summaryrefslogtreecommitdiffstats
path: root/include/llvm/CodeGen/MachineScheduler.h
blob: 7d85432101b58535c095078dd578ccf9c0441cc6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
//==- MachineScheduler.h - MachineInstr Scheduling Pass ----------*- C++ -*-==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides an interface for customizing the standard MachineScheduler
// pass. Note that the entire pass may be replaced as follows:
//
// <Target>TargetMachine::createPassConfig(PassManagerBase &PM) {
//   PM.substitutePass(&MachineSchedulerID, &CustomSchedulerPassID);
//   ...}
//
// The MachineScheduler pass is only responsible for choosing the regions to be
// scheduled. Targets can override the DAG builder and scheduler without
// replacing the pass as follows:
//
// ScheduleDAGInstrs *<Target>PassConfig::
// createMachineScheduler(MachineSchedContext *C) {
//   return new CustomMachineScheduler(C);
// }
//
// The default scheduler, ScheduleDAGMILive, builds the DAG and drives list
// scheduling while updating the instruction stream, register pressure, and live
// intervals. Most targets don't need to override the DAG builder and list
// schedulier, but subtargets that require custom scheduling heuristics may
// plugin an alternate MachineSchedStrategy. The strategy is responsible for
// selecting the highest priority node from the list:
//
// ScheduleDAGInstrs *<Target>PassConfig::
// createMachineScheduler(MachineSchedContext *C) {
//   return new ScheduleDAGMI(C, CustomStrategy(C));
// }
//
// The DAG builder can also be customized in a sense by adding DAG mutations
// that will run after DAG building and before list scheduling. DAG mutations
// can adjust dependencies based on target-specific knowledge or add weak edges
// to aid heuristics:
//
// ScheduleDAGInstrs *<Target>PassConfig::
// createMachineScheduler(MachineSchedContext *C) {
//   ScheduleDAGMI *DAG = new ScheduleDAGMI(C, CustomStrategy(C));
//   DAG->addMutation(new CustomDependencies(DAG->TII, DAG->TRI));
//   return DAG;
// }
//
// A target that supports alternative schedulers can use the
// MachineSchedRegistry to allow command line selection. This can be done by
// implementing the following boilerplate:
//
// static ScheduleDAGInstrs *createCustomMachineSched(MachineSchedContext *C) {
//  return new CustomMachineScheduler(C);
// }
// static MachineSchedRegistry
// SchedCustomRegistry("custom", "Run my target's custom scheduler",
//                     createCustomMachineSched);
//
//
// Finally, subtargets that don't need to implement custom heuristics but would
// like to configure the GenericScheduler's policy for a given scheduler region,
// including scheduling direction and register pressure tracking policy, can do
// this:
//
// void <SubTarget>Subtarget::
// overrideSchedPolicy(MachineSchedPolicy &Policy,
//                     MachineInstr *begin,
//                     MachineInstr *end,
//                     unsigned NumRegionInstrs) const {
//   Policy.<Flag> = true;
// }
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_MACHINESCHEDULER_H
#define LLVM_CODEGEN_MACHINESCHEDULER_H

#include "llvm/CodeGen/MachinePassRegistry.h"
#include "llvm/CodeGen/RegisterPressure.h"
#include "llvm/CodeGen/ScheduleDAGInstrs.h"

#include <memory>

namespace llvm {

extern cl::opt<bool> ForceTopDown;
extern cl::opt<bool> ForceBottomUp;

class AliasAnalysis;
class LiveIntervals;
class MachineDominatorTree;
class MachineLoopInfo;
class RegisterClassInfo;
class ScheduleDAGInstrs;
class SchedDFSResult;
class ScheduleHazardRecognizer;

/// MachineSchedContext provides enough context from the MachineScheduler pass
/// for the target to instantiate a scheduler.
struct MachineSchedContext {
  MachineFunction *MF;
  const MachineLoopInfo *MLI;
  const MachineDominatorTree *MDT;
  const TargetPassConfig *PassConfig;
  AliasAnalysis *AA;
  LiveIntervals *LIS;

  RegisterClassInfo *RegClassInfo;

  MachineSchedContext();
  virtual ~MachineSchedContext();
};

/// MachineSchedRegistry provides a selection of available machine instruction
/// schedulers.
class MachineSchedRegistry : public MachinePassRegistryNode {
public:
  typedef ScheduleDAGInstrs *(*ScheduleDAGCtor)(MachineSchedContext *);

  // RegisterPassParser requires a (misnamed) FunctionPassCtor type.
  typedef ScheduleDAGCtor FunctionPassCtor;

  static MachinePassRegistry Registry;

  MachineSchedRegistry(const char *N, const char *D, ScheduleDAGCtor C)
    : MachinePassRegistryNode(N, D, (MachinePassCtor)C) {
    Registry.Add(this);
  }
  ~MachineSchedRegistry() { Registry.Remove(this); }

  // Accessors.
  //
  MachineSchedRegistry *getNext() const {
    return (MachineSchedRegistry *)MachinePassRegistryNode::getNext();
  }
  static MachineSchedRegistry *getList() {
    return (MachineSchedRegistry *)Registry.getList();
  }
  static void setListener(MachinePassRegistryListener *L) {
    Registry.setListener(L);
  }
};

class ScheduleDAGMI;

/// Define a generic scheduling policy for targets that don't provide their own
/// MachineSchedStrategy. This can be overriden for each scheduling region
/// before building the DAG.
struct MachineSchedPolicy {
  // Allow the scheduler to disable register pressure tracking.
  bool ShouldTrackPressure;

  // Allow the scheduler to force top-down or bottom-up scheduling. If neither
  // is true, the scheduler runs in both directions and converges.
  bool OnlyTopDown;
  bool OnlyBottomUp;

  MachineSchedPolicy(): ShouldTrackPressure(false), OnlyTopDown(false),
    OnlyBottomUp(false) {}
};

/// MachineSchedStrategy - Interface to the scheduling algorithm used by
/// ScheduleDAGMI.
///
/// Initialization sequence:
///   initPolicy -> shouldTrackPressure -> initialize(DAG) -> registerRoots
class MachineSchedStrategy {
  virtual void anchor();
public:
  virtual ~MachineSchedStrategy() {}

  /// Optionally override the per-region scheduling policy.
  virtual void initPolicy(MachineBasicBlock::iterator Begin,
                          MachineBasicBlock::iterator End,
                          unsigned NumRegionInstrs) {}

  /// Check if pressure tracking is needed before building the DAG and
  /// initializing this strategy. Called after initPolicy.
  virtual bool shouldTrackPressure() const { return true; }

  /// Initialize the strategy after building the DAG for a new region.
  virtual void initialize(ScheduleDAGMI *DAG) = 0;

  /// Notify this strategy that all roots have been released (including those
  /// that depend on EntrySU or ExitSU).
  virtual void registerRoots() {}

  /// Pick the next node to schedule, or return NULL. Set IsTopNode to true to
  /// schedule the node at the top of the unscheduled region. Otherwise it will
  /// be scheduled at the bottom.
  virtual SUnit *pickNode(bool &IsTopNode) = 0;

  /// \brief Scheduler callback to notify that a new subtree is scheduled.
  virtual void scheduleTree(unsigned SubtreeID) {}

  /// Notify MachineSchedStrategy that ScheduleDAGMI has scheduled an
  /// instruction and updated scheduled/remaining flags in the DAG nodes.
  virtual void schedNode(SUnit *SU, bool IsTopNode) = 0;

  /// When all predecessor dependencies have been resolved, free this node for
  /// top-down scheduling.
  virtual void releaseTopNode(SUnit *SU) = 0;
  /// When all successor dependencies have been resolved, free this node for
  /// bottom-up scheduling.
  virtual void releaseBottomNode(SUnit *SU) = 0;
};

/// Mutate the DAG as a postpass after normal DAG building.
class ScheduleDAGMutation {
  virtual void anchor();
public:
  virtual ~ScheduleDAGMutation() {}

  virtual void apply(ScheduleDAGMI *DAG) = 0;
};

/// ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply
/// schedules machine instructions according to the given MachineSchedStrategy
/// without much extra book-keeping. This is the common functionality between
/// PreRA and PostRA MachineScheduler.
class ScheduleDAGMI : public ScheduleDAGInstrs {
protected:
  AliasAnalysis *AA;
  std::unique_ptr<MachineSchedStrategy> SchedImpl;

  /// Topo - A topological ordering for SUnits which permits fast IsReachable
  /// and similar queries.
  ScheduleDAGTopologicalSort Topo;

  /// Ordered list of DAG postprocessing steps.
  std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;

  /// The top of the unscheduled zone.
  MachineBasicBlock::iterator CurrentTop;

  /// The bottom of the unscheduled zone.
  MachineBasicBlock::iterator CurrentBottom;

  /// Record the next node in a scheduled cluster.
  const SUnit *NextClusterPred;
  const SUnit *NextClusterSucc;

#ifndef NDEBUG
  /// The number of instructions scheduled so far. Used to cut off the
  /// scheduler at the point determined by misched-cutoff.
  unsigned NumInstrsScheduled;
#endif
public:
  ScheduleDAGMI(MachineSchedContext *C, std::unique_ptr<MachineSchedStrategy> S,
                bool IsPostRA)
      : ScheduleDAGInstrs(*C->MF, *C->MLI, *C->MDT, IsPostRA,
                          /*RemoveKillFlags=*/IsPostRA, C->LIS),
        AA(C->AA), SchedImpl(std::move(S)), Topo(SUnits, &ExitSU), CurrentTop(),
        CurrentBottom(), NextClusterPred(nullptr), NextClusterSucc(nullptr) {
#ifndef NDEBUG
    NumInstrsScheduled = 0;
#endif
  }

  // Provide a vtable anchor
  ~ScheduleDAGMI() override;

  /// Return true if this DAG supports VReg liveness and RegPressure.
  virtual bool hasVRegLiveness() const { return false; }

  /// Add a postprocessing step to the DAG builder.
  /// Mutations are applied in the order that they are added after normal DAG
  /// building and before MachineSchedStrategy initialization.
  ///
  /// ScheduleDAGMI takes ownership of the Mutation object.
  void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
    Mutations.push_back(std::move(Mutation));
  }

  /// \brief True if an edge can be added from PredSU to SuccSU without creating
  /// a cycle.
  bool canAddEdge(SUnit *SuccSU, SUnit *PredSU);

  /// \brief Add a DAG edge to the given SU with the given predecessor
  /// dependence data.
  ///
  /// \returns true if the edge may be added without creating a cycle OR if an
  /// equivalent edge already existed (false indicates failure).
  bool addEdge(SUnit *SuccSU, const SDep &PredDep);

  MachineBasicBlock::iterator top() const { return CurrentTop; }
  MachineBasicBlock::iterator bottom() const { return CurrentBottom; }

  /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
  /// region. This covers all instructions in a block, while schedule() may only
  /// cover a subset.
  void enterRegion(MachineBasicBlock *bb,
                   MachineBasicBlock::iterator begin,
                   MachineBasicBlock::iterator end,
                   unsigned regioninstrs) override;

  /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
  /// reorderable instructions.
  void schedule() override;

  /// Change the position of an instruction within the basic block and update
  /// live ranges and region boundary iterators.
  void moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos);

  const SUnit *getNextClusterPred() const { return NextClusterPred; }

  const SUnit *getNextClusterSucc() const { return NextClusterSucc; }

  void viewGraph(const Twine &Name, const Twine &Title) override;
  void viewGraph() override;

protected:
  // Top-Level entry points for the schedule() driver...

  /// Apply each ScheduleDAGMutation step in order. This allows different
  /// instances of ScheduleDAGMI to perform custom DAG postprocessing.
  void postprocessDAG();

  /// Release ExitSU predecessors and setup scheduler queues.
  void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots);

  /// Update scheduler DAG and queues after scheduling an instruction.
  void updateQueues(SUnit *SU, bool IsTopNode);

  /// Reinsert debug_values recorded in ScheduleDAGInstrs::DbgValues.
  void placeDebugValues();

  /// \brief dump the scheduled Sequence.
  void dumpSchedule() const;

  // Lesser helpers...
  bool checkSchedLimit();

  void findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
                             SmallVectorImpl<SUnit*> &BotRoots);

  void releaseSucc(SUnit *SU, SDep *SuccEdge);
  void releaseSuccessors(SUnit *SU);
  void releasePred(SUnit *SU, SDep *PredEdge);
  void releasePredecessors(SUnit *SU);
};

/// ScheduleDAGMILive is an implementation of ScheduleDAGInstrs that schedules
/// machine instructions while updating LiveIntervals and tracking regpressure.
class ScheduleDAGMILive : public ScheduleDAGMI {
protected:
  RegisterClassInfo *RegClassInfo;

  /// Information about DAG subtrees. If DFSResult is NULL, then SchedulerTrees
  /// will be empty.
  SchedDFSResult *DFSResult;
  BitVector ScheduledTrees;

  MachineBasicBlock::iterator LiveRegionEnd;

  // Map each SU to its summary of pressure changes. This array is updated for
  // liveness during bottom-up scheduling. Top-down scheduling may proceed but
  // has no affect on the pressure diffs.
  PressureDiffs SUPressureDiffs;

  /// Register pressure in this region computed by initRegPressure.
  bool ShouldTrackPressure;
  IntervalPressure RegPressure;
  RegPressureTracker RPTracker;

  /// List of pressure sets that exceed the target's pressure limit before
  /// scheduling, listed in increasing set ID order. Each pressure set is paired
  /// with its max pressure in the currently scheduled regions.
  std::vector<PressureChange> RegionCriticalPSets;

  /// The top of the unscheduled zone.
  IntervalPressure TopPressure;
  RegPressureTracker TopRPTracker;

  /// The bottom of the unscheduled zone.
  IntervalPressure BotPressure;
  RegPressureTracker BotRPTracker;

public:
  ScheduleDAGMILive(MachineSchedContext *C,
                    std::unique_ptr<MachineSchedStrategy> S)
      : ScheduleDAGMI(C, std::move(S), /*IsPostRA=*/false),
        RegClassInfo(C->RegClassInfo), DFSResult(nullptr),
        ShouldTrackPressure(false), RPTracker(RegPressure),
        TopRPTracker(TopPressure), BotRPTracker(BotPressure) {}

  virtual ~ScheduleDAGMILive();

  /// Return true if this DAG supports VReg liveness and RegPressure.
  bool hasVRegLiveness() const override { return true; }

  /// \brief Return true if register pressure tracking is enabled.
  bool isTrackingPressure() const { return ShouldTrackPressure; }

  /// Get current register pressure for the top scheduled instructions.
  const IntervalPressure &getTopPressure() const { return TopPressure; }
  const RegPressureTracker &getTopRPTracker() const { return TopRPTracker; }

  /// Get current register pressure for the bottom scheduled instructions.
  const IntervalPressure &getBotPressure() const { return BotPressure; }
  const RegPressureTracker &getBotRPTracker() const { return BotRPTracker; }

  /// Get register pressure for the entire scheduling region before scheduling.
  const IntervalPressure &getRegPressure() const { return RegPressure; }

  const std::vector<PressureChange> &getRegionCriticalPSets() const {
    return RegionCriticalPSets;
  }

  PressureDiff &getPressureDiff(const SUnit *SU) {
    return SUPressureDiffs[SU->NodeNum];
  }

  /// Compute a DFSResult after DAG building is complete, and before any
  /// queue comparisons.
  void computeDFSResult();

  /// Return a non-null DFS result if the scheduling strategy initialized it.
  const SchedDFSResult *getDFSResult() const { return DFSResult; }

  BitVector &getScheduledTrees() { return ScheduledTrees; }

  /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
  /// region. This covers all instructions in a block, while schedule() may only
  /// cover a subset.
  void enterRegion(MachineBasicBlock *bb,
                   MachineBasicBlock::iterator begin,
                   MachineBasicBlock::iterator end,
                   unsigned regioninstrs) override;

  /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
  /// reorderable instructions.
  void schedule() override;

  /// Compute the cyclic critical path through the DAG.
  unsigned computeCyclicCriticalPath();

protected:
  // Top-Level entry points for the schedule() driver...

  /// Call ScheduleDAGInstrs::buildSchedGraph with register pressure tracking
  /// enabled. This sets up three trackers. RPTracker will cover the entire DAG
  /// region, TopTracker and BottomTracker will be initialized to the top and
  /// bottom of the DAG region without covereing any unscheduled instruction.
  void buildDAGWithRegPressure();

  /// Move an instruction and update register pressure.
  void scheduleMI(SUnit *SU, bool IsTopNode);

  // Lesser helpers...

  void initRegPressure();

  void updatePressureDiffs(ArrayRef<unsigned> LiveUses);

  void updateScheduledPressure(const SUnit *SU,
                               const std::vector<unsigned> &NewMaxPressure);
};

//===----------------------------------------------------------------------===//
///
/// Helpers for implementing custom MachineSchedStrategy classes. These take
/// care of the book-keeping associated with list scheduling heuristics.
///
//===----------------------------------------------------------------------===//

/// ReadyQueue encapsulates vector of "ready" SUnits with basic convenience
/// methods for pushing and removing nodes. ReadyQueue's are uniquely identified
/// by an ID. SUnit::NodeQueueId is a mask of the ReadyQueues the SUnit is in.
///
/// This is a convenience class that may be used by implementations of
/// MachineSchedStrategy.
class ReadyQueue {
  unsigned ID;
  std::string Name;
  std::vector<SUnit*> Queue;

public:
  ReadyQueue(unsigned id, const Twine &name): ID(id), Name(name.str()) {}

  unsigned getID() const { return ID; }

  StringRef getName() const { return Name; }

  // SU is in this queue if it's NodeQueueID is a superset of this ID.
  bool isInQueue(SUnit *SU) const { return (SU->NodeQueueId & ID); }

  bool empty() const { return Queue.empty(); }

  void clear() { Queue.clear(); }

  unsigned size() const { return Queue.size(); }

  typedef std::vector<SUnit*>::iterator iterator;

  iterator begin() { return Queue.begin(); }

  iterator end() { return Queue.end(); }

  ArrayRef<SUnit*> elements() { return Queue; }

  iterator find(SUnit *SU) {
    return std::find(Queue.begin(), Queue.end(), SU);
  }

  void push(SUnit *SU) {
    Queue.push_back(SU);
    SU->NodeQueueId |= ID;
  }

  iterator remove(iterator I) {
    (*I)->NodeQueueId &= ~ID;
    *I = Queue.back();
    unsigned idx = I - Queue.begin();
    Queue.pop_back();
    return Queue.begin() + idx;
  }

  void dump();
};

/// Summarize the unscheduled region.
struct SchedRemainder {
  // Critical path through the DAG in expected latency.
  unsigned CriticalPath;
  unsigned CyclicCritPath;

  // Scaled count of micro-ops left to schedule.
  unsigned RemIssueCount;

  bool IsAcyclicLatencyLimited;

  // Unscheduled resources
  SmallVector<unsigned, 16> RemainingCounts;

  void reset() {
    CriticalPath = 0;
    CyclicCritPath = 0;
    RemIssueCount = 0;
    IsAcyclicLatencyLimited = false;
    RemainingCounts.clear();
  }

  SchedRemainder() { reset(); }

  void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
};

/// Each Scheduling boundary is associated with ready queues. It tracks the
/// current cycle in the direction of movement, and maintains the state
/// of "hazards" and other interlocks at the current cycle.
class SchedBoundary {
public:
  /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
  enum {
    TopQID = 1,
    BotQID = 2,
    LogMaxQID = 2
  };

  ScheduleDAGMI *DAG;
  const TargetSchedModel *SchedModel;
  SchedRemainder *Rem;

  ReadyQueue Available;
  ReadyQueue Pending;

  ScheduleHazardRecognizer *HazardRec;

private:
  /// True if the pending Q should be checked/updated before scheduling another
  /// instruction.
  bool CheckPending;

  // For heuristics, keep a list of the nodes that immediately depend on the
  // most recently scheduled node.
  SmallPtrSet<const SUnit*, 8> NextSUs;

  /// Number of cycles it takes to issue the instructions scheduled in this
  /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls.
  /// See getStalls().
  unsigned CurrCycle;

  /// Micro-ops issued in the current cycle
  unsigned CurrMOps;

  /// MinReadyCycle - Cycle of the soonest available instruction.
  unsigned MinReadyCycle;

  // The expected latency of the critical path in this scheduled zone.
  unsigned ExpectedLatency;

  // The latency of dependence chains leading into this zone.
  // For each node scheduled bottom-up: DLat = max DLat, N.Depth.
  // For each cycle scheduled: DLat -= 1.
  unsigned DependentLatency;

  /// Count the scheduled (issued) micro-ops that can be retired by
  /// time=CurrCycle assuming the first scheduled instr is retired at time=0.
  unsigned RetiredMOps;

  // Count scheduled resources that have been executed. Resources are
  // considered executed if they become ready in the time that it takes to
  // saturate any resource including the one in question. Counts are scaled
  // for direct comparison with other resources. Counts can be compared with
  // MOps * getMicroOpFactor and Latency * getLatencyFactor.
  SmallVector<unsigned, 16> ExecutedResCounts;

  /// Cache the max count for a single resource.
  unsigned MaxExecutedResCount;

  // Cache the critical resources ID in this scheduled zone.
  unsigned ZoneCritResIdx;

  // Is the scheduled region resource limited vs. latency limited.
  bool IsResourceLimited;

  // Record the highest cycle at which each resource has been reserved by a
  // scheduled instruction.
  SmallVector<unsigned, 16> ReservedCycles;

#ifndef NDEBUG
  // Remember the greatest possible stall as an upper bound on the number of
  // times we should retry the pending queue because of a hazard.
  unsigned MaxObservedStall;
#endif

public:
  /// Pending queues extend the ready queues with the same ID and the
  /// PendingFlag set.
  SchedBoundary(unsigned ID, const Twine &Name):
    DAG(nullptr), SchedModel(nullptr), Rem(nullptr), Available(ID, Name+".A"),
    Pending(ID << LogMaxQID, Name+".P"),
    HazardRec(nullptr) {
    reset();
  }

  ~SchedBoundary();

  void reset();

  void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
            SchedRemainder *rem);

  bool isTop() const {
    return Available.getID() == TopQID;
  }

  /// Number of cycles to issue the instructions scheduled in this zone.
  unsigned getCurrCycle() const { return CurrCycle; }

  /// Micro-ops issued in the current cycle
  unsigned getCurrMOps() const { return CurrMOps; }

  /// Return true if the given SU is used by the most recently scheduled
  /// instruction.
  bool isNextSU(const SUnit *SU) const { return NextSUs.count(SU); }

  // The latency of dependence chains leading into this zone.
  unsigned getDependentLatency() const { return DependentLatency; }

  /// Get the number of latency cycles "covered" by the scheduled
  /// instructions. This is the larger of the critical path within the zone
  /// and the number of cycles required to issue the instructions.
  unsigned getScheduledLatency() const {
    return std::max(ExpectedLatency, CurrCycle);
  }

  unsigned getUnscheduledLatency(SUnit *SU) const {
    return isTop() ? SU->getHeight() : SU->getDepth();
  }

  unsigned getResourceCount(unsigned ResIdx) const {
    return ExecutedResCounts[ResIdx];
  }

  /// Get the scaled count of scheduled micro-ops and resources, including
  /// executed resources.
  unsigned getCriticalCount() const {
    if (!ZoneCritResIdx)
      return RetiredMOps * SchedModel->getMicroOpFactor();
    return getResourceCount(ZoneCritResIdx);
  }

  /// Get a scaled count for the minimum execution time of the scheduled
  /// micro-ops that are ready to execute by getExecutedCount. Notice the
  /// feedback loop.
  unsigned getExecutedCount() const {
    return std::max(CurrCycle * SchedModel->getLatencyFactor(),
                    MaxExecutedResCount);
  }

  unsigned getZoneCritResIdx() const { return ZoneCritResIdx; }

  // Is the scheduled region resource limited vs. latency limited.
  bool isResourceLimited() const { return IsResourceLimited; }

  /// Get the difference between the given SUnit's ready time and the current
  /// cycle.
  unsigned getLatencyStallCycles(SUnit *SU);

  unsigned getNextResourceCycle(unsigned PIdx, unsigned Cycles);

  bool checkHazard(SUnit *SU);

  unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs);

  unsigned getOtherResourceCount(unsigned &OtherCritIdx);

  void releaseNode(SUnit *SU, unsigned ReadyCycle);

  void releaseTopNode(SUnit *SU);

  void releaseBottomNode(SUnit *SU);

  void bumpCycle(unsigned NextCycle);

  void incExecutedResources(unsigned PIdx, unsigned Count);

  unsigned countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle);

  void bumpNode(SUnit *SU);

  void releasePending();

  void removeReady(SUnit *SU);

  /// Call this before applying any other heuristics to the Available queue.
  /// Updates the Available/Pending Q's if necessary and returns the single
  /// available instruction, or NULL if there are multiple candidates.
  SUnit *pickOnlyChoice();

#ifndef NDEBUG
  void dumpScheduledState();
#endif
};

/// Base class for GenericScheduler. This class maintains information about
/// scheduling candidates based on TargetSchedModel making it easy to implement
/// heuristics for either preRA or postRA scheduling.
class GenericSchedulerBase : public MachineSchedStrategy {
public:
  /// Represent the type of SchedCandidate found within a single queue.
  /// pickNodeBidirectional depends on these listed by decreasing priority.
  enum CandReason {
    NoCand, PhysRegCopy, RegExcess, RegCritical, Stall, Cluster, Weak, RegMax,
    ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
    TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder};

#ifndef NDEBUG
  static const char *getReasonStr(GenericSchedulerBase::CandReason Reason);
#endif

  /// Policy for scheduling the next instruction in the candidate's zone.
  struct CandPolicy {
    bool ReduceLatency;
    unsigned ReduceResIdx;
    unsigned DemandResIdx;

    CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {}
  };

  /// Status of an instruction's critical resource consumption.
  struct SchedResourceDelta {
    // Count critical resources in the scheduled region required by SU.
    unsigned CritResources;

    // Count critical resources from another region consumed by SU.
    unsigned DemandedResources;

    SchedResourceDelta(): CritResources(0), DemandedResources(0) {}

    bool operator==(const SchedResourceDelta &RHS) const {
      return CritResources == RHS.CritResources
        && DemandedResources == RHS.DemandedResources;
    }
    bool operator!=(const SchedResourceDelta &RHS) const {
      return !operator==(RHS);
    }
  };

  /// Store the state used by GenericScheduler heuristics, required for the
  /// lifetime of one invocation of pickNode().
  struct SchedCandidate {
    CandPolicy Policy;

    // The best SUnit candidate.
    SUnit *SU;

    // The reason for this candidate.
    CandReason Reason;

    // Set of reasons that apply to multiple candidates.
    uint32_t RepeatReasonSet;

    // Register pressure values for the best candidate.
    RegPressureDelta RPDelta;

    // Critical resource consumption of the best candidate.
    SchedResourceDelta ResDelta;

    SchedCandidate(const CandPolicy &policy)
      : Policy(policy), SU(nullptr), Reason(NoCand), RepeatReasonSet(0) {}

    bool isValid() const { return SU; }

    // Copy the status of another candidate without changing policy.
    void setBest(SchedCandidate &Best) {
      assert(Best.Reason != NoCand && "uninitialized Sched candidate");
      SU = Best.SU;
      Reason = Best.Reason;
      RPDelta = Best.RPDelta;
      ResDelta = Best.ResDelta;
    }

    bool isRepeat(CandReason R) { return RepeatReasonSet & (1 << R); }
    void setRepeat(CandReason R) { RepeatReasonSet |= (1 << R); }

    void initResourceDelta(const ScheduleDAGMI *DAG,
                           const TargetSchedModel *SchedModel);
  };

protected:
  const MachineSchedContext *Context;
  const TargetSchedModel *SchedModel;
  const TargetRegisterInfo *TRI;

  SchedRemainder Rem;
protected:
  GenericSchedulerBase(const MachineSchedContext *C):
    Context(C), SchedModel(nullptr), TRI(nullptr) {}

  void setPolicy(CandPolicy &Policy, bool IsPostRA, SchedBoundary &CurrZone,
                 SchedBoundary *OtherZone);

#ifndef NDEBUG
  void traceCandidate(const SchedCandidate &Cand);
#endif
};

/// GenericScheduler shrinks the unscheduled zone using heuristics to balance
/// the schedule.
class GenericScheduler : public GenericSchedulerBase {
  ScheduleDAGMILive *DAG;

  // State of the top and bottom scheduled instruction boundaries.
  SchedBoundary Top;
  SchedBoundary Bot;

  MachineSchedPolicy RegionPolicy;
public:
  GenericScheduler(const MachineSchedContext *C):
    GenericSchedulerBase(C), DAG(nullptr), Top(SchedBoundary::TopQID, "TopQ"),
    Bot(SchedBoundary::BotQID, "BotQ") {}

  void initPolicy(MachineBasicBlock::iterator Begin,
                  MachineBasicBlock::iterator End,
                  unsigned NumRegionInstrs) override;

  bool shouldTrackPressure() const override {
    return RegionPolicy.ShouldTrackPressure;
  }

  void initialize(ScheduleDAGMI *dag) override;

  SUnit *pickNode(bool &IsTopNode) override;

  void schedNode(SUnit *SU, bool IsTopNode) override;

  void releaseTopNode(SUnit *SU) override {
    Top.releaseTopNode(SU);
  }

  void releaseBottomNode(SUnit *SU) override {
    Bot.releaseBottomNode(SU);
  }

  void registerRoots() override;

protected:
  void checkAcyclicLatency();

  void tryCandidate(SchedCandidate &Cand,
                    SchedCandidate &TryCand,
                    SchedBoundary &Zone,
                    const RegPressureTracker &RPTracker,
                    RegPressureTracker &TempTracker);

  SUnit *pickNodeBidirectional(bool &IsTopNode);

  void pickNodeFromQueue(SchedBoundary &Zone,
                         const RegPressureTracker &RPTracker,
                         SchedCandidate &Candidate);

  void reschedulePhysRegCopies(SUnit *SU, bool isTop);
};

/// PostGenericScheduler - Interface to the scheduling algorithm used by
/// ScheduleDAGMI.
///
/// Callbacks from ScheduleDAGMI:
///   initPolicy -> initialize(DAG) -> registerRoots -> pickNode ...
class PostGenericScheduler : public GenericSchedulerBase {
  ScheduleDAGMI *DAG;
  SchedBoundary Top;
  SmallVector<SUnit*, 8> BotRoots;
public:
  PostGenericScheduler(const MachineSchedContext *C):
    GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ") {}

  virtual ~PostGenericScheduler() {}

  void initPolicy(MachineBasicBlock::iterator Begin,
                  MachineBasicBlock::iterator End,
                  unsigned NumRegionInstrs) override {
    /* no configurable policy */
  };

  /// PostRA scheduling does not track pressure.
  bool shouldTrackPressure() const override { return false; }

  void initialize(ScheduleDAGMI *Dag) override;

  void registerRoots() override;

  SUnit *pickNode(bool &IsTopNode) override;

  void scheduleTree(unsigned SubtreeID) override {
    llvm_unreachable("PostRA scheduler does not support subtree analysis.");
  }

  void schedNode(SUnit *SU, bool IsTopNode) override;

  void releaseTopNode(SUnit *SU) override {
    Top.releaseTopNode(SU);
  }

  // Only called for roots.
  void releaseBottomNode(SUnit *SU) override {
    BotRoots.push_back(SU);
  }

protected:
  void tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand);

  void pickNodeFromQueue(SchedCandidate &Cand);
};

} // namespace llvm

#endif