1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
|
//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the target machine instruction set to the code generator.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TARGET_TARGETINSTRINFO_H
#define LLVM_TARGET_TARGETINSTRINFO_H
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
namespace llvm {
class InstrItineraryData;
class LiveVariables;
class MCAsmInfo;
class MachineMemOperand;
class MachineRegisterInfo;
class MDNode;
class MCInst;
class SDNode;
class ScheduleHazardRecognizer;
class SelectionDAG;
class ScheduleDAG;
class TargetRegisterClass;
class TargetRegisterInfo;
class BranchProbability;
template<class T> class SmallVectorImpl;
//---------------------------------------------------------------------------
///
/// TargetInstrInfo - Interface to description of machine instruction set
///
class TargetInstrInfo : public MCInstrInfo {
TargetInstrInfo(const TargetInstrInfo &); // DO NOT IMPLEMENT
void operator=(const TargetInstrInfo &); // DO NOT IMPLEMENT
public:
TargetInstrInfo(int CFSetupOpcode = -1, int CFDestroyOpcode = -1)
: CallFrameSetupOpcode(CFSetupOpcode),
CallFrameDestroyOpcode(CFDestroyOpcode) {
}
virtual ~TargetInstrInfo();
/// getRegClass - Givem a machine instruction descriptor, returns the register
/// class constraint for OpNum, or NULL.
const TargetRegisterClass *getRegClass(const MCInstrDesc &TID,
unsigned OpNum,
const TargetRegisterInfo *TRI) const;
/// isTriviallyReMaterializable - Return true if the instruction is trivially
/// rematerializable, meaning it has no side effects and requires no operands
/// that aren't always available.
bool isTriviallyReMaterializable(const MachineInstr *MI,
AliasAnalysis *AA = 0) const {
return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
(MI->getDesc().isRematerializable() &&
(isReallyTriviallyReMaterializable(MI, AA) ||
isReallyTriviallyReMaterializableGeneric(MI, AA)));
}
protected:
/// isReallyTriviallyReMaterializable - For instructions with opcodes for
/// which the M_REMATERIALIZABLE flag is set, this hook lets the target
/// specify whether the instruction is actually trivially rematerializable,
/// taking into consideration its operands. This predicate must return false
/// if the instruction has any side effects other than producing a value, or
/// if it requres any address registers that are not always available.
virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
AliasAnalysis *AA) const {
return false;
}
private:
/// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
/// for which the M_REMATERIALIZABLE flag is set and the target hook
/// isReallyTriviallyReMaterializable returns false, this function does
/// target-independent tests to determine if the instruction is really
/// trivially rematerializable.
bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
AliasAnalysis *AA) const;
public:
/// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
/// frame setup/destroy instructions if they exist (-1 otherwise). Some
/// targets use pseudo instructions in order to abstract away the difference
/// between operating with a frame pointer and operating without, through the
/// use of these two instructions.
///
int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
/// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
/// extension instruction. That is, it's like a copy where it's legal for the
/// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
/// true, then it's expected the pre-extension value is available as a subreg
/// of the result register. This also returns the sub-register index in
/// SubIdx.
virtual bool isCoalescableExtInstr(const MachineInstr &MI,
unsigned &SrcReg, unsigned &DstReg,
unsigned &SubIdx) const {
return false;
}
/// isLoadFromStackSlot - If the specified machine instruction is a direct
/// load from a stack slot, return the virtual or physical register number of
/// the destination along with the FrameIndex of the loaded stack slot. If
/// not, return 0. This predicate must return 0 if the instruction has
/// any side effects other than loading from the stack slot.
virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
return 0;
}
/// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
/// stack locations as well. This uses a heuristic so it isn't
/// reliable for correctness.
virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
int &FrameIndex) const {
return 0;
}
/// hasLoadFromStackSlot - If the specified machine instruction has
/// a load from a stack slot, return true along with the FrameIndex
/// of the loaded stack slot and the machine mem operand containing
/// the reference. If not, return false. Unlike
/// isLoadFromStackSlot, this returns true for any instructions that
/// loads from the stack. This is just a hint, as some cases may be
/// missed.
virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
const MachineMemOperand *&MMO,
int &FrameIndex) const {
return 0;
}
/// isStoreToStackSlot - If the specified machine instruction is a direct
/// store to a stack slot, return the virtual or physical register number of
/// the source reg along with the FrameIndex of the loaded stack slot. If
/// not, return 0. This predicate must return 0 if the instruction has
/// any side effects other than storing to the stack slot.
virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
return 0;
}
/// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
/// stack locations as well. This uses a heuristic so it isn't
/// reliable for correctness.
virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
int &FrameIndex) const {
return 0;
}
/// hasStoreToStackSlot - If the specified machine instruction has a
/// store to a stack slot, return true along with the FrameIndex of
/// the loaded stack slot and the machine mem operand containing the
/// reference. If not, return false. Unlike isStoreToStackSlot,
/// this returns true for any instructions that stores to the
/// stack. This is just a hint, as some cases may be missed.
virtual bool hasStoreToStackSlot(const MachineInstr *MI,
const MachineMemOperand *&MMO,
int &FrameIndex) const {
return 0;
}
/// reMaterialize - Re-issue the specified 'original' instruction at the
/// specific location targeting a new destination register.
/// The register in Orig->getOperand(0).getReg() will be substituted by
/// DestReg:SubIdx. Any existing subreg index is preserved or composed with
/// SubIdx.
virtual void reMaterialize(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, unsigned SubIdx,
const MachineInstr *Orig,
const TargetRegisterInfo &TRI) const = 0;
/// scheduleTwoAddrSource - Schedule the copy / re-mat of the source of the
/// two-addrss instruction inserted by two-address pass.
virtual void scheduleTwoAddrSource(MachineInstr *SrcMI,
MachineInstr *UseMI,
const TargetRegisterInfo &TRI) const {
// Do nothing.
}
/// duplicate - Create a duplicate of the Orig instruction in MF. This is like
/// MachineFunction::CloneMachineInstr(), but the target may update operands
/// that are required to be unique.
///
/// The instruction must be duplicable as indicated by isNotDuplicable().
virtual MachineInstr *duplicate(MachineInstr *Orig,
MachineFunction &MF) const = 0;
/// convertToThreeAddress - This method must be implemented by targets that
/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
/// may be able to convert a two-address instruction into one or more true
/// three-address instructions on demand. This allows the X86 target (for
/// example) to convert ADD and SHL instructions into LEA instructions if they
/// would require register copies due to two-addressness.
///
/// This method returns a null pointer if the transformation cannot be
/// performed, otherwise it returns the last new instruction.
///
virtual MachineInstr *
convertToThreeAddress(MachineFunction::iterator &MFI,
MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
return 0;
}
/// commuteInstruction - If a target has any instructions that are
/// commutable but require converting to different instructions or making
/// non-trivial changes to commute them, this method can overloaded to do
/// that. The default implementation simply swaps the commutable operands.
/// If NewMI is false, MI is modified in place and returned; otherwise, a
/// new machine instruction is created and returned. Do not call this
/// method for a non-commutable instruction, but there may be some cases
/// where this method fails and returns null.
virtual MachineInstr *commuteInstruction(MachineInstr *MI,
bool NewMI = false) const = 0;
/// findCommutedOpIndices - If specified MI is commutable, return the two
/// operand indices that would swap value. Return false if the instruction
/// is not in a form which this routine understands.
virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
unsigned &SrcOpIdx2) const = 0;
/// produceSameValue - Return true if two machine instructions would produce
/// identical values. By default, this is only true when the two instructions
/// are deemed identical except for defs. If this function is called when the
/// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
/// aggressive checks.
virtual bool produceSameValue(const MachineInstr *MI0,
const MachineInstr *MI1,
const MachineRegisterInfo *MRI = 0) const = 0;
/// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
/// true if it cannot be understood (e.g. it's a switch dispatch or isn't
/// implemented for a target). Upon success, this returns false and returns
/// with the following information in various cases:
///
/// 1. If this block ends with no branches (it just falls through to its succ)
/// just return false, leaving TBB/FBB null.
/// 2. If this block ends with only an unconditional branch, it sets TBB to be
/// the destination block.
/// 3. If this block ends with a conditional branch and it falls through to a
/// successor block, it sets TBB to be the branch destination block and a
/// list of operands that evaluate the condition. These operands can be
/// passed to other TargetInstrInfo methods to create new branches.
/// 4. If this block ends with a conditional branch followed by an
/// unconditional branch, it returns the 'true' destination in TBB, the
/// 'false' destination in FBB, and a list of operands that evaluate the
/// condition. These operands can be passed to other TargetInstrInfo
/// methods to create new branches.
///
/// Note that RemoveBranch and InsertBranch must be implemented to support
/// cases where this method returns success.
///
/// If AllowModify is true, then this routine is allowed to modify the basic
/// block (e.g. delete instructions after the unconditional branch).
///
virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify = false) const {
return true;
}
/// RemoveBranch - Remove the branching code at the end of the specific MBB.
/// This is only invoked in cases where AnalyzeBranch returns success. It
/// returns the number of instructions that were removed.
virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
return 0;
}
/// InsertBranch - Insert branch code into the end of the specified
/// MachineBasicBlock. The operands to this method are the same as those
/// returned by AnalyzeBranch. This is only invoked in cases where
/// AnalyzeBranch returns success. It returns the number of instructions
/// inserted.
///
/// It is also invoked by tail merging to add unconditional branches in
/// cases where AnalyzeBranch doesn't apply because there was no original
/// branch to analyze. At least this much must be implemented, else tail
/// merging needs to be disabled.
virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
const SmallVectorImpl<MachineOperand> &Cond,
DebugLoc DL) const {
assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
return 0;
}
/// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
/// after it, replacing it with an unconditional branch to NewDest. This is
/// used by the tail merging pass.
virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
MachineBasicBlock *NewDest) const = 0;
/// isLegalToSplitMBBAt - Return true if it's legal to split the given basic
/// block at the specified instruction (i.e. instruction would be the start
/// of a new basic block).
virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI) const {
return true;
}
/// isProfitableToIfCvt - Return true if it's profitable to predicate
/// instructions with accumulated instruction latency of "NumCycles"
/// of the specified basic block, where the probability of the instructions
/// being executed is given by Probability, and Confidence is a measure
/// of our confidence that it will be properly predicted.
virtual
bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCyles,
unsigned ExtraPredCycles,
const BranchProbability &Probability) const {
return false;
}
/// isProfitableToIfCvt - Second variant of isProfitableToIfCvt, this one
/// checks for the case where two basic blocks from true and false path
/// of a if-then-else (diamond) are predicated on mutally exclusive
/// predicates, where the probability of the true path being taken is given
/// by Probability, and Confidence is a measure of our confidence that it
/// will be properly predicted.
virtual bool
isProfitableToIfCvt(MachineBasicBlock &TMBB,
unsigned NumTCycles, unsigned ExtraTCycles,
MachineBasicBlock &FMBB,
unsigned NumFCycles, unsigned ExtraFCycles,
const BranchProbability &Probability) const {
return false;
}
/// isProfitableToDupForIfCvt - Return true if it's profitable for
/// if-converter to duplicate instructions of specified accumulated
/// instruction latencies in the specified MBB to enable if-conversion.
/// The probability of the instructions being executed is given by
/// Probability, and Confidence is a measure of our confidence that it
/// will be properly predicted.
virtual bool
isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCyles,
const BranchProbability &Probability) const {
return false;
}
/// isProfitableToUnpredicate - Return true if it's profitable to unpredicate
/// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
/// exclusive predicates.
/// e.g.
/// subeq r0, r1, #1
/// addne r0, r1, #1
/// =>
/// sub r0, r1, #1
/// addne r0, r1, #1
///
/// This may be profitable is conditional instructions are always executed.
virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
MachineBasicBlock &FMBB) const {
return false;
}
/// copyPhysReg - Emit instructions to copy a pair of physical registers.
virtual void copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI, DebugLoc DL,
unsigned DestReg, unsigned SrcReg,
bool KillSrc) const {
assert(0 && "Target didn't implement TargetInstrInfo::copyPhysReg!");
}
/// storeRegToStackSlot - Store the specified register of the given register
/// class to the specified stack frame index. The store instruction is to be
/// added to the given machine basic block before the specified machine
/// instruction. If isKill is true, the register operand is the last use and
/// must be marked kill.
virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned SrcReg, bool isKill, int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
}
/// loadRegFromStackSlot - Load the specified register of the given register
/// class from the specified stack frame index. The load instruction is to be
/// added to the given machine basic block before the specified machine
/// instruction.
virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
}
/// expandPostRAPseudo - This function is called for all pseudo instructions
/// that remain after register allocation. Many pseudo instructions are
/// created to help register allocation. This is the place to convert them
/// into real instructions. The target can edit MI in place, or it can insert
/// new instructions and erase MI. The function should return true if
/// anything was changed.
virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
return false;
}
/// emitFrameIndexDebugValue - Emit a target-dependent form of
/// DBG_VALUE encoding the address of a frame index. Addresses would
/// normally be lowered the same way as other addresses on the target,
/// e.g. in load instructions. For targets that do not support this
/// the debug info is simply lost.
/// If you add this for a target you should handle this DBG_VALUE in the
/// target-specific AsmPrinter code as well; you will probably get invalid
/// assembly output if you don't.
virtual MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
int FrameIx,
uint64_t Offset,
const MDNode *MDPtr,
DebugLoc dl) const {
return 0;
}
/// foldMemoryOperand - Attempt to fold a load or store of the specified stack
/// slot into the specified machine instruction for the specified operand(s).
/// If this is possible, a new instruction is returned with the specified
/// operand folded, otherwise NULL is returned.
/// The new instruction is inserted before MI, and the client is responsible
/// for removing the old instruction.
MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
const SmallVectorImpl<unsigned> &Ops,
int FrameIndex) const;
/// foldMemoryOperand - Same as the previous version except it allows folding
/// of any load and store from / to any address, not just from a specific
/// stack slot.
MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
const SmallVectorImpl<unsigned> &Ops,
MachineInstr* LoadMI) const;
protected:
/// foldMemoryOperandImpl - Target-dependent implementation for
/// foldMemoryOperand. Target-independent code in foldMemoryOperand will
/// take care of adding a MachineMemOperand to the newly created instruction.
virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
MachineInstr* MI,
const SmallVectorImpl<unsigned> &Ops,
int FrameIndex) const {
return 0;
}
/// foldMemoryOperandImpl - Target-dependent implementation for
/// foldMemoryOperand. Target-independent code in foldMemoryOperand will
/// take care of adding a MachineMemOperand to the newly created instruction.
virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
MachineInstr* MI,
const SmallVectorImpl<unsigned> &Ops,
MachineInstr* LoadMI) const {
return 0;
}
public:
/// canFoldMemoryOperand - Returns true for the specified load / store if
/// folding is possible.
virtual
bool canFoldMemoryOperand(const MachineInstr *MI,
const SmallVectorImpl<unsigned> &Ops) const =0;
/// unfoldMemoryOperand - Separate a single instruction which folded a load or
/// a store or a load and a store into two or more instruction. If this is
/// possible, returns true as well as the new instructions by reference.
virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
SmallVectorImpl<MachineInstr*> &NewMIs) const{
return false;
}
virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
SmallVectorImpl<SDNode*> &NewNodes) const {
return false;
}
/// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
/// instruction after load / store are unfolded from an instruction of the
/// specified opcode. It returns zero if the specified unfolding is not
/// possible. If LoadRegIndex is non-null, it is filled in with the operand
/// index of the operand which will hold the register holding the loaded
/// value.
virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
bool UnfoldLoad, bool UnfoldStore,
unsigned *LoadRegIndex = 0) const {
return 0;
}
/// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
/// to determine if two loads are loading from the same base address. It
/// should only return true if the base pointers are the same and the
/// only differences between the two addresses are the offset. It also returns
/// the offsets by reference.
virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
int64_t &Offset1, int64_t &Offset2) const {
return false;
}
/// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
/// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
/// be scheduled togther. On some targets if two loads are loading from
/// addresses in the same cache line, it's better if they are scheduled
/// together. This function takes two integers that represent the load offsets
/// from the common base address. It returns true if it decides it's desirable
/// to schedule the two loads together. "NumLoads" is the number of loads that
/// have already been scheduled after Load1.
virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
int64_t Offset1, int64_t Offset2,
unsigned NumLoads) const {
return false;
}
/// ReverseBranchCondition - Reverses the branch condition of the specified
/// condition list, returning false on success and true if it cannot be
/// reversed.
virtual
bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
return true;
}
/// insertNoop - Insert a noop into the instruction stream at the specified
/// point.
virtual void insertNoop(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const;
/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
virtual void getNoopForMachoTarget(MCInst &NopInst) const {
// Default to just using 'nop' string.
}
/// isPredicated - Returns true if the instruction is already predicated.
///
virtual bool isPredicated(const MachineInstr *MI) const {
return false;
}
/// isUnpredicatedTerminator - Returns true if the instruction is a
/// terminator instruction that has not been predicated.
virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const = 0;
/// PredicateInstruction - Convert the instruction into a predicated
/// instruction. It returns true if the operation was successful.
virtual
bool PredicateInstruction(MachineInstr *MI,
const SmallVectorImpl<MachineOperand> &Pred) const = 0;
/// SubsumesPredicate - Returns true if the first specified predicate
/// subsumes the second, e.g. GE subsumes GT.
virtual
bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
const SmallVectorImpl<MachineOperand> &Pred2) const {
return false;
}
/// DefinesPredicate - If the specified instruction defines any predicate
/// or condition code register(s) used for predication, returns true as well
/// as the definition predicate(s) by reference.
virtual bool DefinesPredicate(MachineInstr *MI,
std::vector<MachineOperand> &Pred) const {
return false;
}
/// isPredicable - Return true if the specified instruction can be predicated.
/// By default, this returns true for every instruction with a
/// PredicateOperand.
virtual bool isPredicable(MachineInstr *MI) const {
return MI->getDesc().isPredicable();
}
/// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
/// instruction that defines the specified register class.
virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
return true;
}
/// isSchedulingBoundary - Test if the given instruction should be
/// considered a scheduling boundary. This primarily includes labels and
/// terminators.
virtual bool isSchedulingBoundary(const MachineInstr *MI,
const MachineBasicBlock *MBB,
const MachineFunction &MF) const = 0;
/// Measure the specified inline asm to determine an approximation of its
/// length.
virtual unsigned getInlineAsmLength(const char *Str,
const MCAsmInfo &MAI) const;
/// CreateTargetHazardRecognizer - Allocate and return a hazard recognizer to
/// use for this target when scheduling the machine instructions before
/// register allocation.
virtual ScheduleHazardRecognizer*
CreateTargetHazardRecognizer(const TargetMachine *TM,
const ScheduleDAG *DAG) const = 0;
/// CreateTargetPostRAHazardRecognizer - Allocate and return a hazard
/// recognizer to use for this target when scheduling the machine instructions
/// after register allocation.
virtual ScheduleHazardRecognizer*
CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
const ScheduleDAG *DAG) const = 0;
/// AnalyzeCompare - For a comparison instruction, return the source register
/// in SrcReg and the value it compares against in CmpValue. Return true if
/// the comparison instruction can be analyzed.
virtual bool AnalyzeCompare(const MachineInstr *MI,
unsigned &SrcReg, int &Mask, int &Value) const {
return false;
}
/// OptimizeCompareInstr - See if the comparison instruction can be converted
/// into something more efficient. E.g., on ARM most instructions can set the
/// flags register, obviating the need for a separate CMP.
virtual bool OptimizeCompareInstr(MachineInstr *CmpInstr,
unsigned SrcReg, int Mask, int Value,
const MachineRegisterInfo *MRI) const {
return false;
}
/// FoldImmediate - 'Reg' is known to be defined by a move immediate
/// instruction, try to fold the immediate into the use instruction.
virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
unsigned Reg, MachineRegisterInfo *MRI) const {
return false;
}
/// getNumMicroOps - Return the number of u-operations the given machine
/// instruction will be decoded to on the target cpu.
virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
const MachineInstr *MI) const;
/// isZeroCost - Return true for pseudo instructions that don't consume any
/// machine resources in their current form. These are common cases that the
/// scheduler should consider free, rather than conservatively handling them
/// as instructions with no itinerary.
bool isZeroCost(unsigned Opcode) const {
return Opcode <= TargetOpcode::COPY;
}
/// getOperandLatency - Compute and return the use operand latency of a given
/// pair of def and use.
/// In most cases, the static scheduling itinerary was enough to determine the
/// operand latency. But it may not be possible for instructions with variable
/// number of defs / uses.
virtual int getOperandLatency(const InstrItineraryData *ItinData,
const MachineInstr *DefMI, unsigned DefIdx,
const MachineInstr *UseMI, unsigned UseIdx) const;
virtual int getOperandLatency(const InstrItineraryData *ItinData,
SDNode *DefNode, unsigned DefIdx,
SDNode *UseNode, unsigned UseIdx) const = 0;
/// getOutputLatency - Compute and return the output dependency latency of a
/// a given pair of defs which both target the same register. This is usually
/// one.
virtual unsigned getOutputLatency(const InstrItineraryData *ItinData,
const MachineInstr *DefMI, unsigned DefIdx,
const MachineInstr *DepMI) const {
return 1;
}
/// getInstrLatency - Compute the instruction latency of a given instruction.
/// If the instruction has higher cost when predicated, it's returned via
/// PredCost.
virtual int getInstrLatency(const InstrItineraryData *ItinData,
const MachineInstr *MI,
unsigned *PredCost = 0) const;
virtual int getInstrLatency(const InstrItineraryData *ItinData,
SDNode *Node) const = 0;
/// isHighLatencyDef - Return true if this opcode has high latency to its
/// result.
virtual bool isHighLatencyDef(int opc) const { return false; }
/// hasHighOperandLatency - Compute operand latency between a def of 'Reg'
/// and an use in the current loop, return true if the target considered
/// it 'high'. This is used by optimization passes such as machine LICM to
/// determine whether it makes sense to hoist an instruction out even in
/// high register pressure situation.
virtual
bool hasHighOperandLatency(const InstrItineraryData *ItinData,
const MachineRegisterInfo *MRI,
const MachineInstr *DefMI, unsigned DefIdx,
const MachineInstr *UseMI, unsigned UseIdx) const {
return false;
}
/// hasLowDefLatency - Compute operand latency of a def of 'Reg', return true
/// if the target considered it 'low'.
virtual
bool hasLowDefLatency(const InstrItineraryData *ItinData,
const MachineInstr *DefMI, unsigned DefIdx) const;
/// verifyInstruction - Perform target specific instruction verification.
virtual
bool verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const {
return true;
}
/// getExecutionDomain - Return the current execution domain and bit mask of
/// possible domains for instruction.
///
/// Some micro-architectures have multiple execution domains, and multiple
/// opcodes that perform the same operation in different domains. For
/// example, the x86 architecture provides the por, orps, and orpd
/// instructions that all do the same thing. There is a latency penalty if a
/// register is written in one domain and read in another.
///
/// This function returns a pair (domain, mask) containing the execution
/// domain of MI, and a bit mask of possible domains. The setExecutionDomain
/// function can be used to change the opcode to one of the domains in the
/// bit mask. Instructions whose execution domain can't be changed should
/// return a 0 mask.
///
/// The execution domain numbers don't have any special meaning except domain
/// 0 is used for instructions that are not associated with any interesting
/// execution domain.
///
virtual std::pair<uint16_t, uint16_t>
getExecutionDomain(const MachineInstr *MI) const {
return std::make_pair(0, 0);
}
/// setExecutionDomain - Change the opcode of MI to execute in Domain.
///
/// The bit (1 << Domain) must be set in the mask returned from
/// getExecutionDomain(MI).
///
virtual void setExecutionDomain(MachineInstr *MI, unsigned Domain) const {}
/// getPartialRegUpdateClearance - Returns the preferred minimum clearance
/// before an instruction with an unwanted partial register update.
///
/// Some instructions only write part of a register, and implicitly need to
/// read the other parts of the register. This may cause unwanted stalls
/// preventing otherwise unrelated instructions from executing in parallel in
/// an out-of-order CPU.
///
/// For example, the x86 instruction cvtsi2ss writes its result to bits
/// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
/// the instruction needs to wait for the old value of the register to become
/// available:
///
/// addps %xmm1, %xmm0
/// movaps %xmm0, (%rax)
/// cvtsi2ss %rbx, %xmm0
///
/// In the code above, the cvtsi2ss instruction needs to wait for the addps
/// instruction before it can issue, even though the high bits of %xmm0
/// probably aren't needed.
///
/// This hook returns the preferred clearance before MI, measured in
/// instructions. Other defs of MI's operand OpNum are avoided in the last N
/// instructions before MI. It should only return a positive value for
/// unwanted dependencies. If the old bits of the defined register have
/// useful values, or if MI is determined to otherwise read the dependency,
/// the hook should return 0.
///
/// The unwanted dependency may be handled by:
///
/// 1. Allocating the same register for an MI def and use. That makes the
/// unwanted dependency identical to a required dependency.
///
/// 2. Allocating a register for the def that has no defs in the previous N
/// instructions.
///
/// 3. Calling breakPartialRegDependency() with the same arguments. This
/// allows the target to insert a dependency breaking instruction.
///
virtual unsigned
getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
const TargetRegisterInfo *TRI) const {
// The default implementation returns 0 for no partial register dependency.
return 0;
}
/// breakPartialRegDependency - Insert a dependency-breaking instruction
/// before MI to eliminate an unwanted dependency on OpNum.
///
/// If it wasn't possible to avoid a def in the last N instructions before MI
/// (see getPartialRegUpdateClearance), this hook will be called to break the
/// unwanted dependency.
///
/// On x86, an xorps instruction can be used as a dependency breaker:
///
/// addps %xmm1, %xmm0
/// movaps %xmm0, (%rax)
/// xorps %xmm0, %xmm0
/// cvtsi2ss %rbx, %xmm0
///
/// An <imp-kill> operand should be added to MI if an instruction was
/// inserted. This ties the instructions together in the post-ra scheduler.
///
virtual void
breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
const TargetRegisterInfo *TRI) const {}
private:
int CallFrameSetupOpcode, CallFrameDestroyOpcode;
};
/// TargetInstrInfoImpl - This is the default implementation of
/// TargetInstrInfo, which just provides a couple of default implementations
/// for various methods. This separated out because it is implemented in
/// libcodegen, not in libtarget.
class TargetInstrInfoImpl : public TargetInstrInfo {
protected:
TargetInstrInfoImpl(int CallFrameSetupOpcode = -1,
int CallFrameDestroyOpcode = -1)
: TargetInstrInfo(CallFrameSetupOpcode, CallFrameDestroyOpcode) {}
public:
virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
MachineBasicBlock *NewDest) const;
virtual MachineInstr *commuteInstruction(MachineInstr *MI,
bool NewMI = false) const;
virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
unsigned &SrcOpIdx2) const;
virtual bool canFoldMemoryOperand(const MachineInstr *MI,
const SmallVectorImpl<unsigned> &Ops) const;
virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
const MachineMemOperand *&MMO,
int &FrameIndex) const;
virtual bool hasStoreToStackSlot(const MachineInstr *MI,
const MachineMemOperand *&MMO,
int &FrameIndex) const;
virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
virtual bool PredicateInstruction(MachineInstr *MI,
const SmallVectorImpl<MachineOperand> &Pred) const;
virtual void reMaterialize(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, unsigned SubReg,
const MachineInstr *Orig,
const TargetRegisterInfo &TRI) const;
virtual MachineInstr *duplicate(MachineInstr *Orig,
MachineFunction &MF) const;
virtual bool produceSameValue(const MachineInstr *MI0,
const MachineInstr *MI1,
const MachineRegisterInfo *MRI) const;
virtual bool isSchedulingBoundary(const MachineInstr *MI,
const MachineBasicBlock *MBB,
const MachineFunction &MF) const;
using TargetInstrInfo::getOperandLatency;
virtual int getOperandLatency(const InstrItineraryData *ItinData,
SDNode *DefNode, unsigned DefIdx,
SDNode *UseNode, unsigned UseIdx) const;
using TargetInstrInfo::getInstrLatency;
virtual int getInstrLatency(const InstrItineraryData *ItinData,
SDNode *Node) const;
bool usePreRAHazardRecognizer() const;
virtual ScheduleHazardRecognizer *
CreateTargetHazardRecognizer(const TargetMachine*, const ScheduleDAG*) const;
virtual ScheduleHazardRecognizer *
CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
const ScheduleDAG*) const;
};
} // End llvm namespace
#endif
|