1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
|
//===-- Briggs.h --- Briggs Heuristic for PBQP ------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class implements the Briggs test for "allocability" of nodes in a
// PBQP graph representing a register allocation problem. Nodes which can be
// proven allocable (by a safe and relatively accurate test) are removed from
// the PBQP graph first. If no provably allocable node is present in the graph
// then the node with the minimal spill-cost to degree ratio is removed.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H
#define LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H
#include "../HeuristicBase.h"
#include "../HeuristicSolver.h"
#include <limits>
namespace PBQP {
namespace Heuristics {
/// \brief PBQP Heuristic which applies an allocability test based on
/// Briggs.
///
/// This heuristic assumes that the elements of cost vectors in the PBQP
/// problem represent storage options, with the first being the spill
/// option and subsequent elements representing legal registers for the
/// corresponding node. Edge cost matrices are likewise assumed to represent
/// register constraints.
/// If one or more nodes can be proven allocable by this heuristic (by
/// inspection of their constraint matrices) then the allocable node of
/// highest degree is selected for the next reduction and pushed to the
/// solver stack. If no nodes can be proven allocable then the node with
/// the lowest estimated spill cost is selected and push to the solver stack
/// instead.
///
/// This implementation is built on top of HeuristicBase.
class Briggs : public HeuristicBase<Briggs> {
private:
class LinkDegreeComparator {
public:
LinkDegreeComparator(HeuristicSolverImpl<Briggs> &s) : s(&s) {}
bool operator()(Graph::NodeId n1Id, Graph::NodeId n2Id) const {
if (s->getSolverDegree(n1Id) > s->getSolverDegree(n2Id))
return true;
return false;
}
private:
HeuristicSolverImpl<Briggs> *s;
};
class SpillCostComparator {
public:
SpillCostComparator(HeuristicSolverImpl<Briggs> &s)
: s(&s), g(&s.getGraph()) {}
bool operator()(Graph::NodeId n1Id, Graph::NodeId n2Id) const {
const PBQP::Vector &cv1 = g->getNodeCosts(n1Id);
const PBQP::Vector &cv2 = g->getNodeCosts(n2Id);
PBQPNum cost1 = cv1[0] / s->getSolverDegree(n1Id);
PBQPNum cost2 = cv2[0] / s->getSolverDegree(n2Id);
if (cost1 < cost2)
return true;
return false;
}
private:
HeuristicSolverImpl<Briggs> *s;
Graph *g;
};
typedef std::list<Graph::NodeId> RNAllocableList;
typedef RNAllocableList::iterator RNAllocableListItr;
typedef std::list<Graph::NodeId> RNUnallocableList;
typedef RNUnallocableList::iterator RNUnallocableListItr;
public:
struct NodeData {
typedef std::vector<unsigned> UnsafeDegreesArray;
bool isHeuristic, isAllocable, isInitialized;
unsigned numDenied, numSafe;
UnsafeDegreesArray unsafeDegrees;
RNAllocableListItr rnaItr;
RNUnallocableListItr rnuItr;
NodeData()
: isHeuristic(false), isAllocable(false), isInitialized(false),
numDenied(0), numSafe(0) { }
};
struct EdgeData {
typedef std::vector<unsigned> UnsafeArray;
unsigned worst, reverseWorst;
UnsafeArray unsafe, reverseUnsafe;
bool isUpToDate;
EdgeData() : worst(0), reverseWorst(0), isUpToDate(false) {}
};
/// \brief Construct an instance of the Briggs heuristic.
/// @param solver A reference to the solver which is using this heuristic.
Briggs(HeuristicSolverImpl<Briggs> &solver) :
HeuristicBase<Briggs>(solver) {}
/// \brief Determine whether a node should be reduced using optimal
/// reduction.
/// @param nId Node id to be considered.
/// @return True if the given node should be optimally reduced, false
/// otherwise.
///
/// Selects nodes of degree 0, 1 or 2 for optimal reduction, with one
/// exception. Nodes whose spill cost (element 0 of their cost vector) is
/// infinite are checked for allocability first. Allocable nodes may be
/// optimally reduced, but nodes whose allocability cannot be proven are
/// selected for heuristic reduction instead.
bool shouldOptimallyReduce(Graph::NodeId nId) {
if (getSolver().getSolverDegree(nId) < 3) {
return true;
}
// else
return false;
}
/// \brief Add a node to the heuristic reduce list.
/// @param nId Node id to add to the heuristic reduce list.
void addToHeuristicReduceList(Graph::NodeId nId) {
NodeData &nd = getHeuristicNodeData(nId);
initializeNode(nId);
nd.isHeuristic = true;
if (nd.isAllocable) {
nd.rnaItr = rnAllocableList.insert(rnAllocableList.end(), nId);
} else {
nd.rnuItr = rnUnallocableList.insert(rnUnallocableList.end(), nId);
}
}
/// \brief Heuristically reduce one of the nodes in the heuristic
/// reduce list.
/// @return True if a reduction takes place, false if the heuristic reduce
/// list is empty.
///
/// If the list of allocable nodes is non-empty a node is selected
/// from it and pushed to the stack. Otherwise if the non-allocable list
/// is non-empty a node is selected from it and pushed to the stack.
/// If both lists are empty the method simply returns false with no action
/// taken.
bool heuristicReduce() {
if (!rnAllocableList.empty()) {
RNAllocableListItr rnaItr =
min_element(rnAllocableList.begin(), rnAllocableList.end(),
LinkDegreeComparator(getSolver()));
Graph::NodeId nId = *rnaItr;
rnAllocableList.erase(rnaItr);
handleRemoveNode(nId);
getSolver().pushToStack(nId);
return true;
} else if (!rnUnallocableList.empty()) {
RNUnallocableListItr rnuItr =
min_element(rnUnallocableList.begin(), rnUnallocableList.end(),
SpillCostComparator(getSolver()));
Graph::NodeId nId = *rnuItr;
rnUnallocableList.erase(rnuItr);
handleRemoveNode(nId);
getSolver().pushToStack(nId);
return true;
}
// else
return false;
}
/// \brief Prepare a change in the costs on the given edge.
/// @param eId Edge id.
void preUpdateEdgeCosts(Graph::EdgeId eId) {
Graph &g = getGraph();
Graph::NodeId n1Id = g.getEdgeNode1(eId),
n2Id = g.getEdgeNode2(eId);
NodeData &n1 = getHeuristicNodeData(n1Id),
&n2 = getHeuristicNodeData(n2Id);
if (n1.isHeuristic)
subtractEdgeContributions(eId, getGraph().getEdgeNode1(eId));
if (n2.isHeuristic)
subtractEdgeContributions(eId, getGraph().getEdgeNode2(eId));
EdgeData &ed = getHeuristicEdgeData(eId);
ed.isUpToDate = false;
}
/// \brief Handle the change in the costs on the given edge.
/// @param eId Edge id.
void postUpdateEdgeCosts(Graph::EdgeId eId) {
// This is effectively the same as adding a new edge now, since
// we've factored out the costs of the old one.
handleAddEdge(eId);
}
/// \brief Handle the addition of a new edge into the PBQP graph.
/// @param eId Edge id for the added edge.
///
/// Updates allocability of any nodes connected by this edge which are
/// being managed by the heuristic. If allocability changes they are
/// moved to the appropriate list.
void handleAddEdge(Graph::EdgeId eId) {
Graph &g = getGraph();
Graph::NodeId n1Id = g.getEdgeNode1(eId),
n2Id = g.getEdgeNode2(eId);
NodeData &n1 = getHeuristicNodeData(n1Id),
&n2 = getHeuristicNodeData(n2Id);
// If neither node is managed by the heuristic there's nothing to be
// done.
if (!n1.isHeuristic && !n2.isHeuristic)
return;
// Ok - we need to update at least one node.
computeEdgeContributions(eId);
// Update node 1 if it's managed by the heuristic.
if (n1.isHeuristic) {
bool n1WasAllocable = n1.isAllocable;
addEdgeContributions(eId, n1Id);
updateAllocability(n1Id);
if (n1WasAllocable && !n1.isAllocable) {
rnAllocableList.erase(n1.rnaItr);
n1.rnuItr =
rnUnallocableList.insert(rnUnallocableList.end(), n1Id);
}
}
// Likewise for node 2.
if (n2.isHeuristic) {
bool n2WasAllocable = n2.isAllocable;
addEdgeContributions(eId, n2Id);
updateAllocability(n2Id);
if (n2WasAllocable && !n2.isAllocable) {
rnAllocableList.erase(n2.rnaItr);
n2.rnuItr =
rnUnallocableList.insert(rnUnallocableList.end(), n2Id);
}
}
}
/// \brief Handle disconnection of an edge from a node.
/// @param eId Edge id for edge being disconnected.
/// @param nId Node id for the node being disconnected from.
///
/// Updates allocability of the given node and, if appropriate, moves the
/// node to a new list.
void handleRemoveEdge(Graph::EdgeId eId, Graph::NodeId nId) {
NodeData &nd =getHeuristicNodeData(nId);
// If the node is not managed by the heuristic there's nothing to be
// done.
if (!nd.isHeuristic)
return;
EdgeData &ed = getHeuristicEdgeData(eId);
(void)ed;
assert(ed.isUpToDate && "Edge data is not up to date.");
// Update node.
bool ndWasAllocable = nd.isAllocable;
subtractEdgeContributions(eId, nId);
updateAllocability(nId);
// If the node has gone optimal...
if (shouldOptimallyReduce(nId)) {
nd.isHeuristic = false;
addToOptimalReduceList(nId);
if (ndWasAllocable) {
rnAllocableList.erase(nd.rnaItr);
} else {
rnUnallocableList.erase(nd.rnuItr);
}
} else {
// Node didn't go optimal, but we might have to move it
// from "unallocable" to "allocable".
if (!ndWasAllocable && nd.isAllocable) {
rnUnallocableList.erase(nd.rnuItr);
nd.rnaItr = rnAllocableList.insert(rnAllocableList.end(), nId);
}
}
}
private:
NodeData& getHeuristicNodeData(Graph::NodeId nId) {
return getSolver().getHeuristicNodeData(nId);
}
EdgeData& getHeuristicEdgeData(Graph::EdgeId eId) {
return getSolver().getHeuristicEdgeData(eId);
}
// Work out what this edge will contribute to the allocability of the
// nodes connected to it.
void computeEdgeContributions(Graph::EdgeId eId) {
EdgeData &ed = getHeuristicEdgeData(eId);
if (ed.isUpToDate)
return; // Edge data is already up to date.
Matrix &eCosts = getGraph().getEdgeCosts(eId);
unsigned numRegs = eCosts.getRows() - 1,
numReverseRegs = eCosts.getCols() - 1;
std::vector<unsigned> rowInfCounts(numRegs, 0),
colInfCounts(numReverseRegs, 0);
ed.worst = 0;
ed.reverseWorst = 0;
ed.unsafe.clear();
ed.unsafe.resize(numRegs, 0);
ed.reverseUnsafe.clear();
ed.reverseUnsafe.resize(numReverseRegs, 0);
for (unsigned i = 0; i < numRegs; ++i) {
for (unsigned j = 0; j < numReverseRegs; ++j) {
if (eCosts[i + 1][j + 1] ==
std::numeric_limits<PBQPNum>::infinity()) {
ed.unsafe[i] = 1;
ed.reverseUnsafe[j] = 1;
++rowInfCounts[i];
++colInfCounts[j];
if (colInfCounts[j] > ed.worst) {
ed.worst = colInfCounts[j];
}
if (rowInfCounts[i] > ed.reverseWorst) {
ed.reverseWorst = rowInfCounts[i];
}
}
}
}
ed.isUpToDate = true;
}
// Add the contributions of the given edge to the given node's
// numDenied and safe members. No action is taken other than to update
// these member values. Once updated these numbers can be used by clients
// to update the node's allocability.
void addEdgeContributions(Graph::EdgeId eId, Graph::NodeId nId) {
EdgeData &ed = getHeuristicEdgeData(eId);
assert(ed.isUpToDate && "Using out-of-date edge numbers.");
NodeData &nd = getHeuristicNodeData(nId);
unsigned numRegs = getGraph().getNodeCosts(nId).getLength() - 1;
bool nIsNode1 = nId == getGraph().getEdgeNode1(eId);
EdgeData::UnsafeArray &unsafe =
nIsNode1 ? ed.unsafe : ed.reverseUnsafe;
nd.numDenied += nIsNode1 ? ed.worst : ed.reverseWorst;
for (unsigned r = 0; r < numRegs; ++r) {
if (unsafe[r]) {
if (nd.unsafeDegrees[r]==0) {
--nd.numSafe;
}
++nd.unsafeDegrees[r];
}
}
}
// Subtract the contributions of the given edge to the given node's
// numDenied and safe members. No action is taken other than to update
// these member values. Once updated these numbers can be used by clients
// to update the node's allocability.
void subtractEdgeContributions(Graph::EdgeId eId, Graph::NodeId nId) {
EdgeData &ed = getHeuristicEdgeData(eId);
assert(ed.isUpToDate && "Using out-of-date edge numbers.");
NodeData &nd = getHeuristicNodeData(nId);
unsigned numRegs = getGraph().getNodeCosts(nId).getLength() - 1;
bool nIsNode1 = nId == getGraph().getEdgeNode1(eId);
EdgeData::UnsafeArray &unsafe =
nIsNode1 ? ed.unsafe : ed.reverseUnsafe;
nd.numDenied -= nIsNode1 ? ed.worst : ed.reverseWorst;
for (unsigned r = 0; r < numRegs; ++r) {
if (unsafe[r]) {
if (nd.unsafeDegrees[r] == 1) {
++nd.numSafe;
}
--nd.unsafeDegrees[r];
}
}
}
void updateAllocability(Graph::NodeId nId) {
NodeData &nd = getHeuristicNodeData(nId);
unsigned numRegs = getGraph().getNodeCosts(nId).getLength() - 1;
nd.isAllocable = nd.numDenied < numRegs || nd.numSafe > 0;
}
void initializeNode(Graph::NodeId nId) {
NodeData &nd = getHeuristicNodeData(nId);
if (nd.isInitialized)
return; // Node data is already up to date.
unsigned numRegs = getGraph().getNodeCosts(nId).getLength() - 1;
nd.numDenied = 0;
const Vector& nCosts = getGraph().getNodeCosts(nId);
for (unsigned i = 1; i < nCosts.getLength(); ++i) {
if (nCosts[i] == std::numeric_limits<PBQPNum>::infinity())
++nd.numDenied;
}
nd.numSafe = numRegs;
nd.unsafeDegrees.resize(numRegs, 0);
typedef HeuristicSolverImpl<Briggs>::SolverEdgeItr SolverEdgeItr;
for (SolverEdgeItr aeItr = getSolver().solverEdgesBegin(nId),
aeEnd = getSolver().solverEdgesEnd(nId);
aeItr != aeEnd; ++aeItr) {
Graph::EdgeId eId = *aeItr;
computeEdgeContributions(eId);
addEdgeContributions(eId, nId);
}
updateAllocability(nId);
nd.isInitialized = true;
}
void handleRemoveNode(Graph::NodeId xnId) {
typedef HeuristicSolverImpl<Briggs>::SolverEdgeItr SolverEdgeItr;
std::vector<Graph::EdgeId> edgesToRemove;
for (SolverEdgeItr aeItr = getSolver().solverEdgesBegin(xnId),
aeEnd = getSolver().solverEdgesEnd(xnId);
aeItr != aeEnd; ++aeItr) {
Graph::NodeId ynId = getGraph().getEdgeOtherNode(*aeItr, xnId);
handleRemoveEdge(*aeItr, ynId);
edgesToRemove.push_back(*aeItr);
}
while (!edgesToRemove.empty()) {
getSolver().removeSolverEdge(edgesToRemove.back());
edgesToRemove.pop_back();
}
}
RNAllocableList rnAllocableList;
RNUnallocableList rnUnallocableList;
};
}
}
#endif // LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H
|