summaryrefslogtreecommitdiffstats
path: root/lib/Analysis/PointerTracking.cpp
blob: d28e58e1013554228f66aaf6f60c9ca87a3dea9e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
//===- PointerTracking.cpp - Pointer Bounds Tracking ------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements tracking of pointer bounds.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/PointerTracking.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Constants.h"
#include "llvm/Module.h"
#include "llvm/Value.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetData.h"

namespace llvm {
char PointerTracking::ID=0;
PointerTracking::PointerTracking() : FunctionPass(&ID) {}

bool PointerTracking::runOnFunction(Function &F) {
  predCache.clear();
  assert(analyzing.empty());
  FF = &F;
  TD = getAnalysisIfAvailable<TargetData>();
  SE = &getAnalysis<ScalarEvolution>();
  LI = &getAnalysis<LoopInfo>();
  DT = &getAnalysis<DominatorTree>();
  return false;
}

void PointerTracking::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequiredTransitive<DominatorTree>();
  AU.addRequiredTransitive<LoopInfo>();
  AU.addRequiredTransitive<ScalarEvolution>();
  AU.setPreservesAll();
}

bool PointerTracking::doInitialization(Module &M) {
  const Type *PTy = PointerType::getUnqual(Type::getInt8Ty(M.getContext()));

  // Find calloc(i64, i64) or calloc(i32, i32).
  callocFunc = M.getFunction("calloc");
  if (callocFunc) {
    const FunctionType *Ty = callocFunc->getFunctionType();

    std::vector<const Type*> args, args2;
    args.push_back(Type::getInt64Ty(M.getContext()));
    args.push_back(Type::getInt64Ty(M.getContext()));
    args2.push_back(Type::getInt32Ty(M.getContext()));
    args2.push_back(Type::getInt32Ty(M.getContext()));
    const FunctionType *Calloc1Type =
      FunctionType::get(PTy, args, false);
    const FunctionType *Calloc2Type =
      FunctionType::get(PTy, args2, false);
    if (Ty != Calloc1Type && Ty != Calloc2Type)
      callocFunc = 0; // Give up
  }

  // Find realloc(i8*, i64) or realloc(i8*, i32).
  reallocFunc = M.getFunction("realloc");
  if (reallocFunc) {
    const FunctionType *Ty = reallocFunc->getFunctionType();
    std::vector<const Type*> args, args2;
    args.push_back(PTy);
    args.push_back(Type::getInt64Ty(M.getContext()));
    args2.push_back(PTy);
    args2.push_back(Type::getInt32Ty(M.getContext()));

    const FunctionType *Realloc1Type =
      FunctionType::get(PTy, args, false);
    const FunctionType *Realloc2Type =
      FunctionType::get(PTy, args2, false);
    if (Ty != Realloc1Type && Ty != Realloc2Type)
      reallocFunc = 0; // Give up
  }
  return false;
}

// Calculates the number of elements allocated for pointer P,
// the type of the element is stored in Ty.
const SCEV *PointerTracking::computeAllocationCount(Value *P,
                                                    const Type *&Ty) const {
  Value *V = P->stripPointerCasts();
  if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
    Value *arraySize = AI->getArraySize();
    Ty = AI->getAllocatedType();
    // arraySize elements of type Ty.
    return SE->getSCEV(arraySize);
  }

  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
    if (GV->hasDefinitiveInitializer()) {
      Constant *C = GV->getInitializer();
      if (const ArrayType *ATy = dyn_cast<ArrayType>(C->getType())) {
        Ty = ATy->getElementType();
        return SE->getConstant(Type::getInt32Ty(P->getContext()),
                               ATy->getNumElements());
      }
    }
    Ty = GV->getType();
    return SE->getConstant(Type::getInt32Ty(P->getContext()), 1);
    //TODO: implement more tracking for globals
  }

  if (CallInst *CI = dyn_cast<CallInst>(V)) {
    CallSite CS(CI);
    Function *F = dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
    const Loop *L = LI->getLoopFor(CI->getParent());
    if (F == callocFunc) {
      Ty = Type::getInt8Ty(P->getContext());
      // calloc allocates arg0*arg1 bytes.
      return SE->getSCEVAtScope(SE->getMulExpr(SE->getSCEV(CS.getArgument(0)),
                                               SE->getSCEV(CS.getArgument(1))),
                                L);
    } else if (F == reallocFunc) {
      Ty = Type::getInt8Ty(P->getContext());
      // realloc allocates arg1 bytes.
      return SE->getSCEVAtScope(CS.getArgument(1), L);
    }
  }

  return SE->getCouldNotCompute();
}

// Calculates the number of elements of type Ty allocated for P.
const SCEV *PointerTracking::computeAllocationCountForType(Value *P,
                                                           const Type *Ty)
  const {
    const Type *elementTy;
    const SCEV *Count = computeAllocationCount(P, elementTy);
    if (isa<SCEVCouldNotCompute>(Count))
      return Count;
    if (elementTy == Ty)
      return Count;

    if (!TD) // need TargetData from this point forward
      return SE->getCouldNotCompute();

    uint64_t elementSize = TD->getTypeAllocSize(elementTy);
    uint64_t wantSize = TD->getTypeAllocSize(Ty);
    if (elementSize == wantSize)
      return Count;
    if (elementSize % wantSize) //fractional counts not possible
      return SE->getCouldNotCompute();
    return SE->getMulExpr(Count, SE->getConstant(Count->getType(),
                                                 elementSize/wantSize));
}

const SCEV *PointerTracking::getAllocationElementCount(Value *V) const {
  // We only deal with pointers.
  const PointerType *PTy = cast<PointerType>(V->getType());
  return computeAllocationCountForType(V, PTy->getElementType());
}

const SCEV *PointerTracking::getAllocationSizeInBytes(Value *V) const {
  return computeAllocationCountForType(V, Type::getInt8Ty(V->getContext()));
}

// Helper for isLoopGuardedBy that checks the swapped and inverted predicate too
enum SolverResult PointerTracking::isLoopGuardedBy(const Loop *L,
                                                   Predicate Pred,
                                                   const SCEV *A,
                                                   const SCEV *B) const {
  if (SE->isLoopGuardedByCond(L, Pred, A, B))
    return AlwaysTrue;
  Pred = ICmpInst::getSwappedPredicate(Pred);
  if (SE->isLoopGuardedByCond(L, Pred, B, A))
    return AlwaysTrue;

  Pred = ICmpInst::getInversePredicate(Pred);
  if (SE->isLoopGuardedByCond(L, Pred, B, A))
    return AlwaysFalse;
  Pred = ICmpInst::getSwappedPredicate(Pred);
  if (SE->isLoopGuardedByCond(L, Pred, A, B))
    return AlwaysTrue;
  return Unknown;
}

enum SolverResult PointerTracking::checkLimits(const SCEV *Offset,
                                               const SCEV *Limit,
                                               BasicBlock *BB)
{
  //FIXME: merge implementation
  return Unknown;
}

void PointerTracking::getPointerOffset(Value *Pointer, Value *&Base,
                                       const SCEV *&Limit,
                                       const SCEV *&Offset) const
{
    Pointer = Pointer->stripPointerCasts();
    Base = Pointer->getUnderlyingObject();
    Limit = getAllocationSizeInBytes(Base);
    if (isa<SCEVCouldNotCompute>(Limit)) {
      Base = 0;
      Offset = Limit;
      return;
    }

    Offset = SE->getMinusSCEV(SE->getSCEV(Pointer), SE->getSCEV(Base));
    if (isa<SCEVCouldNotCompute>(Offset)) {
      Base = 0;
      Limit = Offset;
    }
}

void PointerTracking::print(raw_ostream &OS, const Module* M) const {
  // Calling some PT methods may cause caches to be updated, however
  // this should be safe for the same reason its safe for SCEV.
  PointerTracking &PT = *const_cast<PointerTracking*>(this);
  for (inst_iterator I=inst_begin(*FF), E=inst_end(*FF); I != E; ++I) {
    if (!isa<PointerType>(I->getType()))
      continue;
    Value *Base;
    const SCEV *Limit, *Offset;
    getPointerOffset(&*I, Base, Limit, Offset);
    if (!Base)
      continue;

    if (Base == &*I) {
      const SCEV *S = getAllocationElementCount(Base);
      OS << *Base << " ==> " << *S << " elements, ";
      OS << *Limit << " bytes allocated\n";
      continue;
    }
    OS << &*I << " -- base: " << *Base;
    OS << " offset: " << *Offset;

    enum SolverResult res = PT.checkLimits(Offset, Limit, I->getParent());
    switch (res) {
    case AlwaysTrue:
      OS << " always safe\n";
      break;
    case AlwaysFalse:
      OS << " always unsafe\n";
      break;
    case Unknown:
      OS << " <<unknown>>\n";
      break;
    }
  }
}

void PointerTracking::print(std::ostream &o, const Module* M) const {
  raw_os_ostream OS(o);
  print(OS, M);
}

static RegisterPass<PointerTracking> X("pointertracking",
                                       "Track pointer bounds", false, true);
}