1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
|
//===- IntervalIterator.h - Interval Iterator Declaration --------*- C++ -*--=//
//
// This file defines an iterator that enumerates the intervals in a control flow
// graph of some sort. This iterator is parametric, allowing iterator over the
// following types of graphs:
//
// 1. A Function* object, composed of BasicBlock nodes.
// 2. An IntervalPartition& object, composed of Interval nodes.
//
// This iterator is defined to walk the control flow graph, returning intervals
// in depth first order. These intervals are completely filled in except for
// the predecessor fields (the successor information is filled in however).
//
// By default, the intervals created by this iterator are deleted after they
// are no longer any use to the iterator. This behavior can be changed by
// passing a false value into the intervals_begin() function. This causes the
// IOwnMem member to be set, and the intervals to not be deleted.
//
// It is only safe to use this if all of the intervals are deleted by the caller
// and all of the intervals are processed. However, the user of the iterator is
// not allowed to modify or delete the intervals until after the iterator has
// been used completely. The IntervalPartition class uses this functionality.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_INTERVAL_ITERATOR_H
#define LLVM_INTERVAL_ITERATOR_H
#include "llvm/Analysis/IntervalPartition.h"
#include "llvm/Function.h"
#include "llvm/BasicBlock.h"
#include "llvm/Support/CFG.h"
#include <stack>
#include <set>
#include <algorithm>
// getNodeHeader - Given a source graph node and the source graph, return the
// BasicBlock that is the header node. This is the opposite of
// getSourceGraphNode.
//
inline BasicBlock *getNodeHeader(BasicBlock *BB) { return BB; }
inline BasicBlock *getNodeHeader(Interval *I) { return I->getHeaderNode(); }
// getSourceGraphNode - Given a BasicBlock and the source graph, return the
// source graph node that corresponds to the BasicBlock. This is the opposite
// of getNodeHeader.
//
inline BasicBlock *getSourceGraphNode(Function *, BasicBlock *BB) {
return BB;
}
inline Interval *getSourceGraphNode(IntervalPartition *IP, BasicBlock *BB) {
return IP->getBlockInterval(BB);
}
// addNodeToInterval - This method exists to assist the generic ProcessNode
// with the task of adding a node to the new interval, depending on the
// type of the source node. In the case of a CFG source graph (BasicBlock
// case), the BasicBlock itself is added to the interval.
//
inline void addNodeToInterval(Interval *Int, BasicBlock *BB) {
Int->Nodes.push_back(BB);
}
// addNodeToInterval - This method exists to assist the generic ProcessNode
// with the task of adding a node to the new interval, depending on the
// type of the source node. In the case of a CFG source graph (BasicBlock
// case), the BasicBlock itself is added to the interval. In the case of
// an IntervalPartition source graph (Interval case), all of the member
// BasicBlocks are added to the interval.
//
inline void addNodeToInterval(Interval *Int, Interval *I) {
// Add all of the nodes in I as new nodes in Int.
copy(I->Nodes.begin(), I->Nodes.end(), back_inserter(Int->Nodes));
}
template<class NodeTy, class OrigContainer_t>
class IntervalIterator {
std::stack<std::pair<Interval*, typename Interval::succ_iterator> > IntStack;
std::set<BasicBlock*> Visited;
OrigContainer_t *OrigContainer;
bool IOwnMem; // If True, delete intervals when done with them
// See file header for conditions of use
public:
typedef BasicBlock* _BB;
typedef IntervalIterator<NodeTy, OrigContainer_t> _Self;
typedef std::forward_iterator_tag iterator_category;
IntervalIterator() {} // End iterator, empty stack
IntervalIterator(Function *M, bool OwnMemory) : IOwnMem(OwnMemory) {
OrigContainer = M;
if (!ProcessInterval(M->front())) {
assert(0 && "ProcessInterval should never fail for first interval!");
}
}
IntervalIterator(IntervalPartition &IP, bool OwnMemory) : IOwnMem(OwnMemory) {
OrigContainer = &IP;
if (!ProcessInterval(IP.getRootInterval())) {
assert(0 && "ProcessInterval should never fail for first interval!");
}
}
inline ~IntervalIterator() {
if (IOwnMem)
while (!IntStack.empty()) {
delete operator*();
IntStack.pop();
}
}
inline bool operator==(const _Self& x) const { return IntStack == x.IntStack;}
inline bool operator!=(const _Self& x) const { return !operator==(x); }
inline const Interval *operator*() const { return IntStack.top().first; }
inline Interval *operator*() { return IntStack.top().first; }
inline const Interval *operator->() const { return operator*(); }
inline Interval *operator->() { return operator*(); }
_Self& operator++() { // Preincrement
assert(!IntStack.empty() && "Attempting to use interval iterator at end!");
do {
// All of the intervals on the stack have been visited. Try visiting
// their successors now.
Interval::succ_iterator &SuccIt = IntStack.top().second,
EndIt = succ_end(IntStack.top().first);
while (SuccIt != EndIt) { // Loop over all interval succs
bool Done = ProcessInterval(getSourceGraphNode(OrigContainer, *SuccIt));
++SuccIt; // Increment iterator
if (Done) return *this; // Found a new interval! Use it!
}
// Free interval memory... if neccesary
if (IOwnMem) delete IntStack.top().first;
// We ran out of successors for this interval... pop off the stack
IntStack.pop();
} while (!IntStack.empty());
return *this;
}
inline _Self operator++(int) { // Postincrement
_Self tmp = *this; ++*this; return tmp;
}
private:
// ProcessInterval - This method is used during the construction of the
// interval graph. It walks through the source graph, recursively creating
// an interval per invokation until the entire graph is covered. This uses
// the ProcessNode method to add all of the nodes to the interval.
//
// This method is templated because it may operate on two different source
// graphs: a basic block graph, or a preexisting interval graph.
//
bool ProcessInterval(NodeTy *Node) {
BasicBlock *Header = getNodeHeader(Node);
if (Visited.count(Header)) return false;
Interval *Int = new Interval(Header);
Visited.insert(Header); // The header has now been visited!
// Check all of our successors to see if they are in the interval...
for (typename NodeTy::succ_iterator I = succ_begin(Node),
E = succ_end(Node); I != E; ++I)
ProcessNode(Int, getSourceGraphNode(OrigContainer, *I));
IntStack.push(make_pair(Int, succ_begin(Int)));
return true;
}
// ProcessNode - This method is called by ProcessInterval to add nodes to the
// interval being constructed, and it is also called recursively as it walks
// the source graph. A node is added to the current interval only if all of
// its predecessors are already in the graph. This also takes care of keeping
// the successor set of an interval up to date.
//
// This method is templated because it may operate on two different source
// graphs: a basic block graph, or a preexisting interval graph.
//
void ProcessNode(Interval *Int, NodeTy *Node) {
assert(Int && "Null interval == bad!");
assert(Node && "Null Node == bad!");
BasicBlock *NodeHeader = getNodeHeader(Node);
if (Visited.count(NodeHeader)) { // Node already been visited?
if (Int->contains(NodeHeader)) { // Already in this interval...
return;
} else { // In other interval, add as successor
if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
Int->Successors.push_back(NodeHeader);
}
} else { // Otherwise, not in interval yet
for (typename NodeTy::pred_iterator I = pred_begin(Node),
E = pred_end(Node); I != E; ++I) {
if (!Int->contains(*I)) { // If pred not in interval, we can't be
if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
Int->Successors.push_back(NodeHeader);
return; // See you later
}
}
// If we get here, then all of the predecessors of BB are in the interval
// already. In this case, we must add BB to the interval!
addNodeToInterval(Int, Node);
Visited.insert(NodeHeader); // The node has now been visited!
if (Int->isSuccessor(NodeHeader)) {
// If we were in the successor list from before... remove from succ list
Int->Successors.erase(remove(Int->Successors.begin(),
Int->Successors.end(), NodeHeader),
Int->Successors.end());
}
// Now that we have discovered that Node is in the interval, perhaps some
// of its successors are as well?
for (typename NodeTy::succ_iterator It = succ_begin(Node),
End = succ_end(Node); It != End; ++It)
ProcessNode(Int, getSourceGraphNode(OrigContainer, *It));
}
}
};
typedef IntervalIterator<BasicBlock, Function> function_interval_iterator;
typedef IntervalIterator<Interval, IntervalPartition> interval_part_interval_iterator;
inline function_interval_iterator intervals_begin(Function *F,
bool DeleteInts = true) {
return function_interval_iterator(F, DeleteInts);
}
inline function_interval_iterator intervals_end(Function *) {
return function_interval_iterator();
}
inline interval_part_interval_iterator
intervals_begin(IntervalPartition &IP, bool DeleteIntervals = true) {
return interval_part_interval_iterator(IP, DeleteIntervals);
}
inline interval_part_interval_iterator intervals_end(IntervalPartition &IP) {
return interval_part_interval_iterator();
}
#endif
|