summaryrefslogtreecommitdiffstats
path: root/include/llvm/CodeGen/SlotIndexes.h
blob: 1cc34d57c9101ba5ec57101f03feea66b8278563 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
//===- llvm/CodeGen/SlotIndexes.h - Slot indexes representation -*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements SlotIndex and related classes. The purpose of SlotIndex
// is to describe a position at which a register can become live, or cease to
// be live.
//
// SlotIndex is mostly a proxy for entries of the SlotIndexList, a class which
// is held is LiveIntervals and provides the real numbering. This allows
// LiveIntervals to perform largely transparent renumbering.
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_SLOTINDEXES_H
#define LLVM_CODEGEN_SLOTINDEXES_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/ilist.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/Support/Allocator.h"

namespace llvm {

  /// This class represents an entry in the slot index list held in the
  /// SlotIndexes pass. It should not be used directly. See the
  /// SlotIndex & SlotIndexes classes for the public interface to this
  /// information.
  class IndexListEntry : public ilist_node<IndexListEntry> {
    MachineInstr *mi;
    unsigned index;

  public:

    IndexListEntry(MachineInstr *mi, unsigned index) : mi(mi), index(index) {}

    MachineInstr* getInstr() const { return mi; }
    void setInstr(MachineInstr *mi) {
      this->mi = mi;
    }

    unsigned getIndex() const { return index; }
    void setIndex(unsigned index) {
      this->index = index;
    }

#ifdef EXPENSIVE_CHECKS
    // When EXPENSIVE_CHECKS is defined, "erased" index list entries will
    // actually be moved to a "graveyard" list, and have their pointers
    // poisoned, so that dangling SlotIndex access can be reliably detected.
    void setPoison() {
      intptr_t tmp = reinterpret_cast<intptr_t>(mi);
      assert(((tmp & 0x1) == 0x0) && "Pointer already poisoned?");
      tmp |= 0x1;
      mi = reinterpret_cast<MachineInstr*>(tmp);
    }

    bool isPoisoned() const { return (reinterpret_cast<intptr_t>(mi) & 0x1) == 0x1; }
#endif // EXPENSIVE_CHECKS

  };

  template <>
  struct ilist_traits<IndexListEntry> : public ilist_default_traits<IndexListEntry> {
  private:
    mutable ilist_half_node<IndexListEntry> Sentinel;
  public:
    IndexListEntry *createSentinel() const {
      return static_cast<IndexListEntry*>(&Sentinel);
    }
    void destroySentinel(IndexListEntry *) const {}

    IndexListEntry *provideInitialHead() const { return createSentinel(); }
    IndexListEntry *ensureHead(IndexListEntry*) const { return createSentinel(); }
    static void noteHead(IndexListEntry*, IndexListEntry*) {}
    void deleteNode(IndexListEntry *N) {}

  private:
    void createNode(const IndexListEntry &);
  };

  /// SlotIndex - An opaque wrapper around machine indexes.
  class SlotIndex {
    friend class SlotIndexes;

    enum Slot {
      /// Basic block boundary.  Used for live ranges entering and leaving a
      /// block without being live in the layout neighbor.  Also used as the
      /// def slot of PHI-defs.
      Slot_Block,

      /// Early-clobber register use/def slot.  A live range defined at
      /// Slot_EarlyCLobber interferes with normal live ranges killed at
      /// Slot_Register.  Also used as the kill slot for live ranges tied to an
      /// early-clobber def.
      Slot_EarlyClobber,

      /// Normal register use/def slot.  Normal instructions kill and define
      /// register live ranges at this slot.
      Slot_Register,

      /// Dead def kill point.  Kill slot for a live range that is defined by
      /// the same instruction (Slot_Register or Slot_EarlyClobber), but isn't
      /// used anywhere.
      Slot_Dead,

      Slot_Count
    };

    PointerIntPair<IndexListEntry*, 2, unsigned> lie;

    SlotIndex(IndexListEntry *entry, unsigned slot)
      : lie(entry, slot) {}

    IndexListEntry* listEntry() const {
      assert(isValid() && "Attempt to compare reserved index.");
#ifdef EXPENSIVE_CHECKS
      assert(!lie.getPointer()->isPoisoned() &&
             "Attempt to access deleted list-entry.");
#endif // EXPENSIVE_CHECKS
      return lie.getPointer();
    }

    unsigned getIndex() const {
      return listEntry()->getIndex() | getSlot();
    }

    /// Returns the slot for this SlotIndex.
    Slot getSlot() const {
      return static_cast<Slot>(lie.getInt());
    }

  public:
    enum {
      /// The default distance between instructions as returned by distance().
      /// This may vary as instructions are inserted and removed.
      InstrDist = 4 * Slot_Count
    };

    /// Construct an invalid index.
    SlotIndex() : lie(0, 0) {}

    // Construct a new slot index from the given one, and set the slot.
    SlotIndex(const SlotIndex &li, Slot s) : lie(li.listEntry(), unsigned(s)) {
      assert(lie.getPointer() != 0 &&
             "Attempt to construct index with 0 pointer.");
    }

    /// Returns true if this is a valid index. Invalid indicies do
    /// not point into an index table, and cannot be compared.
    bool isValid() const {
      return lie.getPointer();
    }

    /// Return true for a valid index.
    LLVM_EXPLICIT operator bool() const { return isValid(); }

    /// Print this index to the given raw_ostream.
    void print(raw_ostream &os) const;

    /// Dump this index to stderr.
    void dump() const;

    /// Compare two SlotIndex objects for equality.
    bool operator==(SlotIndex other) const {
      return lie == other.lie;
    }
    /// Compare two SlotIndex objects for inequality.
    bool operator!=(SlotIndex other) const {
      return lie != other.lie;
    }

    /// Compare two SlotIndex objects. Return true if the first index
    /// is strictly lower than the second.
    bool operator<(SlotIndex other) const {
      return getIndex() < other.getIndex();
    }
    /// Compare two SlotIndex objects. Return true if the first index
    /// is lower than, or equal to, the second.
    bool operator<=(SlotIndex other) const {
      return getIndex() <= other.getIndex();
    }

    /// Compare two SlotIndex objects. Return true if the first index
    /// is greater than the second.
    bool operator>(SlotIndex other) const {
      return getIndex() > other.getIndex();
    }

    /// Compare two SlotIndex objects. Return true if the first index
    /// is greater than, or equal to, the second.
    bool operator>=(SlotIndex other) const {
      return getIndex() >= other.getIndex();
    }

    /// isSameInstr - Return true if A and B refer to the same instruction.
    static bool isSameInstr(SlotIndex A, SlotIndex B) {
      return A.lie.getPointer() == B.lie.getPointer();
    }

    /// isEarlierInstr - Return true if A refers to an instruction earlier than
    /// B. This is equivalent to A < B && !isSameInstr(A, B).
    static bool isEarlierInstr(SlotIndex A, SlotIndex B) {
      return A.listEntry()->getIndex() < B.listEntry()->getIndex();
    }

    /// Return the distance from this index to the given one.
    int distance(SlotIndex other) const {
      return other.getIndex() - getIndex();
    }

    /// Return the scaled distance from this index to the given one, where all
    /// slots on the same instruction have zero distance.
    int getInstrDistance(SlotIndex other) const {
      return (other.listEntry()->getIndex() - listEntry()->getIndex())
        / Slot_Count;
    }

    /// isBlock - Returns true if this is a block boundary slot.
    bool isBlock() const { return getSlot() == Slot_Block; }

    /// isEarlyClobber - Returns true if this is an early-clobber slot.
    bool isEarlyClobber() const { return getSlot() == Slot_EarlyClobber; }

    /// isRegister - Returns true if this is a normal register use/def slot.
    /// Note that early-clobber slots may also be used for uses and defs.
    bool isRegister() const { return getSlot() == Slot_Register; }

    /// isDead - Returns true if this is a dead def kill slot.
    bool isDead() const { return getSlot() == Slot_Dead; }

    /// Returns the base index for associated with this index. The base index
    /// is the one associated with the Slot_Block slot for the instruction
    /// pointed to by this index.
    SlotIndex getBaseIndex() const {
      return SlotIndex(listEntry(), Slot_Block);
    }

    /// Returns the boundary index for associated with this index. The boundary
    /// index is the one associated with the Slot_Block slot for the instruction
    /// pointed to by this index.
    SlotIndex getBoundaryIndex() const {
      return SlotIndex(listEntry(), Slot_Dead);
    }

    /// Returns the register use/def slot in the current instruction for a
    /// normal or early-clobber def.
    SlotIndex getRegSlot(bool EC = false) const {
      return SlotIndex(listEntry(), EC ? Slot_EarlyClobber : Slot_Register);
    }

    /// Returns the dead def kill slot for the current instruction.
    SlotIndex getDeadSlot() const {
      return SlotIndex(listEntry(), Slot_Dead);
    }

    /// Returns the next slot in the index list. This could be either the
    /// next slot for the instruction pointed to by this index or, if this
    /// index is a STORE, the first slot for the next instruction.
    /// WARNING: This method is considerably more expensive than the methods
    /// that return specific slots (getUseIndex(), etc). If you can - please
    /// use one of those methods.
    SlotIndex getNextSlot() const {
      Slot s = getSlot();
      if (s == Slot_Dead) {
        return SlotIndex(listEntry()->getNextNode(), Slot_Block);
      }
      return SlotIndex(listEntry(), s + 1);
    }

    /// Returns the next index. This is the index corresponding to the this
    /// index's slot, but for the next instruction.
    SlotIndex getNextIndex() const {
      return SlotIndex(listEntry()->getNextNode(), getSlot());
    }

    /// Returns the previous slot in the index list. This could be either the
    /// previous slot for the instruction pointed to by this index or, if this
    /// index is a Slot_Block, the last slot for the previous instruction.
    /// WARNING: This method is considerably more expensive than the methods
    /// that return specific slots (getUseIndex(), etc). If you can - please
    /// use one of those methods.
    SlotIndex getPrevSlot() const {
      Slot s = getSlot();
      if (s == Slot_Block) {
        return SlotIndex(listEntry()->getPrevNode(), Slot_Dead);
      }
      return SlotIndex(listEntry(), s - 1);
    }

    /// Returns the previous index. This is the index corresponding to this
    /// index's slot, but for the previous instruction.
    SlotIndex getPrevIndex() const {
      return SlotIndex(listEntry()->getPrevNode(), getSlot());
    }

  };

  template <> struct isPodLike<SlotIndex> { static const bool value = true; };

  inline raw_ostream& operator<<(raw_ostream &os, SlotIndex li) {
    li.print(os);
    return os;
  }

  typedef std::pair<SlotIndex, MachineBasicBlock*> IdxMBBPair;

  inline bool operator<(SlotIndex V, const IdxMBBPair &IM) {
    return V < IM.first;
  }

  inline bool operator<(const IdxMBBPair &IM, SlotIndex V) {
    return IM.first < V;
  }

  struct Idx2MBBCompare {
    bool operator()(const IdxMBBPair &LHS, const IdxMBBPair &RHS) const {
      return LHS.first < RHS.first;
    }
  };

  /// SlotIndexes pass.
  ///
  /// This pass assigns indexes to each instruction.
  class SlotIndexes : public MachineFunctionPass {
  private:

    typedef ilist<IndexListEntry> IndexList;
    IndexList indexList;

#ifdef EXPENSIVE_CHECKS
    IndexList graveyardList;
#endif // EXPENSIVE_CHECKS

    MachineFunction *mf;

    typedef DenseMap<const MachineInstr*, SlotIndex> Mi2IndexMap;
    Mi2IndexMap mi2iMap;

    /// MBBRanges - Map MBB number to (start, stop) indexes.
    SmallVector<std::pair<SlotIndex, SlotIndex>, 8> MBBRanges;

    /// Idx2MBBMap - Sorted list of pairs of index of first instruction
    /// and MBB id.
    SmallVector<IdxMBBPair, 8> idx2MBBMap;

    // IndexListEntry allocator.
    BumpPtrAllocator ileAllocator;

    IndexListEntry* createEntry(MachineInstr *mi, unsigned index) {
      IndexListEntry *entry =
        static_cast<IndexListEntry*>(
          ileAllocator.Allocate(sizeof(IndexListEntry),
          alignOf<IndexListEntry>()));

      new (entry) IndexListEntry(mi, index);

      return entry;
    }

    /// Renumber locally after inserting curItr.
    void renumberIndexes(IndexList::iterator curItr);

  public:
    static char ID;

    SlotIndexes() : MachineFunctionPass(ID) {
      initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
    }

    void getAnalysisUsage(AnalysisUsage &au) const override;
    void releaseMemory() override;

    bool runOnMachineFunction(MachineFunction &fn) override;

    /// Dump the indexes.
    void dump() const;

    /// Renumber the index list, providing space for new instructions.
    void renumberIndexes();

    /// Repair indexes after adding and removing instructions.
    void repairIndexesInRange(MachineBasicBlock *MBB,
                              MachineBasicBlock::iterator Begin,
                              MachineBasicBlock::iterator End);

    /// Returns the zero index for this analysis.
    SlotIndex getZeroIndex() {
      assert(indexList.front().getIndex() == 0 && "First index is not 0?");
      return SlotIndex(&indexList.front(), 0);
    }

    /// Returns the base index of the last slot in this analysis.
    SlotIndex getLastIndex() {
      return SlotIndex(&indexList.back(), 0);
    }

    /// Returns true if the given machine instr is mapped to an index,
    /// otherwise returns false.
    bool hasIndex(const MachineInstr *instr) const {
      return mi2iMap.count(instr);
    }

    /// Returns the base index for the given instruction.
    SlotIndex getInstructionIndex(const MachineInstr *MI) const {
      // Instructions inside a bundle have the same number as the bundle itself.
      Mi2IndexMap::const_iterator itr = mi2iMap.find(getBundleStart(MI));
      assert(itr != mi2iMap.end() && "Instruction not found in maps.");
      return itr->second;
    }

    /// Returns the instruction for the given index, or null if the given
    /// index has no instruction associated with it.
    MachineInstr* getInstructionFromIndex(SlotIndex index) const {
      return index.isValid() ? index.listEntry()->getInstr() : 0;
    }

    /// Returns the next non-null index, if one exists.
    /// Otherwise returns getLastIndex().
    SlotIndex getNextNonNullIndex(SlotIndex Index) {
      IndexList::iterator I = Index.listEntry();
      IndexList::iterator E = indexList.end();
      while (++I != E)
        if (I->getInstr())
          return SlotIndex(I, Index.getSlot());
      // We reached the end of the function.
      return getLastIndex();
    }

    /// getIndexBefore - Returns the index of the last indexed instruction
    /// before MI, or the start index of its basic block.
    /// MI is not required to have an index.
    SlotIndex getIndexBefore(const MachineInstr *MI) const {
      const MachineBasicBlock *MBB = MI->getParent();
      assert(MBB && "MI must be inserted inna basic block");
      MachineBasicBlock::const_iterator I = MI, B = MBB->begin();
      for (;;) {
        if (I == B)
          return getMBBStartIdx(MBB);
        --I;
        Mi2IndexMap::const_iterator MapItr = mi2iMap.find(I);
        if (MapItr != mi2iMap.end())
          return MapItr->second;
      }
    }

    /// getIndexAfter - Returns the index of the first indexed instruction
    /// after MI, or the end index of its basic block.
    /// MI is not required to have an index.
    SlotIndex getIndexAfter(const MachineInstr *MI) const {
      const MachineBasicBlock *MBB = MI->getParent();
      assert(MBB && "MI must be inserted inna basic block");
      MachineBasicBlock::const_iterator I = MI, E = MBB->end();
      for (;;) {
        ++I;
        if (I == E)
          return getMBBEndIdx(MBB);
        Mi2IndexMap::const_iterator MapItr = mi2iMap.find(I);
        if (MapItr != mi2iMap.end())
          return MapItr->second;
      }
    }

    /// Return the (start,end) range of the given basic block number.
    const std::pair<SlotIndex, SlotIndex> &
    getMBBRange(unsigned Num) const {
      return MBBRanges[Num];
    }

    /// Return the (start,end) range of the given basic block.
    const std::pair<SlotIndex, SlotIndex> &
    getMBBRange(const MachineBasicBlock *MBB) const {
      return getMBBRange(MBB->getNumber());
    }

    /// Returns the first index in the given basic block number.
    SlotIndex getMBBStartIdx(unsigned Num) const {
      return getMBBRange(Num).first;
    }

    /// Returns the first index in the given basic block.
    SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
      return getMBBRange(mbb).first;
    }

    /// Returns the last index in the given basic block number.
    SlotIndex getMBBEndIdx(unsigned Num) const {
      return getMBBRange(Num).second;
    }

    /// Returns the last index in the given basic block.
    SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
      return getMBBRange(mbb).second;
    }

    /// Returns the basic block which the given index falls in.
    MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
      if (MachineInstr *MI = getInstructionFromIndex(index))
        return MI->getParent();
      SmallVectorImpl<IdxMBBPair>::const_iterator I =
        std::lower_bound(idx2MBBMap.begin(), idx2MBBMap.end(), index);
      // Take the pair containing the index
      SmallVectorImpl<IdxMBBPair>::const_iterator J =
        ((I != idx2MBBMap.end() && I->first > index) ||
         (I == idx2MBBMap.end() && idx2MBBMap.size()>0)) ? (I-1): I;

      assert(J != idx2MBBMap.end() && J->first <= index &&
             index < getMBBEndIdx(J->second) &&
             "index does not correspond to an MBB");
      return J->second;
    }

    bool findLiveInMBBs(SlotIndex start, SlotIndex end,
                        SmallVectorImpl<MachineBasicBlock*> &mbbs) const {
      SmallVectorImpl<IdxMBBPair>::const_iterator itr =
        std::lower_bound(idx2MBBMap.begin(), idx2MBBMap.end(), start);
      bool resVal = false;

      while (itr != idx2MBBMap.end()) {
        if (itr->first >= end)
          break;
        mbbs.push_back(itr->second);
        resVal = true;
        ++itr;
      }
      return resVal;
    }

    /// Returns the MBB covering the given range, or null if the range covers
    /// more than one basic block.
    MachineBasicBlock* getMBBCoveringRange(SlotIndex start, SlotIndex end) const {

      assert(start < end && "Backwards ranges not allowed.");

      SmallVectorImpl<IdxMBBPair>::const_iterator itr =
        std::lower_bound(idx2MBBMap.begin(), idx2MBBMap.end(), start);

      if (itr == idx2MBBMap.end()) {
        itr = std::prev(itr);
        return itr->second;
      }

      // Check that we don't cross the boundary into this block.
      if (itr->first < end)
        return 0;

      itr = std::prev(itr);

      if (itr->first <= start)
        return itr->second;

      return 0;
    }

    /// Insert the given machine instruction into the mapping. Returns the
    /// assigned index.
    /// If Late is set and there are null indexes between mi's neighboring
    /// instructions, create the new index after the null indexes instead of
    /// before them.
    SlotIndex insertMachineInstrInMaps(MachineInstr *mi, bool Late = false) {
      assert(!mi->isInsideBundle() &&
             "Instructions inside bundles should use bundle start's slot.");
      assert(mi2iMap.find(mi) == mi2iMap.end() && "Instr already indexed.");
      // Numbering DBG_VALUE instructions could cause code generation to be
      // affected by debug information.
      assert(!mi->isDebugValue() && "Cannot number DBG_VALUE instructions.");

      assert(mi->getParent() != 0 && "Instr must be added to function.");

      // Get the entries where mi should be inserted.
      IndexList::iterator prevItr, nextItr;
      if (Late) {
        // Insert mi's index immediately before the following instruction.
        nextItr = getIndexAfter(mi).listEntry();
        prevItr = std::prev(nextItr);
      } else {
        // Insert mi's index immediately after the preceding instruction.
        prevItr = getIndexBefore(mi).listEntry();
        nextItr = std::next(prevItr);
      }

      // Get a number for the new instr, or 0 if there's no room currently.
      // In the latter case we'll force a renumber later.
      unsigned dist = ((nextItr->getIndex() - prevItr->getIndex())/2) & ~3u;
      unsigned newNumber = prevItr->getIndex() + dist;

      // Insert a new list entry for mi.
      IndexList::iterator newItr =
        indexList.insert(nextItr, createEntry(mi, newNumber));

      // Renumber locally if we need to.
      if (dist == 0)
        renumberIndexes(newItr);

      SlotIndex newIndex(&*newItr, SlotIndex::Slot_Block);
      mi2iMap.insert(std::make_pair(mi, newIndex));
      return newIndex;
    }

    /// Remove the given machine instruction from the mapping.
    void removeMachineInstrFromMaps(MachineInstr *mi) {
      // remove index -> MachineInstr and
      // MachineInstr -> index mappings
      Mi2IndexMap::iterator mi2iItr = mi2iMap.find(mi);
      if (mi2iItr != mi2iMap.end()) {
        IndexListEntry *miEntry(mi2iItr->second.listEntry());
        assert(miEntry->getInstr() == mi && "Instruction indexes broken.");
        // FIXME: Eventually we want to actually delete these indexes.
        miEntry->setInstr(0);
        mi2iMap.erase(mi2iItr);
      }
    }

    /// ReplaceMachineInstrInMaps - Replacing a machine instr with a new one in
    /// maps used by register allocator.
    void replaceMachineInstrInMaps(MachineInstr *mi, MachineInstr *newMI) {
      Mi2IndexMap::iterator mi2iItr = mi2iMap.find(mi);
      if (mi2iItr == mi2iMap.end())
        return;
      SlotIndex replaceBaseIndex = mi2iItr->second;
      IndexListEntry *miEntry(replaceBaseIndex.listEntry());
      assert(miEntry->getInstr() == mi &&
             "Mismatched instruction in index tables.");
      miEntry->setInstr(newMI);
      mi2iMap.erase(mi2iItr);
      mi2iMap.insert(std::make_pair(newMI, replaceBaseIndex));
    }

    /// Add the given MachineBasicBlock into the maps.
    void insertMBBInMaps(MachineBasicBlock *mbb) {
      MachineFunction::iterator nextMBB =
        std::next(MachineFunction::iterator(mbb));

      IndexListEntry *startEntry = 0;
      IndexListEntry *endEntry = 0;
      IndexList::iterator newItr;
      if (nextMBB == mbb->getParent()->end()) {
        startEntry = &indexList.back();
        endEntry = createEntry(0, 0);
        newItr = indexList.insertAfter(startEntry, endEntry);
      } else {
        startEntry = createEntry(0, 0);
        endEntry = getMBBStartIdx(nextMBB).listEntry();
        newItr = indexList.insert(endEntry, startEntry);
      }

      SlotIndex startIdx(startEntry, SlotIndex::Slot_Block);
      SlotIndex endIdx(endEntry, SlotIndex::Slot_Block);

      MachineFunction::iterator prevMBB(mbb);
      assert(prevMBB != mbb->getParent()->end() &&
             "Can't insert a new block at the beginning of a function.");
      --prevMBB;
      MBBRanges[prevMBB->getNumber()].second = startIdx;

      assert(unsigned(mbb->getNumber()) == MBBRanges.size() &&
             "Blocks must be added in order");
      MBBRanges.push_back(std::make_pair(startIdx, endIdx));
      idx2MBBMap.push_back(IdxMBBPair(startIdx, mbb));

      renumberIndexes(newItr);
      std::sort(idx2MBBMap.begin(), idx2MBBMap.end(), Idx2MBBCompare());
    }

    /// \brief Free the resources that were required to maintain a SlotIndex.
    ///
    /// Once an index is no longer needed (for instance because the instruction
    /// at that index has been moved), the resources required to maintain the
    /// index can be relinquished to reduce memory use and improve renumbering
    /// performance. Any remaining SlotIndex objects that point to the same
    /// index are left 'dangling' (much the same as a dangling pointer to a
    /// freed object) and should not be accessed, except to destruct them.
    ///
    /// Like dangling pointers, access to dangling SlotIndexes can cause
    /// painful-to-track-down bugs, especially if the memory for the index
    /// previously pointed to has been re-used. To detect dangling SlotIndex
    /// bugs, build with EXPENSIVE_CHECKS=1. This will cause "erased" indexes to
    /// be retained in a graveyard instead of being freed. Operations on indexes
    /// in the graveyard will trigger an assertion.
    void eraseIndex(SlotIndex index) {
      IndexListEntry *entry = index.listEntry();
#ifdef EXPENSIVE_CHECKS
      indexList.remove(entry);
      graveyardList.push_back(entry);
      entry->setPoison();
#else
      indexList.erase(entry);
#endif
    }

  };


  // Specialize IntervalMapInfo for half-open slot index intervals.
  template <>
  struct IntervalMapInfo<SlotIndex> : IntervalMapHalfOpenInfo<SlotIndex> {
  };

}

#endif // LLVM_CODEGEN_SLOTINDEXES_H