1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
|
//===- IntervalPartition.cpp - Interval Partition module code ----*- C++ -*--=//
//
// This file contains the definition of the cfg::IntervalPartition class, which
// calculates and represent the interval partition of a method.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/IntervalIterator.h"
using namespace cfg;
//===----------------------------------------------------------------------===//
// IntervalPartition Implementation
//===----------------------------------------------------------------------===//
template <class T> static inline void deleter(T *Ptr) { delete Ptr; }
// Destructor - Free memory
IntervalPartition::~IntervalPartition() {
for_each(begin(), end(), deleter<cfg::Interval>);
}
// addNodeToInterval - This method exists to assist the generic ProcessNode
// with the task of adding a node to the new interval, depending on the
// type of the source node. In the case of a CFG source graph (BasicBlock
// case), the BasicBlock itself is added to the interval.
//
inline void IntervalPartition::addNodeToInterval(Interval *Int, BasicBlock *BB){
Int->Nodes.push_back(BB);
IntervalMap.insert(make_pair(BB, Int));
}
// addNodeToInterval - This method exists to assist the generic ProcessNode
// with the task of adding a node to the new interval, depending on the
// type of the source node. In the case of a CFG source graph (BasicBlock
// case), the BasicBlock itself is added to the interval. In the case of
// an IntervalPartition source graph (Interval case), all of the member
// BasicBlocks are added to the interval.
//
inline void IntervalPartition::addNodeToInterval(Interval *Int, Interval *I) {
// Add all of the nodes in I as new nodes in Int.
copy(I->Nodes.begin(), I->Nodes.end(), back_inserter(Int->Nodes));
// Add mappings for all of the basic blocks in I to the IntervalPartition
for (Interval::node_iterator It = I->Nodes.begin(), End = I->Nodes.end();
It != End; ++It)
IntervalMap.insert(make_pair(*It, Int));
}
// ProcessNode - This method is called by ProcessInterval to add nodes to the
// interval being constructed, and it is also called recursively as it walks
// the source graph. A node is added to the current interval only if all of
// its predecessors are already in the graph. This also takes care of keeping
// the successor set of an interval up to date.
//
// This method is templated because it may operate on two different source
// graphs: a basic block graph, or a preexisting interval graph.
//
template<class NodeTy, class OrigContainer>
void IntervalPartition::ProcessNode(Interval *Int,
NodeTy *Node, OrigContainer *OC) {
assert(Int && "Null interval == bad!");
assert(Node && "Null Node == bad!");
BasicBlock *NodeHeader = getNodeHeader(Node);
Interval *CurInt = getBlockInterval(NodeHeader);
if (CurInt == Int) { // Already in this interval...
return;
} else if (CurInt != 0) { // In another interval, add as successor
if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
Int->Successors.push_back(NodeHeader);
} else { // Otherwise, not in interval yet
for (typename NodeTy::pred_iterator I = pred_begin(Node),
E = pred_end(Node); I != E; ++I) {
if (!Int->contains(*I)) { // If pred not in interval, we can't be
if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
Int->Successors.push_back(NodeHeader);
return; // See you later
}
}
// If we get here, then all of the predecessors of BB are in the interval
// already. In this case, we must add BB to the interval!
addNodeToInterval(Int, Node);
if (Int->isSuccessor(NodeHeader)) {
// If we were in the successor list from before... remove from succ list
Int->Successors.erase(remove(Int->Successors.begin(),
Int->Successors.end(), NodeHeader),
Int->Successors.end());
}
// Now that we have discovered that Node is in the interval, perhaps some of
// its successors are as well?
for (typename NodeTy::succ_iterator It = succ_begin(Node),
End = succ_end(Node); It != End; ++It)
ProcessNode(Int, getSourceGraphNode(OC, *It), OC);
}
}
// ProcessInterval - This method is used during the construction of the
// interval graph. It walks through the source graph, recursively creating
// an interval per invokation until the entire graph is covered. This uses
// the ProcessNode method to add all of the nodes to the interval.
//
// This method is templated because it may operate on two different source
// graphs: a basic block graph, or a preexisting interval graph.
//
template<class NodeTy, class OrigContainer>
void IntervalPartition::ProcessInterval(NodeTy *Node, OrigContainer *OC) {
BasicBlock *Header = getNodeHeader(Node);
if (getBlockInterval(Header)) return; // Interval already constructed?
// Create a new interval and add the interval to our current set
Interval *Int = new Interval(Header);
IntervalList.push_back(Int);
IntervalMap.insert(make_pair(Header, Int));
// Check all of our successors to see if they are in the interval...
for (typename NodeTy::succ_iterator I = succ_begin(Node), E = succ_end(Node);
I != E; ++I)
ProcessNode(Int, getSourceGraphNode(OC, *I), OC);
// Build all of the successor intervals of this interval now...
for(Interval::succ_iterator I = Int->Successors.begin(),
E = Int->Successors.end(); I != E; ++I) {
ProcessInterval(getSourceGraphNode(OC, *I), OC);
}
}
// updatePredecessors - Interval generation only sets the successor fields of
// the interval data structures. After interval generation is complete,
// run through all of the intervals and propogate successor info as
// predecessor info.
//
void IntervalPartition::updatePredecessors(cfg::Interval *Int) {
BasicBlock *Header = Int->getHeaderNode();
for (Interval::succ_iterator I = Int->Successors.begin(),
E = Int->Successors.end(); I != E; ++I)
getBlockInterval(*I)->Predecessors.push_back(Header);
}
// IntervalPartition ctor - Build the first level interval partition for the
// specified method...
//
IntervalPartition::IntervalPartition(Method *M) {
BasicBlock *MethodStart = M->getBasicBlocks().front();
assert(MethodStart && "Cannot operate on prototypes!");
ProcessInterval(MethodStart, M);
RootInterval = getBlockInterval(MethodStart);
// Now that we know all of the successor information, propogate this to the
// predecessors for each block...
for(iterator I = begin(), E = end(); I != E; ++I)
updatePredecessors(*I);
}
// IntervalPartition ctor - Build a reduced interval partition from an
// existing interval graph. This takes an additional boolean parameter to
// distinguish it from a copy constructor. Always pass in false for now.
//
IntervalPartition::IntervalPartition(IntervalPartition &I, bool) {
Interval *MethodStart = I.getRootInterval();
assert(MethodStart && "Cannot operate on empty IntervalPartitions!");
ProcessInterval(MethodStart, &I);
RootInterval = getBlockInterval(*MethodStart->Nodes.begin());
// Now that we know all of the successor information, propogate this to the
// predecessors for each block...
for(iterator I = begin(), E = end(); I != E; ++I)
updatePredecessors(*I);
}
|