summaryrefslogtreecommitdiffstats
path: root/include/llvm/Target/TargetLowering.h
blob: 5e5bdbe5116af04777dea209a192239421568782 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes how to lower LLVM code to machine code.  This has two
// main components:
//
//  1. Which ValueTypes are natively supported by the target.
//  2. Which operations are supported for supported ValueTypes.
//  3. Cost thresholds for alternative implementations of certain operations.
//
// In addition it has a few other components, like information about FP
// immediates.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TARGET_TARGETLOWERING_H
#define LLVM_TARGET_TARGETLOWERING_H

#include "llvm/Constants.h"
#include "llvm/InlineAsm.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/STLExtras.h"
#include <map>
#include <vector>

namespace llvm {
  class AllocaInst;
  class Function;
  class FastISel;
  class MachineBasicBlock;
  class MachineFunction;
  class MachineFrameInfo;
  class MachineInstr;
  class MachineModuleInfo;
  class SDNode;
  class SDValue;
  class SelectionDAG;
  class TargetData;
  class TargetMachine;
  class TargetRegisterClass;
  class TargetSubtarget;
  class Value;
  class VectorType;

//===----------------------------------------------------------------------===//
/// TargetLowering - This class defines information used to lower LLVM code to
/// legal SelectionDAG operators that the target instruction selector can accept
/// natively.
///
/// This class also defines callbacks that targets must implement to lower
/// target-specific constructs to SelectionDAG operators.
///
class TargetLowering {
public:
  /// LegalizeAction - This enum indicates whether operations are valid for a
  /// target, and if not, what action should be used to make them valid.
  enum LegalizeAction {
    Legal,      // The target natively supports this operation.
    Promote,    // This operation should be executed in a larger type.
    Expand,     // Try to expand this to other ops, otherwise use a libcall.
    Custom      // Use the LowerOperation hook to implement custom lowering.
  };

  enum OutOfRangeShiftAmount {
    Undefined,  // Oversized shift amounts are undefined (default).
    Mask,       // Shift amounts are auto masked (anded) to value size.
    Extend      // Oversized shift pulls in zeros or sign bits.
  };

  enum SetCCResultValue {
    UndefinedSetCCResult,          // SetCC returns a garbage/unknown extend.
    ZeroOrOneSetCCResult,          // SetCC returns a zero extended result.
    ZeroOrNegativeOneSetCCResult   // SetCC returns a sign extended result.
  };

  enum SchedPreference {
    SchedulingForLatency,          // Scheduling for shortest total latency.
    SchedulingForRegPressure       // Scheduling for lowest register pressure.
  };

  explicit TargetLowering(TargetMachine &TM);
  virtual ~TargetLowering();

  TargetMachine &getTargetMachine() const { return TM; }
  const TargetData *getTargetData() const { return TD; }

  bool isBigEndian() const { return !IsLittleEndian; }
  bool isLittleEndian() const { return IsLittleEndian; }
  MVT getPointerTy() const { return PointerTy; }
  MVT getShiftAmountTy() const { return ShiftAmountTy; }
  OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }

  /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC
  /// codegen.
  bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; }

  /// isSelectExpensive - Return true if the select operation is expensive for
  /// this target.
  bool isSelectExpensive() const { return SelectIsExpensive; }
  
  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
  /// a sequence of several shifts, adds, and multiplies for this target.
  bool isIntDivCheap() const { return IntDivIsCheap; }

  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
  /// srl/add/sra.
  bool isPow2DivCheap() const { return Pow2DivIsCheap; }

  /// getSetCCResultType - Return the ValueType of the result of setcc
  /// operations.
  virtual MVT getSetCCResultType(const SDValue &) const;

  /// getSetCCResultContents - For targets without boolean registers, this flag
  /// returns information about the contents of the high-bits in the setcc
  /// result register.
  SetCCResultValue getSetCCResultContents() const { return SetCCResultContents;}

  /// getSchedulingPreference - Return target scheduling preference.
  SchedPreference getSchedulingPreference() const {
    return SchedPreferenceInfo;
  }

  /// getRegClassFor - Return the register class that should be used for the
  /// specified value type.  This may only be called on legal types.
  TargetRegisterClass *getRegClassFor(MVT VT) const {
    assert((unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT()];
    assert(RC && "This value type is not natively supported!");
    return RC;
  }

  /// isTypeLegal - Return true if the target has native support for the
  /// specified value type.  This means that it has a register that directly
  /// holds it without promotions or expansions.
  bool isTypeLegal(MVT VT) const {
    assert(!VT.isSimple() ||
           (unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
    return VT.isSimple() && RegClassForVT[VT.getSimpleVT()] != 0;
  }

  class ValueTypeActionImpl {
    /// ValueTypeActions - This is a bitvector that contains two bits for each
    /// value type, where the two bits correspond to the LegalizeAction enum.
    /// This can be queried with "getTypeAction(VT)".
    uint32_t ValueTypeActions[2];
  public:
    ValueTypeActionImpl() {
      ValueTypeActions[0] = ValueTypeActions[1] = 0;
    }
    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
      ValueTypeActions[0] = RHS.ValueTypeActions[0];
      ValueTypeActions[1] = RHS.ValueTypeActions[1];
    }
    
    LegalizeAction getTypeAction(MVT VT) const {
      if (VT.isExtended()) {
        if (VT.isVector()) return Expand;
        if (VT.isInteger())
          // First promote to a power-of-two size, then expand if necessary.
          return VT == VT.getRoundIntegerType() ? Expand : Promote;
        assert(0 && "Unsupported extended type!");
        return Legal;
      }
      unsigned I = VT.getSimpleVT();
      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
      return (LegalizeAction)((ValueTypeActions[I>>4] >> ((2*I) & 31)) & 3);
    }
    void setTypeAction(MVT VT, LegalizeAction Action) {
      unsigned I = VT.getSimpleVT();
      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
      ValueTypeActions[I>>4] |= Action << ((I*2) & 31);
    }
  };
  
  const ValueTypeActionImpl &getValueTypeActions() const {
    return ValueTypeActions;
  }

  /// getTypeAction - Return how we should legalize values of this type, either
  /// it is already legal (return 'Legal') or we need to promote it to a larger
  /// type (return 'Promote'), or we need to expand it into multiple registers
  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
  LegalizeAction getTypeAction(MVT VT) const {
    return ValueTypeActions.getTypeAction(VT);
  }

  /// getTypeToTransformTo - For types supported by the target, this is an
  /// identity function.  For types that must be promoted to larger types, this
  /// returns the larger type to promote to.  For integer types that are larger
  /// than the largest integer register, this contains one step in the expansion
  /// to get to the smaller register. For illegal floating point types, this
  /// returns the integer type to transform to.
  MVT getTypeToTransformTo(MVT VT) const {
    if (VT.isSimple()) {
      assert((unsigned)VT.getSimpleVT() < array_lengthof(TransformToType));
      MVT NVT = TransformToType[VT.getSimpleVT()];
      assert(getTypeAction(NVT) != Promote &&
             "Promote may not follow Expand or Promote");
      return NVT;
    }

    if (VT.isVector())
      return MVT::getVectorVT(VT.getVectorElementType(),
                              VT.getVectorNumElements() / 2);
    if (VT.isInteger()) {
      MVT NVT = VT.getRoundIntegerType();
      if (NVT == VT)
        // Size is a power of two - expand to half the size.
        return MVT::getIntegerVT(VT.getSizeInBits() / 2);
      else
        // Promote to a power of two size, avoiding multi-step promotion.
        return getTypeAction(NVT) == Promote ? getTypeToTransformTo(NVT) : NVT;
    }
    assert(0 && "Unsupported extended type!");
    return MVT(); // Not reached
  }

  /// getTypeToExpandTo - For types supported by the target, this is an
  /// identity function.  For types that must be expanded (i.e. integer types
  /// that are larger than the largest integer register or illegal floating
  /// point types), this returns the largest legal type it will be expanded to.
  MVT getTypeToExpandTo(MVT VT) const {
    assert(!VT.isVector());
    while (true) {
      switch (getTypeAction(VT)) {
      case Legal:
        return VT;
      case Expand:
        VT = getTypeToTransformTo(VT);
        break;
      default:
        assert(false && "Type is not legal nor is it to be expanded!");
        return VT;
      }
    }
    return VT;
  }

  /// getVectorTypeBreakdown - Vector types are broken down into some number of
  /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
  /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
  /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
  ///
  /// This method returns the number of registers needed, and the VT for each
  /// register.  It also returns the VT and quantity of the intermediate values
  /// before they are promoted/expanded.
  ///
  unsigned getVectorTypeBreakdown(MVT VT,
                                  MVT &IntermediateVT,
                                  unsigned &NumIntermediates,
                                  MVT &RegisterVT) const;
  
  typedef std::vector<APFloat>::const_iterator legal_fpimm_iterator;
  legal_fpimm_iterator legal_fpimm_begin() const {
    return LegalFPImmediates.begin();
  }
  legal_fpimm_iterator legal_fpimm_end() const {
    return LegalFPImmediates.end();
  }
  
  /// isShuffleMaskLegal - Targets can use this to indicate that they only
  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
  /// are assumed to be legal.
  virtual bool isShuffleMaskLegal(SDValue Mask, MVT VT) const {
    return true;
  }

  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
  /// used by Targets can use this to indicate if there is a suitable
  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
  /// pool entry.
  virtual bool isVectorClearMaskLegal(const std::vector<SDValue> &BVOps,
                                      MVT EVT,
                                      SelectionDAG &DAG) const {
    return false;
  }

  /// getOperationAction - Return how this operation should be treated: either
  /// it is legal, needs to be promoted to a larger size, needs to be
  /// expanded to some other code sequence, or the target has a custom expander
  /// for it.
  LegalizeAction getOperationAction(unsigned Op, MVT VT) const {
    if (VT.isExtended()) return Expand;
    assert(Op < array_lengthof(OpActions) &&
           (unsigned)VT.getSimpleVT() < sizeof(OpActions[0])*4 &&
           "Table isn't big enough!");
    return (LegalizeAction)((OpActions[Op] >> (2*VT.getSimpleVT())) & 3);
  }

  /// isOperationLegal - Return true if the specified operation is legal on this
  /// target.
  bool isOperationLegal(unsigned Op, MVT VT) const {
    return (VT == MVT::Other || isTypeLegal(VT)) &&
      (getOperationAction(Op, VT) == Legal ||
       getOperationAction(Op, VT) == Custom);
  }

  /// getLoadExtAction - Return how this load with extension should be treated:
  /// either it is legal, needs to be promoted to a larger size, needs to be
  /// expanded to some other code sequence, or the target has a custom expander
  /// for it.
  LegalizeAction getLoadExtAction(unsigned LType, MVT VT) const {
    assert(LType < array_lengthof(LoadExtActions) &&
           (unsigned)VT.getSimpleVT() < sizeof(LoadExtActions[0])*4 &&
           "Table isn't big enough!");
    return (LegalizeAction)((LoadExtActions[LType] >> (2*VT.getSimpleVT())) & 3);
  }

  /// isLoadExtLegal - Return true if the specified load with extension is legal
  /// on this target.
  bool isLoadExtLegal(unsigned LType, MVT VT) const {
    return VT.isSimple() &&
      (getLoadExtAction(LType, VT) == Legal ||
       getLoadExtAction(LType, VT) == Custom);
  }

  /// getTruncStoreAction - Return how this store with truncation should be
  /// treated: either it is legal, needs to be promoted to a larger size, needs
  /// to be expanded to some other code sequence, or the target has a custom
  /// expander for it.
  LegalizeAction getTruncStoreAction(MVT ValVT,
                                     MVT MemVT) const {
    assert((unsigned)ValVT.getSimpleVT() < array_lengthof(TruncStoreActions) &&
           (unsigned)MemVT.getSimpleVT() < sizeof(TruncStoreActions[0])*4 &&
           "Table isn't big enough!");
    return (LegalizeAction)((TruncStoreActions[ValVT.getSimpleVT()] >>
                             (2*MemVT.getSimpleVT())) & 3);
  }

  /// isTruncStoreLegal - Return true if the specified store with truncation is
  /// legal on this target.
  bool isTruncStoreLegal(MVT ValVT, MVT MemVT) const {
    return isTypeLegal(ValVT) && MemVT.isSimple() &&
      (getTruncStoreAction(ValVT, MemVT) == Legal ||
       getTruncStoreAction(ValVT, MemVT) == Custom);
  }

  /// getIndexedLoadAction - Return how the indexed load should be treated:
  /// either it is legal, needs to be promoted to a larger size, needs to be
  /// expanded to some other code sequence, or the target has a custom expander
  /// for it.
  LegalizeAction
  getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
    assert(IdxMode < array_lengthof(IndexedModeActions[0]) &&
           (unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[0][0])*4 &&
           "Table isn't big enough!");
    return (LegalizeAction)((IndexedModeActions[0][IdxMode] >>
                             (2*VT.getSimpleVT())) & 3);
  }

  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
  /// on this target.
  bool isIndexedLoadLegal(unsigned IdxMode, MVT VT) const {
    return VT.isSimple() &&
      (getIndexedLoadAction(IdxMode, VT) == Legal ||
       getIndexedLoadAction(IdxMode, VT) == Custom);
  }

  /// getIndexedStoreAction - Return how the indexed store should be treated:
  /// either it is legal, needs to be promoted to a larger size, needs to be
  /// expanded to some other code sequence, or the target has a custom expander
  /// for it.
  LegalizeAction
  getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
    assert(IdxMode < array_lengthof(IndexedModeActions[1]) &&
           (unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[1][0])*4 &&
           "Table isn't big enough!");
    return (LegalizeAction)((IndexedModeActions[1][IdxMode] >>
                             (2*VT.getSimpleVT())) & 3);
  }  

  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
  /// on this target.
  bool isIndexedStoreLegal(unsigned IdxMode, MVT VT) const {
    return VT.isSimple() &&
      (getIndexedStoreAction(IdxMode, VT) == Legal ||
       getIndexedStoreAction(IdxMode, VT) == Custom);
  }

  /// getConvertAction - Return how the conversion should be treated:
  /// either it is legal, needs to be promoted to a larger size, needs to be
  /// expanded to some other code sequence, or the target has a custom expander
  /// for it.
  LegalizeAction
  getConvertAction(MVT FromVT, MVT ToVT) const {
    assert((unsigned)FromVT.getSimpleVT() < array_lengthof(ConvertActions) &&
           (unsigned)ToVT.getSimpleVT() < sizeof(ConvertActions[0])*4 &&
           "Table isn't big enough!");
    return (LegalizeAction)((ConvertActions[FromVT.getSimpleVT()] >>
                             (2*ToVT.getSimpleVT())) & 3);
  }

  /// isConvertLegal - Return true if the specified conversion is legal
  /// on this target.
  bool isConvertLegal(MVT FromVT, MVT ToVT) const {
    return isTypeLegal(FromVT) && isTypeLegal(ToVT) &&
      (getConvertAction(FromVT, ToVT) == Legal ||
       getConvertAction(FromVT, ToVT) == Custom);
  }

  /// getCondCodeAction - Return how the condition code should be treated:
  /// either it is legal, needs to be expanded to some other code sequence,
  /// or the target has a custom expander for it.
  LegalizeAction
  getCondCodeAction(ISD::CondCode CC, MVT VT) const {
    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
           (unsigned)VT.getSimpleVT() < sizeof(CondCodeActions[0])*4 &&
           "Table isn't big enough!");
    LegalizeAction Action = (LegalizeAction)
      ((CondCodeActions[CC] >> (2*VT.getSimpleVT())) & 3);
    assert(Action != Promote && "Can't promote condition code!");
    return Action;
  }

  /// isCondCodeLegal - Return true if the specified condition code is legal
  /// on this target.
  bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
    return getCondCodeAction(CC, VT) == Legal ||
           getCondCodeAction(CC, VT) == Custom;
  }


  /// getTypeToPromoteTo - If the action for this operation is to promote, this
  /// method returns the ValueType to promote to.
  MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
    assert(getOperationAction(Op, VT) == Promote &&
           "This operation isn't promoted!");

    // See if this has an explicit type specified.
    std::map<std::pair<unsigned, MVT::SimpleValueType>,
             MVT::SimpleValueType>::const_iterator PTTI =
      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT()));
    if (PTTI != PromoteToType.end()) return PTTI->second;

    assert((VT.isInteger() || VT.isFloatingPoint()) &&
           "Cannot autopromote this type, add it with AddPromotedToType.");
    
    MVT NVT = VT;
    do {
      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT()+1);
      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
             "Didn't find type to promote to!");
    } while (!isTypeLegal(NVT) ||
              getOperationAction(Op, NVT) == Promote);
    return NVT;
  }

  /// getValueType - Return the MVT corresponding to this LLVM type.
  /// This is fixed by the LLVM operations except for the pointer size.  If
  /// AllowUnknown is true, this will return MVT::Other for types with no MVT
  /// counterpart (e.g. structs), otherwise it will assert.
  MVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
    MVT VT = MVT::getMVT(Ty, AllowUnknown);
    return VT == MVT::iPTR ? PointerTy : VT;
  }

  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
  /// function arguments in the caller parameter area.  This is the actual
  /// alignment, not its logarithm.
  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
  
  /// getRegisterType - Return the type of registers that this ValueType will
  /// eventually require.
  MVT getRegisterType(MVT VT) const {
    if (VT.isSimple()) {
      assert((unsigned)VT.getSimpleVT() < array_lengthof(RegisterTypeForVT));
      return RegisterTypeForVT[VT.getSimpleVT()];
    }
    if (VT.isVector()) {
      MVT VT1, RegisterVT;
      unsigned NumIntermediates;
      (void)getVectorTypeBreakdown(VT, VT1, NumIntermediates, RegisterVT);
      return RegisterVT;
    }
    if (VT.isInteger()) {
      return getRegisterType(getTypeToTransformTo(VT));
    }
    assert(0 && "Unsupported extended type!");
    return MVT(); // Not reached
  }

  /// getNumRegisters - Return the number of registers that this ValueType will
  /// eventually require.  This is one for any types promoted to live in larger
  /// registers, but may be more than one for types (like i64) that are split
  /// into pieces.  For types like i140, which are first promoted then expanded,
  /// it is the number of registers needed to hold all the bits of the original
  /// type.  For an i140 on a 32 bit machine this means 5 registers.
  unsigned getNumRegisters(MVT VT) const {
    if (VT.isSimple()) {
      assert((unsigned)VT.getSimpleVT() < array_lengthof(NumRegistersForVT));
      return NumRegistersForVT[VT.getSimpleVT()];
    }
    if (VT.isVector()) {
      MVT VT1, VT2;
      unsigned NumIntermediates;
      return getVectorTypeBreakdown(VT, VT1, NumIntermediates, VT2);
    }
    if (VT.isInteger()) {
      unsigned BitWidth = VT.getSizeInBits();
      unsigned RegWidth = getRegisterType(VT).getSizeInBits();
      return (BitWidth + RegWidth - 1) / RegWidth;
    }
    assert(0 && "Unsupported extended type!");
    return 0; // Not reached
  }

  /// ShouldShrinkFPConstant - If true, then instruction selection should
  /// seek to shrink the FP constant of the specified type to a smaller type
  /// in order to save space and / or reduce runtime.
  virtual bool ShouldShrinkFPConstant(MVT VT) const { return true; }

  /// hasTargetDAGCombine - If true, the target has custom DAG combine
  /// transformations that it can perform for the specified node.
  bool hasTargetDAGCombine(ISD::NodeType NT) const {
    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
  }

  /// This function returns the maximum number of store operations permitted
  /// to replace a call to llvm.memset. The value is set by the target at the
  /// performance threshold for such a replacement.
  /// @brief Get maximum # of store operations permitted for llvm.memset
  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }

  /// This function returns the maximum number of store operations permitted
  /// to replace a call to llvm.memcpy. The value is set by the target at the
  /// performance threshold for such a replacement.
  /// @brief Get maximum # of store operations permitted for llvm.memcpy
  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }

  /// This function returns the maximum number of store operations permitted
  /// to replace a call to llvm.memmove. The value is set by the target at the
  /// performance threshold for such a replacement.
  /// @brief Get maximum # of store operations permitted for llvm.memmove
  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }

  /// This function returns true if the target allows unaligned memory accesses.
  /// This is used, for example, in situations where an array copy/move/set is 
  /// converted to a sequence of store operations. It's use helps to ensure that
  /// such replacements don't generate code that causes an alignment error 
  /// (trap) on the target machine. 
  /// @brief Determine if the target supports unaligned memory accesses.
  bool allowsUnalignedMemoryAccesses() const {
    return allowUnalignedMemoryAccesses;
  }

  /// getOptimalMemOpType - Returns the target specific optimal type for load
  /// and store operations as a result of memset, memcpy, and memmove lowering.
  /// It returns MVT::iAny if SelectionDAG should be responsible for
  /// determining it.
  virtual MVT getOptimalMemOpType(uint64_t Size, unsigned Align,
                                  bool isSrcConst, bool isSrcStr) const {
    return MVT::iAny;
  }
  
  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
  /// to implement llvm.setjmp.
  bool usesUnderscoreSetJmp() const {
    return UseUnderscoreSetJmp;
  }

  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
  /// to implement llvm.longjmp.
  bool usesUnderscoreLongJmp() const {
    return UseUnderscoreLongJmp;
  }

  /// getStackPointerRegisterToSaveRestore - If a physical register, this
  /// specifies the register that llvm.savestack/llvm.restorestack should save
  /// and restore.
  unsigned getStackPointerRegisterToSaveRestore() const {
    return StackPointerRegisterToSaveRestore;
  }

  /// getExceptionAddressRegister - If a physical register, this returns
  /// the register that receives the exception address on entry to a landing
  /// pad.
  unsigned getExceptionAddressRegister() const {
    return ExceptionPointerRegister;
  }

  /// getExceptionSelectorRegister - If a physical register, this returns
  /// the register that receives the exception typeid on entry to a landing
  /// pad.
  unsigned getExceptionSelectorRegister() const {
    return ExceptionSelectorRegister;
  }

  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
  /// set, the default is 200)
  unsigned getJumpBufSize() const {
    return JumpBufSize;
  }

  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
  /// (if never set, the default is 0)
  unsigned getJumpBufAlignment() const {
    return JumpBufAlignment;
  }

  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
  /// limit. Any block whose size is greater should not be predicated.
  unsigned getIfCvtBlockSizeLimit() const {
    return IfCvtBlockSizeLimit;
  }

  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
  /// block to be considered for duplication. Any block whose size is greater
  /// should not be duplicated to facilitate its predication.
  unsigned getIfCvtDupBlockSizeLimit() const {
    return IfCvtDupBlockSizeLimit;
  }

  /// getPrefLoopAlignment - return the preferred loop alignment.
  ///
  unsigned getPrefLoopAlignment() const {
    return PrefLoopAlignment;
  }
  
  /// getPreIndexedAddressParts - returns true by value, base pointer and
  /// offset pointer and addressing mode by reference if the node's address
  /// can be legally represented as pre-indexed load / store address.
  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
                                         SDValue &Offset,
                                         ISD::MemIndexedMode &AM,
                                         SelectionDAG &DAG) {
    return false;
  }
  
  /// getPostIndexedAddressParts - returns true by value, base pointer and
  /// offset pointer and addressing mode by reference if this node can be
  /// combined with a load / store to form a post-indexed load / store.
  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
                                          SDValue &Base, SDValue &Offset,
                                          ISD::MemIndexedMode &AM,
                                          SelectionDAG &DAG) {
    return false;
  }
  
  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
  /// jumptable.
  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
                                             SelectionDAG &DAG) const;

  //===--------------------------------------------------------------------===//
  // TargetLowering Optimization Methods
  //
  
  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
  /// SDValues for returning information from TargetLowering to its clients
  /// that want to combine 
  struct TargetLoweringOpt {
    SelectionDAG &DAG;
    bool AfterLegalize;
    SDValue Old;
    SDValue New;

    explicit TargetLoweringOpt(SelectionDAG &InDAG, bool afterLegalize)
      : DAG(InDAG), AfterLegalize(afterLegalize) {}
    
    bool CombineTo(SDValue O, SDValue N) { 
      Old = O; 
      New = N; 
      return true;
    }
    
    /// ShrinkDemandedConstant - Check to see if the specified operand of the 
    /// specified instruction is a constant integer.  If so, check to see if
    /// there are any bits set in the constant that are not demanded.  If so,
    /// shrink the constant and return true.
    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
  };
                                                
  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
  /// use this information to simplify Op, create a new simplified DAG node and
  /// return true, returning the original and new nodes in Old and New. 
  /// Otherwise, analyze the expression and return a mask of KnownOne and 
  /// KnownZero bits for the expression (used to simplify the caller).  
  /// The KnownZero/One bits may only be accurate for those bits in the 
  /// DemandedMask.
  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask, 
                            APInt &KnownZero, APInt &KnownOne,
                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
  
  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
  /// Mask are known to be either zero or one and return them in the 
  /// KnownZero/KnownOne bitsets.
  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
                                              const APInt &Mask,
                                              APInt &KnownZero, 
                                              APInt &KnownOne,
                                              const SelectionDAG &DAG,
                                              unsigned Depth = 0) const;

  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
  /// targets that want to expose additional information about sign bits to the
  /// DAG Combiner.
  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
                                                   unsigned Depth = 0) const;
  
  struct DAGCombinerInfo {
    void *DC;  // The DAG Combiner object.
    bool BeforeLegalize;
    bool CalledByLegalizer;
  public:
    SelectionDAG &DAG;
    
    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool cl, void *dc)
      : DC(dc), BeforeLegalize(bl), CalledByLegalizer(cl), DAG(dag) {}
    
    bool isBeforeLegalize() const { return BeforeLegalize; }
    bool isCalledByLegalizer() const { return CalledByLegalizer; }
    
    void AddToWorklist(SDNode *N);
    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To);
    SDValue CombineTo(SDNode *N, SDValue Res);
    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1);
  };

  /// SimplifySetCC - Try to simplify a setcc built with the specified operands 
  /// and cc. If it is unable to simplify it, return a null SDValue.
  SDValue SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
                          ISD::CondCode Cond, bool foldBooleans,
                          DAGCombinerInfo &DCI) const;

  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
  /// node is a GlobalAddress + offset.
  virtual bool
  isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) const;

  /// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is
  /// loading 'Bytes' bytes from a location that is 'Dist' units away from the
  /// location that the 'Base' load is loading from.
  bool isConsecutiveLoad(SDNode *LD, SDNode *Base, unsigned Bytes, int Dist,
                         const MachineFrameInfo *MFI) const;

  /// PerformDAGCombine - This method will be invoked for all target nodes and
  /// for any target-independent nodes that the target has registered with
  /// invoke it for.
  ///
  /// The semantics are as follows:
  /// Return Value:
  ///   SDValue.Val == 0   - No change was made
  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
  ///   otherwise            - N should be replaced by the returned Operand.
  ///
  /// In addition, methods provided by DAGCombinerInfo may be used to perform
  /// more complex transformations.
  ///
  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
  
  //===--------------------------------------------------------------------===//
  // TargetLowering Configuration Methods - These methods should be invoked by
  // the derived class constructor to configure this object for the target.
  //

protected:
  /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a
  /// GOT for PC-relative code.
  void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; }

  /// setShiftAmountType - Describe the type that should be used for shift
  /// amounts.  This type defaults to the pointer type.
  void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }

  /// setSetCCResultContents - Specify how the target extends the result of a
  /// setcc operation in a register.
  void setSetCCResultContents(SetCCResultValue Ty) { SetCCResultContents = Ty; }

  /// setSchedulingPreference - Specify the target scheduling preference.
  void setSchedulingPreference(SchedPreference Pref) {
    SchedPreferenceInfo = Pref;
  }

  /// setShiftAmountFlavor - Describe how the target handles out of range shift
  /// amounts.
  void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
    ShiftAmtHandling = OORSA;
  }

  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
  /// use _setjmp to implement llvm.setjmp or the non _ version.
  /// Defaults to false.
  void setUseUnderscoreSetJmp(bool Val) {
    UseUnderscoreSetJmp = Val;
  }

  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
  /// use _longjmp to implement llvm.longjmp or the non _ version.
  /// Defaults to false.
  void setUseUnderscoreLongJmp(bool Val) {
    UseUnderscoreLongJmp = Val;
  }

  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
  /// specifies the register that llvm.savestack/llvm.restorestack should save
  /// and restore.
  void setStackPointerRegisterToSaveRestore(unsigned R) {
    StackPointerRegisterToSaveRestore = R;
  }
  
  /// setExceptionPointerRegister - If set to a physical register, this sets
  /// the register that receives the exception address on entry to a landing
  /// pad.
  void setExceptionPointerRegister(unsigned R) {
    ExceptionPointerRegister = R;
  }

  /// setExceptionSelectorRegister - If set to a physical register, this sets
  /// the register that receives the exception typeid on entry to a landing
  /// pad.
  void setExceptionSelectorRegister(unsigned R) {
    ExceptionSelectorRegister = R;
  }

  /// SelectIsExpensive - Tells the code generator not to expand operations
  /// into sequences that use the select operations if possible.
  void setSelectIsExpensive() { SelectIsExpensive = true; }

  /// setIntDivIsCheap - Tells the code generator that integer divide is
  /// expensive, and if possible, should be replaced by an alternate sequence
  /// of instructions not containing an integer divide.
  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
  
  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
  /// srl/add/sra for a signed divide by power of two, and let the target handle
  /// it.
  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
  
  /// addRegisterClass - Add the specified register class as an available
  /// regclass for the specified value type.  This indicates the selector can
  /// handle values of that class natively.
  void addRegisterClass(MVT VT, TargetRegisterClass *RC) {
    assert((unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
    AvailableRegClasses.push_back(std::make_pair(VT, RC));
    RegClassForVT[VT.getSimpleVT()] = RC;
  }

  /// computeRegisterProperties - Once all of the register classes are added,
  /// this allows us to compute derived properties we expose.
  void computeRegisterProperties();

  /// setOperationAction - Indicate that the specified operation does not work
  /// with the specified type and indicate what to do about it.
  void setOperationAction(unsigned Op, MVT VT,
                          LegalizeAction Action) {
    assert((unsigned)VT.getSimpleVT() < sizeof(OpActions[0])*4 &&
           Op < array_lengthof(OpActions) && "Table isn't big enough!");
    OpActions[Op] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
    OpActions[Op] |= (uint64_t)Action << VT.getSimpleVT()*2;
  }
  
  /// setLoadExtAction - Indicate that the specified load with extension does
  /// not work with the with specified type and indicate what to do about it.
  void setLoadExtAction(unsigned ExtType, MVT VT,
                      LegalizeAction Action) {
    assert((unsigned)VT.getSimpleVT() < sizeof(LoadExtActions[0])*4 &&
           ExtType < array_lengthof(LoadExtActions) &&
           "Table isn't big enough!");
    LoadExtActions[ExtType] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
    LoadExtActions[ExtType] |= (uint64_t)Action << VT.getSimpleVT()*2;
  }
  
  /// setTruncStoreAction - Indicate that the specified truncating store does
  /// not work with the with specified type and indicate what to do about it.
  void setTruncStoreAction(MVT ValVT, MVT MemVT,
                           LegalizeAction Action) {
    assert((unsigned)ValVT.getSimpleVT() < array_lengthof(TruncStoreActions) &&
           (unsigned)MemVT.getSimpleVT() < sizeof(TruncStoreActions[0])*4 &&
           "Table isn't big enough!");
    TruncStoreActions[ValVT.getSimpleVT()] &= ~(uint64_t(3UL) <<
                                                MemVT.getSimpleVT()*2);
    TruncStoreActions[ValVT.getSimpleVT()] |= (uint64_t)Action <<
      MemVT.getSimpleVT()*2;
  }

  /// setIndexedLoadAction - Indicate that the specified indexed load does or
  /// does not work with the with specified type and indicate what to do abort
  /// it. NOTE: All indexed mode loads are initialized to Expand in
  /// TargetLowering.cpp
  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
                            LegalizeAction Action) {
    assert((unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[0])*4 &&
           IdxMode < array_lengthof(IndexedModeActions[0]) &&
           "Table isn't big enough!");
    IndexedModeActions[0][IdxMode] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
    IndexedModeActions[0][IdxMode] |= (uint64_t)Action << VT.getSimpleVT()*2;
  }
  
  /// setIndexedStoreAction - Indicate that the specified indexed store does or
  /// does not work with the with specified type and indicate what to do about
  /// it. NOTE: All indexed mode stores are initialized to Expand in
  /// TargetLowering.cpp
  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
                             LegalizeAction Action) {
    assert((unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[1][0])*4 &&
           IdxMode < array_lengthof(IndexedModeActions[1]) &&
           "Table isn't big enough!");
    IndexedModeActions[1][IdxMode] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
    IndexedModeActions[1][IdxMode] |= (uint64_t)Action << VT.getSimpleVT()*2;
  }
  
  /// setConvertAction - Indicate that the specified conversion does or does
  /// not work with the with specified type and indicate what to do about it.
  void setConvertAction(MVT FromVT, MVT ToVT,
                        LegalizeAction Action) {
    assert((unsigned)FromVT.getSimpleVT() < array_lengthof(ConvertActions) &&
           (unsigned)ToVT.getSimpleVT() < sizeof(ConvertActions[0])*4 &&
           "Table isn't big enough!");
    ConvertActions[FromVT.getSimpleVT()] &= ~(uint64_t(3UL) <<
                                              ToVT.getSimpleVT()*2);
    ConvertActions[FromVT.getSimpleVT()] |= (uint64_t)Action <<
      ToVT.getSimpleVT()*2;
  }

  /// setCondCodeAction - Indicate that the specified condition code is or isn't
  /// supported on the target and indicate what to do about it.
  void setCondCodeAction(ISD::CondCode CC, MVT VT, LegalizeAction Action) {
    assert((unsigned)VT.getSimpleVT() < sizeof(CondCodeActions[0])*4 &&
           (unsigned)CC < array_lengthof(CondCodeActions) &&
           "Table isn't big enough!");
    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.getSimpleVT()*2;
  }

  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
  /// promotion code defaults to trying a larger integer/fp until it can find
  /// one that works.  If that default is insufficient, this method can be used
  /// by the target to override the default.
  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
    PromoteToType[std::make_pair(Opc, OrigVT.getSimpleVT())] =
      DestVT.getSimpleVT();
  }

  /// addLegalFPImmediate - Indicate that this target can instruction select
  /// the specified FP immediate natively.
  void addLegalFPImmediate(const APFloat& Imm) {
    LegalFPImmediates.push_back(Imm);
  }

  /// setTargetDAGCombine - Targets should invoke this method for each target
  /// independent node that they want to provide a custom DAG combiner for by
  /// implementing the PerformDAGCombine virtual method.
  void setTargetDAGCombine(ISD::NodeType NT) {
    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
  }
  
  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
  /// bytes); default is 200
  void setJumpBufSize(unsigned Size) {
    JumpBufSize = Size;
  }

  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
  /// alignment (in bytes); default is 0
  void setJumpBufAlignment(unsigned Align) {
    JumpBufAlignment = Align;
  }

  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
  /// limit (in number of instructions); default is 2.
  void setIfCvtBlockSizeLimit(unsigned Limit) {
    IfCvtBlockSizeLimit = Limit;
  }
  
  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
  /// of instructions) to be considered for code duplication during
  /// if-conversion; default is 2.
  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
    IfCvtDupBlockSizeLimit = Limit;
  }

  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
  /// alignment is zero, it means the target does not care about loop alignment.
  void setPrefLoopAlignment(unsigned Align) {
    PrefLoopAlignment = Align;
  }
  
public:

  virtual const TargetSubtarget *getSubtarget() {
    assert(0 && "Not Implemented");
    return NULL;    // this is here to silence compiler errors
  }
  //===--------------------------------------------------------------------===//
  // Lowering methods - These methods must be implemented by targets so that
  // the SelectionDAGLowering code knows how to lower these.
  //

  /// LowerArguments - This hook must be implemented to indicate how we should
  /// lower the arguments for the specified function, into the specified DAG.
  virtual void
  LowerArguments(Function &F, SelectionDAG &DAG,
                 SmallVectorImpl<SDValue>& ArgValues);

  /// LowerCallTo - This hook lowers an abstract call to a function into an
  /// actual call.  This returns a pair of operands.  The first element is the
  /// return value for the function (if RetTy is not VoidTy).  The second
  /// element is the outgoing token chain.
  struct ArgListEntry {
    SDValue Node;
    const Type* Ty;
    bool isSExt  : 1;
    bool isZExt  : 1;
    bool isInReg : 1;
    bool isSRet  : 1;
    bool isNest  : 1;
    bool isByVal : 1;
    uint16_t Alignment;

    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
  };
  typedef std::vector<ArgListEntry> ArgListTy;
  virtual std::pair<SDValue, SDValue>
  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
              bool isVarArg, bool isInreg, unsigned CallingConv, 
              bool isTailCall, SDValue Callee, ArgListTy &Args, 
              SelectionDAG &DAG);

  /// EmitTargetCodeForMemcpy - Emit target-specific code that performs a
  /// memcpy. This can be used by targets to provide code sequences for cases
  /// that don't fit the target's parameters for simple loads/stores and can be
  /// more efficient than using a library call. This function can return a null
  /// SDValue if the target declines to use custom code and a different
  /// lowering strategy should be used.
  /// 
  /// If AlwaysInline is true, the size is constant and the target should not
  /// emit any calls and is strongly encouraged to attempt to emit inline code
  /// even if it is beyond the usual threshold because this intrinsic is being
  /// expanded in a place where calls are not feasible (e.g. within the prologue
  /// for another call). If the target chooses to decline an AlwaysInline
  /// request here, legalize will resort to using simple loads and stores.
  virtual SDValue
  EmitTargetCodeForMemcpy(SelectionDAG &DAG,
                          SDValue Chain,
                          SDValue Op1, SDValue Op2,
                          SDValue Op3, unsigned Align,
                          bool AlwaysInline,
                          const Value *DstSV, uint64_t DstOff,
                          const Value *SrcSV, uint64_t SrcOff) {
    return SDValue();
  }

  /// EmitTargetCodeForMemmove - Emit target-specific code that performs a
  /// memmove. This can be used by targets to provide code sequences for cases
  /// that don't fit the target's parameters for simple loads/stores and can be
  /// more efficient than using a library call. This function can return a null
  /// SDValue if the target declines to use custom code and a different
  /// lowering strategy should be used.
  virtual SDValue
  EmitTargetCodeForMemmove(SelectionDAG &DAG,
                           SDValue Chain,
                           SDValue Op1, SDValue Op2,
                           SDValue Op3, unsigned Align,
                           const Value *DstSV, uint64_t DstOff,
                           const Value *SrcSV, uint64_t SrcOff) {
    return SDValue();
  }

  /// EmitTargetCodeForMemset - Emit target-specific code that performs a
  /// memset. This can be used by targets to provide code sequences for cases
  /// that don't fit the target's parameters for simple stores and can be more
  /// efficient than using a library call. This function can return a null
  /// SDValue if the target declines to use custom code and a different
  /// lowering strategy should be used.
  virtual SDValue
  EmitTargetCodeForMemset(SelectionDAG &DAG,
                          SDValue Chain,
                          SDValue Op1, SDValue Op2,
                          SDValue Op3, unsigned Align,
                          const Value *DstSV, uint64_t DstOff) {
    return SDValue();
  }

  /// LowerOperation - This callback is invoked for operations that are 
  /// unsupported by the target, which are registered to use 'custom' lowering,
  /// and whose defined values are all legal.
  /// If the target has no operations that require custom lowering, it need not
  /// implement this.  The default implementation of this aborts.
  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);

  /// ReplaceNodeResults - This callback is invoked for operations that are
  /// unsupported by the target, which are registered to use 'custom' lowering,
  /// and whose result type is illegal.  This must return a node whose results
  /// precisely match the results of the input node.  This typically involves a
  /// MERGE_VALUES node and/or BUILD_PAIR.
  ///
  /// If the target has no operations that require custom lowering, it need not
  /// implement this.  The default implementation aborts.
  virtual SDNode *ReplaceNodeResults(SDNode *N, SelectionDAG &DAG) {
    assert(0 && "ReplaceNodeResults not implemented for this target!");
    return 0;
  }

  /// IsEligibleForTailCallOptimization - Check whether the call is eligible for
  /// tail call optimization. Targets which want to do tail call optimization
  /// should override this function. 
  virtual bool IsEligibleForTailCallOptimization(CallSDNode *Call, 
                                                 SDValue Ret, 
                                                 SelectionDAG &DAG) const {
    return false;
  }

  /// CheckTailCallReturnConstraints - Check whether CALL node immediatly
  /// preceeds the RET node and whether the return uses the result of the node
  /// or is a void return. This function can be used by the target to determine
  /// eligiblity of tail call optimization.
  static bool CheckTailCallReturnConstraints(CallSDNode *TheCall, SDValue Ret) {
    unsigned NumOps = Ret.getNumOperands();
    if ((NumOps == 1 &&
       (Ret.getOperand(0) == SDValue(TheCall,1) ||
        Ret.getOperand(0) == SDValue(TheCall,0))) ||
      (NumOps > 1 &&
       Ret.getOperand(0) == SDValue(TheCall,
                                    TheCall->getNumValues()-1) &&
       Ret.getOperand(1) == SDValue(TheCall,0)))
      return true;
    return false;
  }

  /// GetPossiblePreceedingTailCall - Get preceeding TailCallNodeOpCode node if
  /// it exists skip possible ISD:TokenFactor.
  static SDValue GetPossiblePreceedingTailCall(SDValue Chain,
                                                 unsigned TailCallNodeOpCode) {
    if (Chain.getOpcode() == TailCallNodeOpCode) {
      return Chain;
    } else if (Chain.getOpcode() == ISD::TokenFactor) {
      if (Chain.getNumOperands() &&
          Chain.getOperand(0).getOpcode() == TailCallNodeOpCode)
        return Chain.getOperand(0);
    }
    return Chain;
  }

  /// getTargetNodeName() - This method returns the name of a target specific
  /// DAG node.
  virtual const char *getTargetNodeName(unsigned Opcode) const;

  /// createFastISel - This method returns a target specific FastISel object,
  /// or null if the target does not support "fast" ISel.
  virtual FastISel *
  createFastISel(MachineFunction &,
                 MachineModuleInfo *,
                 DenseMap<const Value *, unsigned> &,
                 DenseMap<const BasicBlock *, MachineBasicBlock *> &,
                 DenseMap<const AllocaInst *, int> &
#ifndef NDEBUG
                 , SmallSet<Instruction*, 8> &CatchInfoLost
#endif
                 ) {
    return 0;
  }

  //===--------------------------------------------------------------------===//
  // Inline Asm Support hooks
  //
  
  enum ConstraintType {
    C_Register,            // Constraint represents a single register.
    C_RegisterClass,       // Constraint represents one or more registers.
    C_Memory,              // Memory constraint.
    C_Other,               // Something else.
    C_Unknown              // Unsupported constraint.
  };
  
  /// AsmOperandInfo - This contains information for each constraint that we are
  /// lowering.
  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
    /// ConstraintCode - This contains the actual string for the code, like "m".
    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
    /// most closely matches the operand.
    std::string ConstraintCode;

    /// ConstraintType - Information about the constraint code, e.g. Register,
    /// RegisterClass, Memory, Other, Unknown.
    TargetLowering::ConstraintType ConstraintType;
  
    /// CallOperandval - If this is the result output operand or a
    /// clobber, this is null, otherwise it is the incoming operand to the
    /// CallInst.  This gets modified as the asm is processed.
    Value *CallOperandVal;
  
    /// ConstraintVT - The ValueType for the operand value.
    MVT ConstraintVT;
    
    /// isMatchingInputConstraint - Return true of this is an input operand that
    /// is a matching constraint like "4".
    bool isMatchingInputConstraint() const;
    
    /// getMatchedOperand - If this is an input matching constraint, this method
    /// returns the output operand it matches.
    unsigned getMatchedOperand() const;
  
    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
      : InlineAsm::ConstraintInfo(info), 
        ConstraintType(TargetLowering::C_Unknown),
        CallOperandVal(0), ConstraintVT(MVT::Other) {
    }
  };

  /// ComputeConstraintToUse - Determines the constraint code and constraint
  /// type to use for the specific AsmOperandInfo, setting
  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
  /// being passed in is available, it can be passed in as Op, otherwise an
  /// empty SDValue can be passed. If hasMemory is true it means one of the asm
  /// constraint of the inline asm instruction being processed is 'm'.
  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
                                      SDValue Op,
                                      bool hasMemory,
                                      SelectionDAG *DAG = 0) const;
  
  /// getConstraintType - Given a constraint, return the type of constraint it
  /// is for this target.
  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
  
  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
  /// return a list of registers that can be used to satisfy the constraint.
  /// This should only be used for C_RegisterClass constraints.
  virtual std::vector<unsigned> 
  getRegClassForInlineAsmConstraint(const std::string &Constraint,
                                    MVT VT) const;

  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
  /// {edx}), return the register number and the register class for the
  /// register.
  ///
  /// Given a register class constraint, like 'r', if this corresponds directly
  /// to an LLVM register class, return a register of 0 and the register class
  /// pointer.
  ///
  /// This should only be used for C_Register constraints.  On error,
  /// this returns a register number of 0 and a null register class pointer..
  virtual std::pair<unsigned, const TargetRegisterClass*> 
    getRegForInlineAsmConstraint(const std::string &Constraint,
                                 MVT VT) const;
  
  /// LowerXConstraint - try to replace an X constraint, which matches anything,
  /// with another that has more specific requirements based on the type of the
  /// corresponding operand.  This returns null if there is no replacement to
  /// make.
  virtual const char *LowerXConstraint(MVT ConstraintVT) const;
  
  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
  /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
  /// it means one of the asm constraint of the inline asm instruction being
  /// processed is 'm'.
  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
                                            bool hasMemory,
                                            std::vector<SDValue> &Ops,
                                            SelectionDAG &DAG) const;
  
  //===--------------------------------------------------------------------===//
  // Scheduler hooks
  //
  
  // EmitInstrWithCustomInserter - This method should be implemented by targets
  // that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
  // instructions are special in various ways, which require special support to
  // insert.  The specified MachineInstr is created but not inserted into any
  // basic blocks, and the scheduler passes ownership of it to this method.
  virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
                                                        MachineBasicBlock *MBB);

  //===--------------------------------------------------------------------===//
  // Addressing mode description hooks (used by LSR etc).
  //

  /// AddrMode - This represents an addressing mode of:
  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
  /// If BaseGV is null,  there is no BaseGV.
  /// If BaseOffs is zero, there is no base offset.
  /// If HasBaseReg is false, there is no base register.
  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
  /// no scale.
  ///
  struct AddrMode {
    GlobalValue *BaseGV;
    int64_t      BaseOffs;
    bool         HasBaseReg;
    int64_t      Scale;
    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
  };
  
  /// isLegalAddressingMode - Return true if the addressing mode represented by
  /// AM is legal for this target, for a load/store of the specified type.
  /// TODO: Handle pre/postinc as well.
  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;

  /// isTruncateFree - Return true if it's free to truncate a value of
  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
  /// register EAX to i16 by referencing its sub-register AX.
  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
    return false;
  }

  virtual bool isTruncateFree(MVT VT1, MVT VT2) const {
    return false;
  }
  
  //===--------------------------------------------------------------------===//
  // Div utility functions
  //
  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, 
                      std::vector<SDNode*>* Created) const;
  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, 
                      std::vector<SDNode*>* Created) const;


  //===--------------------------------------------------------------------===//
  // Runtime Library hooks
  //

  /// setLibcallName - Rename the default libcall routine name for the specified
  /// libcall.
  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
    LibcallRoutineNames[Call] = Name;
  }

  /// getLibcallName - Get the libcall routine name for the specified libcall.
  ///
  const char *getLibcallName(RTLIB::Libcall Call) const {
    return LibcallRoutineNames[Call];
  }

  /// setCmpLibcallCC - Override the default CondCode to be used to test the
  /// result of the comparison libcall against zero.
  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
    CmpLibcallCCs[Call] = CC;
  }

  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
  /// the comparison libcall against zero.
  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
    return CmpLibcallCCs[Call];
  }

private:
  TargetMachine &TM;
  const TargetData *TD;

  /// PointerTy - The type to use for pointers, usually i32 or i64.
  ///
  MVT PointerTy;

  /// IsLittleEndian - True if this is a little endian target.
  ///
  bool IsLittleEndian;

  /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen.
  ///
  bool UsesGlobalOffsetTable;
  
  /// SelectIsExpensive - Tells the code generator not to expand operations
  /// into sequences that use the select operations if possible.
  bool SelectIsExpensive;

  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
  /// a real cost model is in place.  If we ever optimize for size, this will be
  /// set to true unconditionally.
  bool IntDivIsCheap;
  
  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
  /// srl/add/sra for a signed divide by power of two, and let the target handle
  /// it.
  bool Pow2DivIsCheap;
  
  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
  /// llvm.setjmp.  Defaults to false.
  bool UseUnderscoreSetJmp;

  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
  /// llvm.longjmp.  Defaults to false.
  bool UseUnderscoreLongJmp;

  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
  /// PointerTy is.
  MVT ShiftAmountTy;

  OutOfRangeShiftAmount ShiftAmtHandling;

  /// SetCCResultContents - Information about the contents of the high-bits in
  /// the result of a setcc comparison operation.
  SetCCResultValue SetCCResultContents;

  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
  /// total cycles or lowest register usage.
  SchedPreference SchedPreferenceInfo;
  
  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
  unsigned JumpBufSize;
  
  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
  /// buffers
  unsigned JumpBufAlignment;

  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
  /// if-converted.
  unsigned IfCvtBlockSizeLimit;
  
  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
  /// duplicated during if-conversion.
  unsigned IfCvtDupBlockSizeLimit;

  /// PrefLoopAlignment - The perferred loop alignment.
  ///
  unsigned PrefLoopAlignment;

  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
  /// specifies the register that llvm.savestack/llvm.restorestack should save
  /// and restore.
  unsigned StackPointerRegisterToSaveRestore;

  /// ExceptionPointerRegister - If set to a physical register, this specifies
  /// the register that receives the exception address on entry to a landing
  /// pad.
  unsigned ExceptionPointerRegister;

  /// ExceptionSelectorRegister - If set to a physical register, this specifies
  /// the register that receives the exception typeid on entry to a landing
  /// pad.
  unsigned ExceptionSelectorRegister;

  /// RegClassForVT - This indicates the default register class to use for
  /// each ValueType the target supports natively.
  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
  MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];

  /// TransformToType - For any value types we are promoting or expanding, this
  /// contains the value type that we are changing to.  For Expanded types, this
  /// contains one step of the expand (e.g. i64 -> i32), even if there are
  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
  /// by the system, this holds the same type (e.g. i32 -> i32).
  MVT TransformToType[MVT::LAST_VALUETYPE];

  // Defines the capacity of the TargetLowering::OpActions table
  static const int OpActionsCapacity = 212;

  /// OpActions - For each operation and each value type, keep a LegalizeAction
  /// that indicates how instruction selection should deal with the operation.
  /// Most operations are Legal (aka, supported natively by the target), but
  /// operations that are not should be described.  Note that operations on
  /// non-legal value types are not described here.
  uint64_t OpActions[OpActionsCapacity];
  
  /// LoadExtActions - For each load of load extension type and each value type,
  /// keep a LegalizeAction that indicates how instruction selection should deal
  /// with the load.
  uint64_t LoadExtActions[ISD::LAST_LOADEXT_TYPE];
  
  /// TruncStoreActions - For each truncating store, keep a LegalizeAction that
  /// indicates how instruction selection should deal with the store.
  uint64_t TruncStoreActions[MVT::LAST_VALUETYPE];

  /// IndexedModeActions - For each indexed mode and each value type, keep a
  /// pair of LegalizeAction that indicates how instruction selection should
  /// deal with the load / store.
  uint64_t IndexedModeActions[2][ISD::LAST_INDEXED_MODE];
  
  /// ConvertActions - For each conversion from source type to destination type,
  /// keep a LegalizeAction that indicates how instruction selection should
  /// deal with the conversion.
  /// Currently, this is used only for floating->floating conversions
  /// (FP_EXTEND and FP_ROUND).
  uint64_t ConvertActions[MVT::LAST_VALUETYPE];

  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
  /// LegalizeAction that indicates how instruction selection should
  /// deal with the condition code.
  uint64_t CondCodeActions[ISD::SETCC_INVALID];

  ValueTypeActionImpl ValueTypeActions;

  std::vector<APFloat> LegalFPImmediates;

  std::vector<std::pair<MVT, TargetRegisterClass*> > AvailableRegClasses;

  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
  /// which sets a bit in this array.
  unsigned char
  TargetDAGCombineArray[OpActionsCapacity/(sizeof(unsigned char)*8)];
  
  /// PromoteToType - For operations that must be promoted to a specific type,
  /// this holds the destination type.  This map should be sparse, so don't hold
  /// it as an array.
  ///
  /// Targets add entries to this map with AddPromotedToType(..), clients access
  /// this with getTypeToPromoteTo(..).
  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
    PromoteToType;

  /// LibcallRoutineNames - Stores the name each libcall.
  ///
  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];

  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
  /// of each of the comparison libcall against zero.
  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];

protected:
  /// When lowering @llvm.memset this field specifies the maximum number of
  /// store operations that may be substituted for the call to memset. Targets
  /// must set this value based on the cost threshold for that target. Targets
  /// should assume that the memset will be done using as many of the largest
  /// store operations first, followed by smaller ones, if necessary, per
  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
  /// store.  This only applies to setting a constant array of a constant size.
  /// @brief Specify maximum number of store instructions per memset call.
  unsigned maxStoresPerMemset;

  /// When lowering @llvm.memcpy this field specifies the maximum number of
  /// store operations that may be substituted for a call to memcpy. Targets
  /// must set this value based on the cost threshold for that target. Targets
  /// should assume that the memcpy will be done using as many of the largest
  /// store operations first, followed by smaller ones, if necessary, per
  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
  /// and one 1-byte store. This only applies to copying a constant array of
  /// constant size.
  /// @brief Specify maximum bytes of store instructions per memcpy call.
  unsigned maxStoresPerMemcpy;

  /// When lowering @llvm.memmove this field specifies the maximum number of
  /// store instructions that may be substituted for a call to memmove. Targets
  /// must set this value based on the cost threshold for that target. Targets
  /// should assume that the memmove will be done using as many of the largest
  /// store operations first, followed by smaller ones, if necessary, per
  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
  /// with 8-bit alignment would result in nine 1-byte stores.  This only
  /// applies to copying a constant array of constant size.
  /// @brief Specify maximum bytes of store instructions per memmove call.
  unsigned maxStoresPerMemmove;

  /// This field specifies whether the target machine permits unaligned memory
  /// accesses.  This is used, for example, to determine the size of store 
  /// operations when copying small arrays and other similar tasks.
  /// @brief Indicate whether the target permits unaligned memory accesses.
  bool allowUnalignedMemoryAccesses;
};
} // end llvm namespace

#endif