1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
|
//===- LazyValueInfo.cpp - Value constraint analysis ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interface for lazy computation of value constraint
// information.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "lazy-value-info"
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;
char LazyValueInfo::ID = 0;
INITIALIZE_PASS(LazyValueInfo, "lazy-value-info",
"Lazy Value Information Analysis", false, true);
namespace llvm {
FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); }
}
//===----------------------------------------------------------------------===//
// LVILatticeVal
//===----------------------------------------------------------------------===//
/// LVILatticeVal - This is the information tracked by LazyValueInfo for each
/// value.
///
/// FIXME: This is basically just for bringup, this can be made a lot more rich
/// in the future.
///
namespace {
class LVILatticeVal {
enum LatticeValueTy {
/// undefined - This LLVM Value has no known value yet.
undefined,
/// constant - This LLVM Value has a specific constant value.
constant,
/// notconstant - This LLVM value is known to not have the specified value.
notconstant,
/// constantrange
constantrange,
/// overdefined - This instruction is not known to be constant, and we know
/// it has a value.
overdefined
};
/// Val: This stores the current lattice value along with the Constant* for
/// the constant if this is a 'constant' or 'notconstant' value.
LatticeValueTy Tag;
Constant *Val;
ConstantRange Range;
public:
LVILatticeVal() : Tag(undefined), Val(0), Range(1, true) {}
static LVILatticeVal get(Constant *C) {
LVILatticeVal Res;
if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
Res.markConstantRange(ConstantRange(CI->getValue(), CI->getValue()+1));
else if (!isa<UndefValue>(C))
Res.markConstant(C);
return Res;
}
static LVILatticeVal getNot(Constant *C) {
LVILatticeVal Res;
if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
Res.markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue()));
else
Res.markNotConstant(C);
return Res;
}
static LVILatticeVal getRange(ConstantRange CR) {
LVILatticeVal Res;
Res.markConstantRange(CR);
return Res;
}
bool isUndefined() const { return Tag == undefined; }
bool isConstant() const { return Tag == constant; }
bool isNotConstant() const { return Tag == notconstant; }
bool isConstantRange() const { return Tag == constantrange; }
bool isOverdefined() const { return Tag == overdefined; }
Constant *getConstant() const {
assert(isConstant() && "Cannot get the constant of a non-constant!");
return Val;
}
Constant *getNotConstant() const {
assert(isNotConstant() && "Cannot get the constant of a non-notconstant!");
return Val;
}
ConstantRange getConstantRange() const {
assert(isConstantRange() &&
"Cannot get the constant-range of a non-constant-range!");
return Range;
}
/// markOverdefined - Return true if this is a change in status.
bool markOverdefined() {
if (isOverdefined())
return false;
Tag = overdefined;
return true;
}
/// markConstant - Return true if this is a change in status.
bool markConstant(Constant *V) {
if (isConstant()) {
assert(getConstant() == V && "Marking constant with different value");
return false;
}
assert(isUndefined());
Tag = constant;
assert(V && "Marking constant with NULL");
Val = V;
return true;
}
/// markNotConstant - Return true if this is a change in status.
bool markNotConstant(Constant *V) {
if (isNotConstant()) {
assert(getNotConstant() == V && "Marking !constant with different value");
return false;
}
if (isConstant())
assert(getConstant() != V && "Marking not constant with different value");
else
assert(isUndefined());
Tag = notconstant;
assert(V && "Marking constant with NULL");
Val = V;
return true;
}
/// markConstantRange - Return true if this is a change in status.
bool markConstantRange(const ConstantRange NewR) {
if (isConstantRange()) {
if (NewR.isEmptySet())
return markOverdefined();
bool changed = Range == NewR;
Range = NewR;
return changed;
}
assert(isUndefined());
if (NewR.isEmptySet())
return markOverdefined();
Tag = constantrange;
Range = NewR;
return true;
}
/// mergeIn - Merge the specified lattice value into this one, updating this
/// one and returning true if anything changed.
bool mergeIn(const LVILatticeVal &RHS) {
if (RHS.isUndefined() || isOverdefined()) return false;
if (RHS.isOverdefined()) return markOverdefined();
if (RHS.isNotConstant()) {
if (isNotConstant()) {
if (getNotConstant() != RHS.getNotConstant() ||
isa<ConstantExpr>(getNotConstant()) ||
isa<ConstantExpr>(RHS.getNotConstant()))
return markOverdefined();
return false;
} else if (isConstant()) {
if (getConstant() == RHS.getNotConstant() ||
isa<ConstantExpr>(RHS.getNotConstant()) ||
isa<ConstantExpr>(getConstant()))
return markOverdefined();
return markNotConstant(RHS.getNotConstant());
} else if (isConstantRange()) {
return markOverdefined();
}
assert(isUndefined() && "Unexpected lattice");
return markNotConstant(RHS.getNotConstant());
}
if (RHS.isConstantRange()) {
if (isConstantRange()) {
ConstantRange NewR = Range.unionWith(RHS.getConstantRange());
if (NewR.isFullSet())
return markOverdefined();
else
return markConstantRange(NewR);
} else if (!isUndefined()) {
return markOverdefined();
}
assert(isUndefined() && "Unexpected lattice");
return markConstantRange(RHS.getConstantRange());
}
// RHS must be a constant, we must be undef, constant, or notconstant.
assert(!isConstantRange() &&
"Constant and ConstantRange cannot be merged.");
if (isUndefined())
return markConstant(RHS.getConstant());
if (isConstant()) {
if (getConstant() != RHS.getConstant())
return markOverdefined();
return false;
}
// If we are known "!=4" and RHS is "==5", stay at "!=4".
if (getNotConstant() == RHS.getConstant() ||
isa<ConstantExpr>(getNotConstant()) ||
isa<ConstantExpr>(RHS.getConstant()))
return markOverdefined();
return false;
}
};
} // end anonymous namespace.
namespace llvm {
raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) {
if (Val.isUndefined())
return OS << "undefined";
if (Val.isOverdefined())
return OS << "overdefined";
if (Val.isNotConstant())
return OS << "notconstant<" << *Val.getNotConstant() << '>';
else if (Val.isConstantRange())
return OS << "constantrange<" << Val.getConstantRange().getLower() << ", "
<< Val.getConstantRange().getUpper() << '>';
return OS << "constant<" << *Val.getConstant() << '>';
}
}
//===----------------------------------------------------------------------===//
// LazyValueInfoCache Decl
//===----------------------------------------------------------------------===//
namespace {
/// LazyValueInfoCache - This is the cache kept by LazyValueInfo which
/// maintains information about queries across the clients' queries.
class LazyValueInfoCache {
public:
/// BlockCacheEntryTy - This is a computed lattice value at the end of the
/// specified basic block for a Value* that depends on context.
typedef std::pair<AssertingVH<BasicBlock>, LVILatticeVal> BlockCacheEntryTy;
/// ValueCacheEntryTy - This is all of the cached block information for
/// exactly one Value*. The entries are sorted by the BasicBlock* of the
/// entries, allowing us to do a lookup with a binary search.
typedef std::map<AssertingVH<BasicBlock>, LVILatticeVal> ValueCacheEntryTy;
private:
/// LVIValueHandle - A callback value handle update the cache when
/// values are erased.
struct LVIValueHandle : public CallbackVH {
LazyValueInfoCache *Parent;
LVIValueHandle(Value *V, LazyValueInfoCache *P)
: CallbackVH(V), Parent(P) { }
void deleted();
void allUsesReplacedWith(Value* V) {
deleted();
}
LVIValueHandle &operator=(Value *V) {
return *this = LVIValueHandle(V, Parent);
}
};
/// ValueCache - This is all of the cached information for all values,
/// mapped from Value* to key information.
std::map<LVIValueHandle, ValueCacheEntryTy> ValueCache;
/// OverDefinedCache - This tracks, on a per-block basis, the set of
/// values that are over-defined at the end of that block. This is required
/// for cache updating.
std::set<std::pair<AssertingVH<BasicBlock>, Value*> > OverDefinedCache;
public:
/// getValueInBlock - This is the query interface to determine the lattice
/// value for the specified Value* at the end of the specified block.
LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB);
/// getValueOnEdge - This is the query interface to determine the lattice
/// value for the specified Value* that is true on the specified edge.
LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB);
/// threadEdge - This is the update interface to inform the cache that an
/// edge from PredBB to OldSucc has been threaded to be from PredBB to
/// NewSucc.
void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
/// eraseBlock - This is part of the update interface to inform the cache
/// that a block has been deleted.
void eraseBlock(BasicBlock *BB);
/// clear - Empty the cache.
void clear() {
ValueCache.clear();
OverDefinedCache.clear();
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// LVIQuery Impl
//===----------------------------------------------------------------------===//
namespace {
/// LVIQuery - This is a transient object that exists while a query is
/// being performed.
///
/// TODO: Reuse LVIQuery instead of recreating it for every query, this avoids
/// reallocation of the densemap on every query.
class LVIQuery {
typedef LazyValueInfoCache::BlockCacheEntryTy BlockCacheEntryTy;
typedef LazyValueInfoCache::ValueCacheEntryTy ValueCacheEntryTy;
/// This is the current value being queried for.
Value *Val;
/// This is a pointer to the owning cache, for recursive queries.
LazyValueInfoCache &Parent;
/// This is all of the cached information about this value.
ValueCacheEntryTy &Cache;
/// This tracks, for each block, what values are overdefined.
std::set<std::pair<AssertingVH<BasicBlock>, Value*> > &OverDefinedCache;
/// NewBlocks - This is a mapping of the new BasicBlocks which have been
/// added to cache but that are not in sorted order.
DenseSet<BasicBlock*> NewBlockInfo;
public:
LVIQuery(Value *V, LazyValueInfoCache &P,
ValueCacheEntryTy &VC,
std::set<std::pair<AssertingVH<BasicBlock>, Value*> > &ODC)
: Val(V), Parent(P), Cache(VC), OverDefinedCache(ODC) {
}
~LVIQuery() {
// When the query is done, insert the newly discovered facts into the
// cache in sorted order.
if (NewBlockInfo.empty()) return;
for (DenseSet<BasicBlock*>::iterator I = NewBlockInfo.begin(),
E = NewBlockInfo.end(); I != E; ++I) {
if (Cache[*I].isOverdefined())
OverDefinedCache.insert(std::make_pair(*I, Val));
}
}
LVILatticeVal getBlockValue(BasicBlock *BB);
LVILatticeVal getEdgeValue(BasicBlock *FromBB, BasicBlock *ToBB);
private:
LVILatticeVal getCachedEntryForBlock(BasicBlock *BB);
};
} // end anonymous namespace
void LazyValueInfoCache::LVIValueHandle::deleted() {
for (std::set<std::pair<AssertingVH<BasicBlock>, Value*> >::iterator
I = Parent->OverDefinedCache.begin(),
E = Parent->OverDefinedCache.end();
I != E; ) {
std::set<std::pair<AssertingVH<BasicBlock>, Value*> >::iterator tmp = I;
++I;
if (tmp->second == getValPtr())
Parent->OverDefinedCache.erase(tmp);
}
// This erasure deallocates *this, so it MUST happen after we're done
// using any and all members of *this.
Parent->ValueCache.erase(*this);
}
void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
for (std::set<std::pair<AssertingVH<BasicBlock>, Value*> >::iterator
I = OverDefinedCache.begin(), E = OverDefinedCache.end(); I != E; ) {
std::set<std::pair<AssertingVH<BasicBlock>, Value*> >::iterator tmp = I;
++I;
if (tmp->first == BB)
OverDefinedCache.erase(tmp);
}
for (std::map<LVIValueHandle, ValueCacheEntryTy>::iterator
I = ValueCache.begin(), E = ValueCache.end(); I != E; ++I)
I->second.erase(BB);
}
/// getCachedEntryForBlock - See if we already have a value for this block. If
/// so, return it, otherwise create a new entry in the Cache map to use.
LVILatticeVal LVIQuery::getCachedEntryForBlock(BasicBlock *BB) {
NewBlockInfo.insert(BB);
return Cache[BB];
}
LVILatticeVal LVIQuery::getBlockValue(BasicBlock *BB) {
// See if we already have a value for this block.
LVILatticeVal BBLV = getCachedEntryForBlock(BB);
// If we've already computed this block's value, return it.
if (!BBLV.isUndefined()) {
DEBUG(dbgs() << " reuse BB '" << BB->getName() << "' val=" << BBLV <<'\n');
return BBLV;
}
// Otherwise, this is the first time we're seeing this block. Reset the
// lattice value to overdefined, so that cycles will terminate and be
// conservatively correct.
BBLV.markOverdefined();
Cache[BB] = BBLV;
Instruction *BBI = dyn_cast<Instruction>(Val);
if (BBI == 0 || BBI->getParent() != BB) {
LVILatticeVal Result; // Start Undefined.
// If this is a pointer, and there's a load from that pointer in this BB,
// then we know that the pointer can't be NULL.
if (Val->getType()->isPointerTy()) {
const PointerType *PTy = cast<PointerType>(Val->getType());
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();BI != BE;++BI){
LoadInst *L = dyn_cast<LoadInst>(BI);
if (L && L->getPointerAddressSpace() == 0 &&
L->getPointerOperand()->getUnderlyingObject() ==
Val->getUnderlyingObject()) {
return LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
}
}
}
unsigned NumPreds = 0;
// Loop over all of our predecessors, merging what we know from them into
// result.
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
Result.mergeIn(getEdgeValue(*PI, BB));
// If we hit overdefined, exit early. The BlockVals entry is already set
// to overdefined.
if (Result.isOverdefined()) {
DEBUG(dbgs() << " compute BB '" << BB->getName()
<< "' - overdefined because of pred.\n");
return Result;
}
++NumPreds;
}
// If this is the entry block, we must be asking about an argument. The
// value is overdefined.
if (NumPreds == 0 && BB == &BB->getParent()->front()) {
assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
Result.markOverdefined();
return Result;
}
// Return the merged value, which is more precise than 'overdefined'.
assert(!Result.isOverdefined());
return Cache[BB] = Result;
}
// If this value is defined by an instruction in this block, we have to
// process it here somehow or return overdefined.
if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
LVILatticeVal Result; // Start Undefined.
// Loop over all of our predecessors, merging what we know from them into
// result.
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
Value* PhiVal = PN->getIncomingValueForBlock(*PI);
Result.mergeIn(Parent.getValueOnEdge(PhiVal, *PI, BB));
// If we hit overdefined, exit early. The BlockVals entry is already set
// to overdefined.
if (Result.isOverdefined()) {
DEBUG(dbgs() << " compute BB '" << BB->getName()
<< "' - overdefined because of pred.\n");
return Result;
}
}
// Return the merged value, which is more precise than 'overdefined'.
assert(!Result.isOverdefined());
return Cache[BB] = Result;
}
assert(Cache[BB].isOverdefined() && "Recursive query changed our cache?");
// We can only analyze the definitions of certain classes of instructions
// (integral binops and casts at the moment), so bail if this isn't one.
LVILatticeVal Result;
if ((!isa<BinaryOperator>(BBI) && !isa<CastInst>(BBI)) ||
!BBI->getType()->isIntegerTy()) {
DEBUG(dbgs() << " compute BB '" << BB->getName()
<< "' - overdefined because inst def found.\n");
Result.markOverdefined();
return Result;
}
// FIXME: We're currently limited to binops with a constant RHS. This should
// be improved.
BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI);
if (BO && !isa<ConstantInt>(BO->getOperand(1))) {
DEBUG(dbgs() << " compute BB '" << BB->getName()
<< "' - overdefined because inst def found.\n");
Result.markOverdefined();
return Result;
}
// Figure out the range of the LHS. If that fails, bail.
LVILatticeVal LHSVal = Parent.getValueInBlock(BBI->getOperand(0), BB);
if (!LHSVal.isConstantRange()) {
Result.markOverdefined();
return Result;
}
ConstantInt *RHS = 0;
ConstantRange LHSRange = LHSVal.getConstantRange();
ConstantRange RHSRange(1);
const IntegerType *ResultTy = cast<IntegerType>(BBI->getType());
if (isa<BinaryOperator>(BBI)) {
RHS = dyn_cast<ConstantInt>(BBI->getOperand(1));
if (!RHS) {
Result.markOverdefined();
return Result;
}
RHSRange = ConstantRange(RHS->getValue(), RHS->getValue()+1);
}
// NOTE: We're currently limited by the set of operations that ConstantRange
// can evaluate symbolically. Enhancing that set will allows us to analyze
// more definitions.
switch (BBI->getOpcode()) {
case Instruction::Add:
Result.markConstantRange(LHSRange.add(RHSRange));
break;
case Instruction::Sub:
Result.markConstantRange(LHSRange.sub(RHSRange));
break;
case Instruction::Mul:
Result.markConstantRange(LHSRange.multiply(RHSRange));
break;
case Instruction::UDiv:
Result.markConstantRange(LHSRange.udiv(RHSRange));
break;
case Instruction::Shl:
Result.markConstantRange(LHSRange.shl(RHSRange));
break;
case Instruction::LShr:
Result.markConstantRange(LHSRange.lshr(RHSRange));
break;
case Instruction::Trunc:
Result.markConstantRange(LHSRange.truncate(ResultTy->getBitWidth()));
break;
case Instruction::SExt:
Result.markConstantRange(LHSRange.signExtend(ResultTy->getBitWidth()));
break;
case Instruction::ZExt:
Result.markConstantRange(LHSRange.zeroExtend(ResultTy->getBitWidth()));
break;
case Instruction::BitCast:
Result.markConstantRange(LHSRange);
break;
// Unhandled instructions are overdefined.
default:
DEBUG(dbgs() << " compute BB '" << BB->getName()
<< "' - overdefined because inst def found.\n");
Result.markOverdefined();
break;
}
return Cache[BB] = Result;
}
/// getEdgeValue - This method attempts to infer more complex
LVILatticeVal LVIQuery::getEdgeValue(BasicBlock *BBFrom, BasicBlock *BBTo) {
// TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
// know that v != 0.
if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
// If this is a conditional branch and only one successor goes to BBTo, then
// we maybe able to infer something from the condition.
if (BI->isConditional() &&
BI->getSuccessor(0) != BI->getSuccessor(1)) {
bool isTrueDest = BI->getSuccessor(0) == BBTo;
assert(BI->getSuccessor(!isTrueDest) == BBTo &&
"BBTo isn't a successor of BBFrom");
// If V is the condition of the branch itself, then we know exactly what
// it is.
if (BI->getCondition() == Val)
return LVILatticeVal::get(ConstantInt::get(
Type::getInt1Ty(Val->getContext()), isTrueDest));
// If the condition of the branch is an equality comparison, we may be
// able to infer the value.
ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition());
if (ICI && ICI->getOperand(0) == Val &&
isa<Constant>(ICI->getOperand(1))) {
if (ICI->isEquality()) {
// We know that V has the RHS constant if this is a true SETEQ or
// false SETNE.
if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ))
return LVILatticeVal::get(cast<Constant>(ICI->getOperand(1)));
return LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1)));
}
if (ConstantInt *CI = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
// Calculate the range of values that would satisfy the comparison.
ConstantRange CmpRange(CI->getValue(), CI->getValue()+1);
ConstantRange TrueValues =
ConstantRange::makeICmpRegion(ICI->getPredicate(), CmpRange);
// If we're interested in the false dest, invert the condition.
if (!isTrueDest) TrueValues = TrueValues.inverse();
// Figure out the possible values of the query BEFORE this branch.
LVILatticeVal InBlock = getBlockValue(BBFrom);
if (!InBlock.isConstantRange())
return LVILatticeVal::getRange(TrueValues);
// Find all potential values that satisfy both the input and output
// conditions.
ConstantRange PossibleValues =
TrueValues.intersectWith(InBlock.getConstantRange());
return LVILatticeVal::getRange(PossibleValues);
}
}
}
}
// If the edge was formed by a switch on the value, then we may know exactly
// what it is.
if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
// If BBTo is the default destination of the switch, we know that it
// doesn't have the same value as any of the cases.
if (SI->getCondition() == Val) {
if (SI->getDefaultDest() == BBTo) {
const IntegerType *IT = cast<IntegerType>(Val->getType());
ConstantRange CR(IT->getBitWidth());
for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
const APInt CaseVal = SI->getCaseValue(i)->getValue();
ConstantRange CaseRange(CaseVal, CaseVal+1);
CaseRange = CaseRange.inverse();
CR = CR.intersectWith(CaseRange);
}
LVILatticeVal Result;
if (CR.isFullSet() || CR.isEmptySet())
Result.markOverdefined();
else
Result.markConstantRange(CR);
return Result;
}
// We only know something if there is exactly one value that goes from
// BBFrom to BBTo.
unsigned NumEdges = 0;
ConstantInt *EdgeVal = 0;
for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
if (SI->getSuccessor(i) != BBTo) continue;
if (NumEdges++) break;
EdgeVal = SI->getCaseValue(i);
}
assert(EdgeVal && "Missing successor?");
if (NumEdges == 1)
return LVILatticeVal::get(EdgeVal);
}
}
// Otherwise see if the value is known in the block.
return getBlockValue(BBFrom);
}
//===----------------------------------------------------------------------===//
// LazyValueInfoCache Impl
//===----------------------------------------------------------------------===//
LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB) {
// If already a constant, there is nothing to compute.
if (Constant *VC = dyn_cast<Constant>(V))
return LVILatticeVal::get(VC);
DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
<< BB->getName() << "'\n");
LVILatticeVal Result = LVIQuery(V, *this,
ValueCache[LVIValueHandle(V, this)],
OverDefinedCache).getBlockValue(BB);
DEBUG(dbgs() << " Result = " << Result << "\n");
return Result;
}
LVILatticeVal LazyValueInfoCache::
getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB) {
// If already a constant, there is nothing to compute.
if (Constant *VC = dyn_cast<Constant>(V))
return LVILatticeVal::get(VC);
DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
<< FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
LVILatticeVal Result =
LVIQuery(V, *this, ValueCache[LVIValueHandle(V, this)],
OverDefinedCache).getEdgeValue(FromBB, ToBB);
DEBUG(dbgs() << " Result = " << Result << "\n");
return Result;
}
void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
BasicBlock *NewSucc) {
// When an edge in the graph has been threaded, values that we could not
// determine a value for before (i.e. were marked overdefined) may be possible
// to solve now. We do NOT try to proactively update these values. Instead,
// we clear their entries from the cache, and allow lazy updating to recompute
// them when needed.
// The updating process is fairly simple: we need to dropped cached info
// for all values that were marked overdefined in OldSucc, and for those same
// values in any successor of OldSucc (except NewSucc) in which they were
// also marked overdefined.
std::vector<BasicBlock*> worklist;
worklist.push_back(OldSucc);
DenseSet<Value*> ClearSet;
for (std::set<std::pair<AssertingVH<BasicBlock>, Value*> >::iterator
I = OverDefinedCache.begin(), E = OverDefinedCache.end(); I != E; ++I) {
if (I->first == OldSucc)
ClearSet.insert(I->second);
}
// Use a worklist to perform a depth-first search of OldSucc's successors.
// NOTE: We do not need a visited list since any blocks we have already
// visited will have had their overdefined markers cleared already, and we
// thus won't loop to their successors.
while (!worklist.empty()) {
BasicBlock *ToUpdate = worklist.back();
worklist.pop_back();
// Skip blocks only accessible through NewSucc.
if (ToUpdate == NewSucc) continue;
bool changed = false;
for (DenseSet<Value*>::iterator I = ClearSet.begin(),E = ClearSet.end();
I != E; ++I) {
// If a value was marked overdefined in OldSucc, and is here too...
std::set<std::pair<AssertingVH<BasicBlock>, Value*> >::iterator OI =
OverDefinedCache.find(std::make_pair(ToUpdate, *I));
if (OI == OverDefinedCache.end()) continue;
// Remove it from the caches.
ValueCacheEntryTy &Entry = ValueCache[LVIValueHandle(*I, this)];
ValueCacheEntryTy::iterator CI = Entry.find(ToUpdate);
assert(CI != Entry.end() && "Couldn't find entry to update?");
Entry.erase(CI);
OverDefinedCache.erase(OI);
// If we removed anything, then we potentially need to update
// blocks successors too.
changed = true;
}
if (!changed) continue;
worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate));
}
}
//===----------------------------------------------------------------------===//
// LazyValueInfo Impl
//===----------------------------------------------------------------------===//
/// getCache - This lazily constructs the LazyValueInfoCache.
static LazyValueInfoCache &getCache(void *&PImpl) {
if (!PImpl)
PImpl = new LazyValueInfoCache();
return *static_cast<LazyValueInfoCache*>(PImpl);
}
bool LazyValueInfo::runOnFunction(Function &F) {
if (PImpl)
getCache(PImpl).clear();
TD = getAnalysisIfAvailable<TargetData>();
// Fully lazy.
return false;
}
void LazyValueInfo::releaseMemory() {
// If the cache was allocated, free it.
if (PImpl) {
delete &getCache(PImpl);
PImpl = 0;
}
}
Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB) {
LVILatticeVal Result = getCache(PImpl).getValueInBlock(V, BB);
if (Result.isConstant())
return Result.getConstant();
else if (Result.isConstantRange()) {
ConstantRange CR = Result.getConstantRange();
if (const APInt *SingleVal = CR.getSingleElement())
return ConstantInt::get(V->getContext(), *SingleVal);
}
return 0;
}
/// getConstantOnEdge - Determine whether the specified value is known to be a
/// constant on the specified edge. Return null if not.
Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
BasicBlock *ToBB) {
LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
if (Result.isConstant())
return Result.getConstant();
else if (Result.isConstantRange()) {
ConstantRange CR = Result.getConstantRange();
if (const APInt *SingleVal = CR.getSingleElement())
return ConstantInt::get(V->getContext(), *SingleVal);
}
return 0;
}
/// getPredicateOnEdge - Determine whether the specified value comparison
/// with a constant is known to be true or false on the specified CFG edge.
/// Pred is a CmpInst predicate.
LazyValueInfo::Tristate
LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
BasicBlock *FromBB, BasicBlock *ToBB) {
LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
// If we know the value is a constant, evaluate the conditional.
Constant *Res = 0;
if (Result.isConstant()) {
Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, TD);
if (ConstantInt *ResCI = dyn_cast_or_null<ConstantInt>(Res))
return ResCI->isZero() ? False : True;
return Unknown;
}
if (Result.isConstantRange()) {
ConstantInt *CI = dyn_cast<ConstantInt>(C);
if (!CI) return Unknown;
ConstantRange CR = Result.getConstantRange();
if (Pred == ICmpInst::ICMP_EQ) {
if (!CR.contains(CI->getValue()))
return False;
if (CR.isSingleElement() && CR.contains(CI->getValue()))
return True;
} else if (Pred == ICmpInst::ICMP_NE) {
if (!CR.contains(CI->getValue()))
return True;
if (CR.isSingleElement() && CR.contains(CI->getValue()))
return False;
}
// Handle more complex predicates.
ConstantRange RHS(CI->getValue(), CI->getValue()+1);
ConstantRange TrueValues = ConstantRange::makeICmpRegion(Pred, RHS);
if (CR.intersectWith(TrueValues).isEmptySet())
return False;
else if (TrueValues.contains(CR))
return True;
return Unknown;
}
if (Result.isNotConstant()) {
// If this is an equality comparison, we can try to fold it knowing that
// "V != C1".
if (Pred == ICmpInst::ICMP_EQ) {
// !C1 == C -> false iff C1 == C.
Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
Result.getNotConstant(), C, TD);
if (Res->isNullValue())
return False;
} else if (Pred == ICmpInst::ICMP_NE) {
// !C1 != C -> true iff C1 == C.
Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
Result.getNotConstant(), C, TD);
if (Res->isNullValue())
return True;
}
return Unknown;
}
return Unknown;
}
void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
BasicBlock* NewSucc) {
if (PImpl) getCache(PImpl).threadEdge(PredBB, OldSucc, NewSucc);
}
void LazyValueInfo::eraseBlock(BasicBlock *BB) {
if (PImpl) getCache(PImpl).eraseBlock(BB);
}
|