this
    return Fn(*current);         // little change
  }

  _Self& operator++() { ++current; return *this; }
  _Self& operator--() { --current; return *this; }
  _Self  operator++(int) { _Self __tmp = *this; ++current; return __tmp; }
  _Self  operator--(int) { _Self __tmp = *this; --current; return __tmp; }
  _Self  operator+    (difference_type n) const {
    return _Self(current + n, Fn);
  }
  _Self& operator+=   (difference_type n) { current += n; return *this; }
  _Self  operator-    (difference_type n) const {
    return _Self(current - n, Fn);
  }
  _Self& operator-=   (difference_type n) { current -= n; return *this; }
  reference operator[](difference_type n) const { return *(*this + n); }

  inline bool operator!=(const _Self &X) const { return !operator==(X); }
  inline bool operator==(const _Self &X) const { return current == X.current; }
  inline bool operator< (const _Self &X) const { return current <  X.current; }

  inline difference_type operator-(const _Self &X) const {
    return current - X.current;
  }
};

template <class _Iterator, class Func>
inline mapped_iterator<_Iterator, Func>
operator+(typename mapped_iterator<_Iterator, Func>::difference_type N,
          const mapped_iterator<_Iterator, Func>& X) {
  return mapped_iterator<_Iterator, Func>(X.getCurrent() - N, X.getFunc());
}


// map_iterator - Provide a convenient way to create mapped_iterators, just like
// make_pair is useful for creating pairs...
//
template <class ItTy, class FuncTy>
inline mapped_iterator<ItTy, FuncTy> map_iterator(const ItTy &I, FuncTy F) {
  return mapped_iterator<ItTy, FuncTy>(I, F);
}

//===----------------------------------------------------------------------===//
//     Extra additions to <utility>
//===----------------------------------------------------------------------===//

/// \brief Function object to check whether the first component of a std::pair
/// compares less than the first component of another std::pair.
struct less_first {
  template <typename T> bool operator()(const T &lhs, const T &rhs) const {
    return lhs.first < rhs.first;
  }
};

/// \brief Function object to check whether the second component of a std::pair
/// compares less than the second component of another std::pair.
struct less_second {
  template <typename T> bool operator()(const T &lhs, const T &rhs) const {
    return lhs.second < rhs.second;
  }
};

//===----------------------------------------------------------------------===//
//     Extra additions for arrays
//===----------------------------------------------------------------------===//

/// Find the length of an array.
template <class T, std::size_t N>
LLVM_CONSTEXPR inline size_t array_lengthof(T (&)[N]) {
  return N;
}

/// Adapt std::less<T> for array_pod_sort.
template<typename T>
inline int array_pod_sort_comparator(const void *P1, const void *P2) {
  if (std::less<T>()(*reinterpret_cast<const T*>(P1),
                     *reinterpret_cast<const T*>(P2)))
    return -1;
  if (std::less<T>()(*reinterpret_cast<const T*>(P2),
                     *reinterpret_cast<const T*>(P1)))
    return 1;
  return 0;
}

/// get_array_pod_sort_comparator - This is an internal helper function used to
/// get type deduction of T right.
template<typename T>
inline int (*get_array_pod_sort_comparator(const T &))
             (const void*, const void*) {
  return array_pod_sort_comparator<T>;
}


/// array_pod_sort - This sorts an array with the specified start and end
/// extent.  This is just like std::sort, except that it calls qsort instead of
/// using an inlined template.  qsort is slightly slower than std::sort, but
/// most sorts are not performance critical in LLVM and std::sort has to be
/// template instantiated for each type, leading to significant measured code
/// bloat.  This function should generally be used instead of std::sort where
/// possible.
///
/// This function assumes that you have simple POD-like types that can be
/// compared with std::less and can be moved with memcpy.  If this isn't true,
/// you should use std::sort.
///
/// NOTE: If qsort_r were portable, we could allow a custom comparator and
/// default to std::less.
template<class IteratorTy>
inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
  // Don't dereference start iterator of empty sequence.
  if (Start == End) return;
  qsort(&*Start, End-Start, sizeof(*Start),
        get_array_pod_sort_comparator(*Start));
}

template <class IteratorTy>
inline void array_pod_sort(
    IteratorTy Start, IteratorTy End,
    int (*Compare)(
        const typename std::iterator_traits<IteratorTy>::value_type *,
        const typename std::iterator_traits<IteratorTy>::value_type *)) {
  // Don't dereference start iterator of empty sequence.
  if (Start == End) return;
  qsort(&*Start, End - Start, sizeof(*Start),
        reinterpret_cast<int (*)(const void *, const void *)>(Compare));
}

//===----------------------------------------------------------------------===//
//     Extra additions to <algorithm>
//===----------------------------------------------------------------------===//

/// For a container of pointers, deletes the pointers and then clears the
/// container.
template<typename Container>
void DeleteContainerPointers(Container &C) {
  for (typename Container::iterator I = C.begin(), E = C.end(); I != E; ++I)
    delete *I;
  C.clear();
}

/// In a container of pairs (usually a map) whose second element is a pointer,
/// deletes the second elements and then clears the container.
template<typename Container>
void DeleteContainerSeconds(Container &C) {
  for (typename Container::iterator I = C.begin(), E = C.end(); I != E; ++I)
    delete I->second;
  C.clear();
}

//===----------------------------------------------------------------------===//
//     Extra additions to <memory>
//===----------------------------------------------------------------------===//

#if LLVM_HAS_VARIADIC_TEMPLATES

// Implement make_unique according to N3656.

/// \brief Constructs a `new T()` with the given args and returns a
///        `unique_ptr<T>` which owns the object.
///
/// Example:
///
///     auto p = make_unique<int>();
///     auto p = make_unique<std::tuple<int, int>>(0, 1);
template <class T, class... Args>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Args &&... args) {
  return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}

/// \brief Constructs a `new T[n]` with the given args and returns a
///        `unique_ptr<T[]>` which owns the object.
///
/// \param n size of the new array.
///
/// Example:
///
///     auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
template <class T>
typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
                        std::unique_ptr<T>>::type
make_unique(size_t n) {
  return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
}

/// This function isn't used and is only here to provide better compile errors.
template <class T, class... Args>
typename std::enable_if<std::extent<T>::value != 0>::type
make_unique(Args &&...) LLVM_DELETED_FUNCTION;

#else

template <class T>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique() {
  return std::unique_ptr<T>(new T());
}

template <class T, class Arg1>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1) {
  return std::unique_ptr<T>(new T(std::forward<Arg1>(arg1)));
}

template <class T, class Arg1, class Arg2>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2) {
  return std::unique_ptr<T>(
      new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2)));
}

template <class T, class Arg1, class Arg2, class Arg3>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3) {
  return std::unique_ptr<T>(new T(std::forward<Arg1>(arg1),
                                  std::forward<Arg2>(arg2),
                                  std::forward<Arg3>(arg3)));
}

template <class T, class Arg1, class Arg2, class Arg3, class Arg4>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4) {
  return std::unique_ptr<T>(
      new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
            std::forward<Arg3>(arg3), std::forward<Arg4>(arg4)));
}

template <class T, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4, Arg5 &&arg5) {
  return std::unique_ptr<T>(
      new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
            std::forward<Arg3>(arg3), std::forward<Arg4>(arg4),
            std::forward<Arg5>(arg5)));
}

template <class T, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
          class Arg6>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4, Arg5 &&arg5,
            Arg6 &&arg6) {
  return std::unique_ptr<T>(
      new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
            std::forward<Arg3>(arg3), std::forward<Arg4>(arg4),
            std::forward<Arg5>(arg5), std::forward<Arg6>(arg6)));
}

template <class T, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
          class Arg6, class Arg7>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4, Arg5 &&arg5,
            Arg6 &&arg6, Arg7 &&arg7) {
  return std::unique_ptr<T>(
      new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
            std::forward<Arg3>(arg3), std::forward<Arg4>(arg4),
            std::forward<Arg5>(arg5), std::forward<Arg6>(arg6),
            std::forward<Arg7>(arg7)));
}

template <class T, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
          class Arg6, class Arg7, class Arg8>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4, Arg5 &&arg5,
            Arg6 &&arg6, Arg7 &&arg7, Arg8 &&arg8) {
  return std::unique_ptr<T>(
      new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
            std::forward<Arg3>(arg3), std::forward<Arg4>(arg4),
            std::forward<Arg5>(arg5), std::forward<Arg6>(arg6),
            std::forward<Arg7>(arg7), std::forward<Arg8>(arg8)));
}

template <class T, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
          class Arg6, class Arg7, class Arg8, class Arg9>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4, Arg5 &&arg5,
            Arg6 &&arg6, Arg7 &&arg7, Arg8 &&arg8, Arg9 &&arg9) {
  return std::unique_ptr<T>(
      new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
            std::forward<Arg3>(arg3), std::forward<Arg4>(arg4),
            std::forward<Arg5>(arg5), std::forward<Arg6>(arg6),
            std::forward<Arg7>(arg7), std::forward<Arg8>(arg8),
            std::forward<Arg9>(arg9)));
}

template <class T, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
          class Arg6, class Arg7, class Arg8, class Arg9, class Arg10>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4, Arg5 &&arg5,
            Arg6 &&arg6, Arg7 &&arg7, Arg8 &&arg8, Arg9 &&arg9, Arg10 &&arg10) {
  return std::unique_ptr<T>(
      new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
            std::forward<Arg3>(arg3), std::forward<Arg4>(arg4),
            std::forward<Arg5>(arg5), std::forward<Arg6>(arg6),
            std::forward<Arg7>(arg7), std::forward<Arg8>(arg8),
            std::forward<Arg9>(arg9), std::forward<Arg10>(arg10)));
}

template <class T>
typename std::enable_if<std::is_array<T>::value &&std::extent<T>::value == 0,
                        std::unique_ptr<T>>::type
make_unique(size_t n) {
  return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
}

#endif

template<typename First, typename Second>
struct pair_hash {
  size_t operator()(const std::pair<First, Second> &P) const {
    return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
  }
};

} // End llvm namespace

#endif