1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
|
//===- ValueTracking.cpp - Walk computations to compute properties --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains routines that help analyze properties that chains of
// computations have.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/GlobalVariable.h"
#include "llvm/GlobalAlias.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/LLVMContext.h"
#include "llvm/Metadata.h"
#include "llvm/Operator.h"
#include "llvm/DataLayout.h"
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/PatternMatch.h"
#include "llvm/ADT/SmallPtrSet.h"
#include <cstring>
using namespace llvm;
using namespace llvm::PatternMatch;
const unsigned MaxDepth = 6;
/// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
/// unknown returns 0). For vector types, returns the element type's bitwidth.
static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
if (unsigned BitWidth = Ty->getScalarSizeInBits())
return BitWidth;
assert(isa<PointerType>(Ty) && "Expected a pointer type!");
return TD ?
TD->getPointerSizeInBits(cast<PointerType>(Ty)->getAddressSpace()) : 0;
}
static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
APInt &KnownZero, APInt &KnownOne,
APInt &KnownZero2, APInt &KnownOne2,
const DataLayout *TD, unsigned Depth) {
if (!Add) {
if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
// We know that the top bits of C-X are clear if X contains less bits
// than C (i.e. no wrap-around can happen). For example, 20-X is
// positive if we can prove that X is >= 0 and < 16.
if (!CLHS->getValue().isNegative()) {
unsigned BitWidth = KnownZero.getBitWidth();
unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
// NLZ can't be BitWidth with no sign bit
APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
// If all of the MaskV bits are known to be zero, then we know the
// output top bits are zero, because we now know that the output is
// from [0-C].
if ((KnownZero2 & MaskV) == MaskV) {
unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
// Top bits known zero.
KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
}
}
}
}
unsigned BitWidth = KnownZero.getBitWidth();
// If one of the operands has trailing zeros, then the bits that the
// other operand has in those bit positions will be preserved in the
// result. For an add, this works with either operand. For a subtract,
// this only works if the known zeros are in the right operand.
APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
llvm::ComputeMaskedBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1);
assert((LHSKnownZero & LHSKnownOne) == 0 &&
"Bits known to be one AND zero?");
unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
// Determine which operand has more trailing zeros, and use that
// many bits from the other operand.
if (LHSKnownZeroOut > RHSKnownZeroOut) {
if (Add) {
APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
KnownZero |= KnownZero2 & Mask;
KnownOne |= KnownOne2 & Mask;
} else {
// If the known zeros are in the left operand for a subtract,
// fall back to the minimum known zeros in both operands.
KnownZero |= APInt::getLowBitsSet(BitWidth,
std::min(LHSKnownZeroOut,
RHSKnownZeroOut));
}
} else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
KnownZero |= LHSKnownZero & Mask;
KnownOne |= LHSKnownOne & Mask;
}
// Are we still trying to solve for the sign bit?
if (!KnownZero.isNegative() && !KnownOne.isNegative()) {
if (NSW) {
if (Add) {
// Adding two positive numbers can't wrap into negative
if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
KnownZero |= APInt::getSignBit(BitWidth);
// and adding two negative numbers can't wrap into positive.
else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
KnownOne |= APInt::getSignBit(BitWidth);
} else {
// Subtracting a negative number from a positive one can't wrap
if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
KnownZero |= APInt::getSignBit(BitWidth);
// neither can subtracting a positive number from a negative one.
else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
KnownOne |= APInt::getSignBit(BitWidth);
}
}
}
}
static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW,
APInt &KnownZero, APInt &KnownOne,
APInt &KnownZero2, APInt &KnownOne2,
const DataLayout *TD, unsigned Depth) {
unsigned BitWidth = KnownZero.getBitWidth();
ComputeMaskedBits(Op1, KnownZero, KnownOne, TD, Depth+1);
ComputeMaskedBits(Op0, KnownZero2, KnownOne2, TD, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
bool isKnownNegative = false;
bool isKnownNonNegative = false;
// If the multiplication is known not to overflow, compute the sign bit.
if (NSW) {
if (Op0 == Op1) {
// The product of a number with itself is non-negative.
isKnownNonNegative = true;
} else {
bool isKnownNonNegativeOp1 = KnownZero.isNegative();
bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
bool isKnownNegativeOp1 = KnownOne.isNegative();
bool isKnownNegativeOp0 = KnownOne2.isNegative();
// The product of two numbers with the same sign is non-negative.
isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
(isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
// The product of a negative number and a non-negative number is either
// negative or zero.
if (!isKnownNonNegative)
isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
isKnownNonZero(Op0, TD, Depth)) ||
(isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
isKnownNonZero(Op1, TD, Depth));
}
}
// If low bits are zero in either operand, output low known-0 bits.
// Also compute a conserative estimate for high known-0 bits.
// More trickiness is possible, but this is sufficient for the
// interesting case of alignment computation.
KnownOne.clearAllBits();
unsigned TrailZ = KnownZero.countTrailingOnes() +
KnownZero2.countTrailingOnes();
unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
KnownZero2.countLeadingOnes(),
BitWidth) - BitWidth;
TrailZ = std::min(TrailZ, BitWidth);
LeadZ = std::min(LeadZ, BitWidth);
KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
APInt::getHighBitsSet(BitWidth, LeadZ);
// Only make use of no-wrap flags if we failed to compute the sign bit
// directly. This matters if the multiplication always overflows, in
// which case we prefer to follow the result of the direct computation,
// though as the program is invoking undefined behaviour we can choose
// whatever we like here.
if (isKnownNonNegative && !KnownOne.isNegative())
KnownZero.setBit(BitWidth - 1);
else if (isKnownNegative && !KnownZero.isNegative())
KnownOne.setBit(BitWidth - 1);
}
void llvm::computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero) {
unsigned BitWidth = KnownZero.getBitWidth();
unsigned NumRanges = Ranges.getNumOperands() / 2;
assert(NumRanges >= 1);
// Use the high end of the ranges to find leading zeros.
unsigned MinLeadingZeros = BitWidth;
for (unsigned i = 0; i < NumRanges; ++i) {
ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0));
ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1));
ConstantRange Range(Lower->getValue(), Upper->getValue());
if (Range.isWrappedSet())
MinLeadingZeros = 0; // -1 has no zeros
unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
}
KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
}
/// ComputeMaskedBits - Determine which of the bits are known to be either zero
/// or one and return them in the KnownZero/KnownOne bit sets.
///
/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
/// we cannot optimize based on the assumption that it is zero without changing
/// it to be an explicit zero. If we don't change it to zero, other code could
/// optimized based on the contradictory assumption that it is non-zero.
/// Because instcombine aggressively folds operations with undef args anyway,
/// this won't lose us code quality.
///
/// This function is defined on values with integer type, values with pointer
/// type (but only if TD is non-null), and vectors of integers. In the case
/// where V is a vector, known zero, and known one values are the
/// same width as the vector element, and the bit is set only if it is true
/// for all of the elements in the vector.
void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
const DataLayout *TD, unsigned Depth) {
assert(V && "No Value?");
assert(Depth <= MaxDepth && "Limit Search Depth");
unsigned BitWidth = KnownZero.getBitWidth();
assert((V->getType()->isIntOrIntVectorTy() ||
V->getType()->getScalarType()->isPointerTy()) &&
"Not integer or pointer type!");
assert((!TD ||
TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
(!V->getType()->isIntOrIntVectorTy() ||
V->getType()->getScalarSizeInBits() == BitWidth) &&
KnownZero.getBitWidth() == BitWidth &&
KnownOne.getBitWidth() == BitWidth &&
"V, Mask, KnownOne and KnownZero should have same BitWidth");
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
// We know all of the bits for a constant!
KnownOne = CI->getValue();
KnownZero = ~KnownOne;
return;
}
// Null and aggregate-zero are all-zeros.
if (isa<ConstantPointerNull>(V) ||
isa<ConstantAggregateZero>(V)) {
KnownOne.clearAllBits();
KnownZero = APInt::getAllOnesValue(BitWidth);
return;
}
// Handle a constant vector by taking the intersection of the known bits of
// each element. There is no real need to handle ConstantVector here, because
// we don't handle undef in any particularly useful way.
if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
// We know that CDS must be a vector of integers. Take the intersection of
// each element.
KnownZero.setAllBits(); KnownOne.setAllBits();
APInt Elt(KnownZero.getBitWidth(), 0);
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
Elt = CDS->getElementAsInteger(i);
KnownZero &= ~Elt;
KnownOne &= Elt;
}
return;
}
// The address of an aligned GlobalValue has trailing zeros.
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
unsigned Align = GV->getAlignment();
if (Align == 0 && TD) {
if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
Type *ObjectType = GVar->getType()->getElementType();
if (ObjectType->isSized()) {
// If the object is defined in the current Module, we'll be giving
// it the preferred alignment. Otherwise, we have to assume that it
// may only have the minimum ABI alignment.
if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
Align = TD->getPreferredAlignment(GVar);
else
Align = TD->getABITypeAlignment(ObjectType);
}
}
}
if (Align > 0)
KnownZero = APInt::getLowBitsSet(BitWidth,
CountTrailingZeros_32(Align));
else
KnownZero.clearAllBits();
KnownOne.clearAllBits();
return;
}
// A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
// the bits of its aliasee.
if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
if (GA->mayBeOverridden()) {
KnownZero.clearAllBits(); KnownOne.clearAllBits();
} else {
ComputeMaskedBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1);
}
return;
}
if (Argument *A = dyn_cast<Argument>(V)) {
unsigned Align = 0;
if (A->hasByValAttr()) {
// Get alignment information off byval arguments if specified in the IR.
Align = A->getParamAlignment();
} else if (TD && A->hasStructRetAttr()) {
// An sret parameter has at least the ABI alignment of the return type.
Type *EltTy = cast<PointerType>(A->getType())->getElementType();
if (EltTy->isSized())
Align = TD->getABITypeAlignment(EltTy);
}
if (Align)
KnownZero = APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align));
return;
}
// Start out not knowing anything.
KnownZero.clearAllBits(); KnownOne.clearAllBits();
if (Depth == MaxDepth)
return; // Limit search depth.
Operator *I = dyn_cast<Operator>(V);
if (!I) return;
APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
switch (I->getOpcode()) {
default: break;
case Instruction::Load:
if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
computeMaskedBitsLoad(*MD, KnownZero);
return;
case Instruction::And: {
// If either the LHS or the RHS are Zero, the result is zero.
ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Output known-1 bits are only known if set in both the LHS & RHS.
KnownOne &= KnownOne2;
// Output known-0 are known to be clear if zero in either the LHS | RHS.
KnownZero |= KnownZero2;
return;
}
case Instruction::Or: {
ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Output known-0 bits are only known if clear in both the LHS & RHS.
KnownZero &= KnownZero2;
// Output known-1 are known to be set if set in either the LHS | RHS.
KnownOne |= KnownOne2;
return;
}
case Instruction::Xor: {
ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Output known-0 bits are known if clear or set in both the LHS & RHS.
APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
// Output known-1 are known to be set if set in only one of the LHS, RHS.
KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
KnownZero = KnownZeroOut;
return;
}
case Instruction::Mul: {
bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
ComputeMaskedBitsMul(I->getOperand(0), I->getOperand(1), NSW,
KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth);
break;
}
case Instruction::UDiv: {
// For the purposes of computing leading zeros we can conservatively
// treat a udiv as a logical right shift by the power of 2 known to
// be less than the denominator.
ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
unsigned LeadZ = KnownZero2.countLeadingOnes();
KnownOne2.clearAllBits();
KnownZero2.clearAllBits();
ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
if (RHSUnknownLeadingOnes != BitWidth)
LeadZ = std::min(BitWidth,
LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
return;
}
case Instruction::Select:
ComputeMaskedBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1);
ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD,
Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
KnownZero &= KnownZero2;
return;
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::SIToFP:
case Instruction::UIToFP:
return; // Can't work with floating point.
case Instruction::PtrToInt:
case Instruction::IntToPtr:
// We can't handle these if we don't know the pointer size.
if (!TD) return;
// FALL THROUGH and handle them the same as zext/trunc.
case Instruction::ZExt:
case Instruction::Trunc: {
Type *SrcTy = I->getOperand(0)->getType();
unsigned SrcBitWidth;
// Note that we handle pointer operands here because of inttoptr/ptrtoint
// which fall through here.
if (SrcTy->isPointerTy())
SrcBitWidth = TD->getTypeSizeInBits(SrcTy);
else
SrcBitWidth = SrcTy->getScalarSizeInBits();
KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
KnownZero = KnownZero.zextOrTrunc(BitWidth);
KnownOne = KnownOne.zextOrTrunc(BitWidth);
// Any top bits are known to be zero.
if (BitWidth > SrcBitWidth)
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
return;
}
case Instruction::BitCast: {
Type *SrcTy = I->getOperand(0)->getType();
if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
// TODO: For now, not handling conversions like:
// (bitcast i64 %x to <2 x i32>)
!I->getType()->isVectorTy()) {
ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
return;
}
break;
}
case Instruction::SExt: {
// Compute the bits in the result that are not present in the input.
unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
KnownZero = KnownZero.trunc(SrcBitWidth);
KnownOne = KnownOne.trunc(SrcBitWidth);
ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero = KnownZero.zext(BitWidth);
KnownOne = KnownOne.zext(BitWidth);
// If the sign bit of the input is known set or clear, then we know the
// top bits of the result.
if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
return;
}
case Instruction::Shl:
// (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero <<= ShiftAmt;
KnownOne <<= ShiftAmt;
KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
return;
}
break;
case Instruction::LShr:
// (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
// Compute the new bits that are at the top now.
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
// Unsigned shift right.
ComputeMaskedBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
// high bits known zero.
KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
return;
}
break;
case Instruction::AShr:
// (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
// Compute the new bits that are at the top now.
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
// Signed shift right.
ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
KnownZero |= HighBits;
else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
KnownOne |= HighBits;
return;
}
break;
case Instruction::Sub: {
bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
ComputeMaskedBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
Depth);
break;
}
case Instruction::Add: {
bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
ComputeMaskedBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
Depth);
break;
}
case Instruction::SRem:
if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
APInt RA = Rem->getValue().abs();
if (RA.isPowerOf2()) {
APInt LowBits = RA - 1;
ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
// The low bits of the first operand are unchanged by the srem.
KnownZero = KnownZero2 & LowBits;
KnownOne = KnownOne2 & LowBits;
// If the first operand is non-negative or has all low bits zero, then
// the upper bits are all zero.
if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
KnownZero |= ~LowBits;
// If the first operand is negative and not all low bits are zero, then
// the upper bits are all one.
if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
KnownOne |= ~LowBits;
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
}
}
// The sign bit is the LHS's sign bit, except when the result of the
// remainder is zero.
if (KnownZero.isNonNegative()) {
APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
Depth+1);
// If it's known zero, our sign bit is also zero.
if (LHSKnownZero.isNegative())
KnownZero.setBit(BitWidth - 1);
}
break;
case Instruction::URem: {
if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
APInt RA = Rem->getValue();
if (RA.isPowerOf2()) {
APInt LowBits = (RA - 1);
ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD,
Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero |= ~LowBits;
KnownOne &= LowBits;
break;
}
}
// Since the result is less than or equal to either operand, any leading
// zero bits in either operand must also exist in the result.
ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
KnownZero2.countLeadingOnes());
KnownOne.clearAllBits();
KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
break;
}
case Instruction::Alloca: {
AllocaInst *AI = cast<AllocaInst>(V);
unsigned Align = AI->getAlignment();
if (Align == 0 && TD)
Align = TD->getABITypeAlignment(AI->getType()->getElementType());
if (Align > 0)
KnownZero = APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align));
break;
}
case Instruction::GetElementPtr: {
// Analyze all of the subscripts of this getelementptr instruction
// to determine if we can prove known low zero bits.
APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
ComputeMaskedBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
Depth+1);
unsigned TrailZ = LocalKnownZero.countTrailingOnes();
gep_type_iterator GTI = gep_type_begin(I);
for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
Value *Index = I->getOperand(i);
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
// Handle struct member offset arithmetic.
if (!TD) return;
const StructLayout *SL = TD->getStructLayout(STy);
unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
uint64_t Offset = SL->getElementOffset(Idx);
TrailZ = std::min(TrailZ,
CountTrailingZeros_64(Offset));
} else {
// Handle array index arithmetic.
Type *IndexedTy = GTI.getIndexedType();
if (!IndexedTy->isSized()) return;
unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
ComputeMaskedBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1);
TrailZ = std::min(TrailZ,
unsigned(CountTrailingZeros_64(TypeSize) +
LocalKnownZero.countTrailingOnes()));
}
}
KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
break;
}
case Instruction::PHI: {
PHINode *P = cast<PHINode>(I);
// Handle the case of a simple two-predecessor recurrence PHI.
// There's a lot more that could theoretically be done here, but
// this is sufficient to catch some interesting cases.
if (P->getNumIncomingValues() == 2) {
for (unsigned i = 0; i != 2; ++i) {
Value *L = P->getIncomingValue(i);
Value *R = P->getIncomingValue(!i);
Operator *LU = dyn_cast<Operator>(L);
if (!LU)
continue;
unsigned Opcode = LU->getOpcode();
// Check for operations that have the property that if
// both their operands have low zero bits, the result
// will have low zero bits.
if (Opcode == Instruction::Add ||
Opcode == Instruction::Sub ||
Opcode == Instruction::And ||
Opcode == Instruction::Or ||
Opcode == Instruction::Mul) {
Value *LL = LU->getOperand(0);
Value *LR = LU->getOperand(1);
// Find a recurrence.
if (LL == I)
L = LR;
else if (LR == I)
L = LL;
else
break;
// Ok, we have a PHI of the form L op= R. Check for low
// zero bits.
ComputeMaskedBits(R, KnownZero2, KnownOne2, TD, Depth+1);
// We need to take the minimum number of known bits
APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
ComputeMaskedBits(L, KnownZero3, KnownOne3, TD, Depth+1);
KnownZero = APInt::getLowBitsSet(BitWidth,
std::min(KnownZero2.countTrailingOnes(),
KnownZero3.countTrailingOnes()));
break;
}
}
}
// Unreachable blocks may have zero-operand PHI nodes.
if (P->getNumIncomingValues() == 0)
return;
// Otherwise take the unions of the known bit sets of the operands,
// taking conservative care to avoid excessive recursion.
if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
// Skip if every incoming value references to ourself.
if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
break;
KnownZero = APInt::getAllOnesValue(BitWidth);
KnownOne = APInt::getAllOnesValue(BitWidth);
for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
// Skip direct self references.
if (P->getIncomingValue(i) == P) continue;
KnownZero2 = APInt(BitWidth, 0);
KnownOne2 = APInt(BitWidth, 0);
// Recurse, but cap the recursion to one level, because we don't
// want to waste time spinning around in loops.
ComputeMaskedBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
MaxDepth-1);
KnownZero &= KnownZero2;
KnownOne &= KnownOne2;
// If all bits have been ruled out, there's no need to check
// more operands.
if (!KnownZero && !KnownOne)
break;
}
}
break;
}
case Instruction::Call:
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::ctlz:
case Intrinsic::cttz: {
unsigned LowBits = Log2_32(BitWidth)+1;
// If this call is undefined for 0, the result will be less than 2^n.
if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
LowBits -= 1;
KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
break;
}
case Intrinsic::ctpop: {
unsigned LowBits = Log2_32(BitWidth)+1;
KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
break;
}
case Intrinsic::x86_sse42_crc32_64_8:
case Intrinsic::x86_sse42_crc32_64_64:
KnownZero = APInt::getHighBitsSet(64, 32);
break;
}
}
break;
case Instruction::ExtractValue:
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
ExtractValueInst *EVI = cast<ExtractValueInst>(I);
if (EVI->getNumIndices() != 1) break;
if (EVI->getIndices()[0] == 0) {
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::uadd_with_overflow:
case Intrinsic::sadd_with_overflow:
ComputeMaskedBitsAddSub(true, II->getArgOperand(0),
II->getArgOperand(1), false, KnownZero,
KnownOne, KnownZero2, KnownOne2, TD, Depth);
break;
case Intrinsic::usub_with_overflow:
case Intrinsic::ssub_with_overflow:
ComputeMaskedBitsAddSub(false, II->getArgOperand(0),
II->getArgOperand(1), false, KnownZero,
KnownOne, KnownZero2, KnownOne2, TD, Depth);
break;
case Intrinsic::umul_with_overflow:
case Intrinsic::smul_with_overflow:
ComputeMaskedBitsMul(II->getArgOperand(0), II->getArgOperand(1),
false, KnownZero, KnownOne,
KnownZero2, KnownOne2, TD, Depth);
break;
}
}
}
}
}
/// ComputeSignBit - Determine whether the sign bit is known to be zero or
/// one. Convenience wrapper around ComputeMaskedBits.
void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
const DataLayout *TD, unsigned Depth) {
unsigned BitWidth = getBitWidth(V->getType(), TD);
if (!BitWidth) {
KnownZero = false;
KnownOne = false;
return;
}
APInt ZeroBits(BitWidth, 0);
APInt OneBits(BitWidth, 0);
ComputeMaskedBits(V, ZeroBits, OneBits, TD, Depth);
KnownOne = OneBits[BitWidth - 1];
KnownZero = ZeroBits[BitWidth - 1];
}
/// isPowerOfTwo - Return true if the given value is known to have exactly one
/// bit set when defined. For vectors return true if every element is known to
/// be a power of two when defined. Supports values with integer or pointer
/// types and vectors of integers.
bool llvm::isPowerOfTwo(Value *V, const DataLayout *TD, bool OrZero,
unsigned Depth) {
if (Constant *C = dyn_cast<Constant>(V)) {
if (C->isNullValue())
return OrZero;
if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
return CI->getValue().isPowerOf2();
// TODO: Handle vector constants.
}
// 1 << X is clearly a power of two if the one is not shifted off the end. If
// it is shifted off the end then the result is undefined.
if (match(V, m_Shl(m_One(), m_Value())))
return true;
// (signbit) >>l X is clearly a power of two if the one is not shifted off the
// bottom. If it is shifted off the bottom then the result is undefined.
if (match(V, m_LShr(m_SignBit(), m_Value())))
return true;
// The remaining tests are all recursive, so bail out if we hit the limit.
if (Depth++ == MaxDepth)
return false;
Value *X = 0, *Y = 0;
// A shift of a power of two is a power of two or zero.
if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
match(V, m_Shr(m_Value(X), m_Value()))))
return isPowerOfTwo(X, TD, /*OrZero*/true, Depth);
if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
return isPowerOfTwo(ZI->getOperand(0), TD, OrZero, Depth);
if (SelectInst *SI = dyn_cast<SelectInst>(V))
return isPowerOfTwo(SI->getTrueValue(), TD, OrZero, Depth) &&
isPowerOfTwo(SI->getFalseValue(), TD, OrZero, Depth);
if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
// A power of two and'd with anything is a power of two or zero.
if (isPowerOfTwo(X, TD, /*OrZero*/true, Depth) ||
isPowerOfTwo(Y, TD, /*OrZero*/true, Depth))
return true;
// X & (-X) is always a power of two or zero.
if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
return true;
return false;
}
// An exact divide or right shift can only shift off zero bits, so the result
// is a power of two only if the first operand is a power of two and not
// copying a sign bit (sdiv int_min, 2).
if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
return isPowerOfTwo(cast<Operator>(V)->getOperand(0), TD, OrZero, Depth);
}
return false;
}
/// isKnownNonZero - Return true if the given value is known to be non-zero
/// when defined. For vectors return true if every element is known to be
/// non-zero when defined. Supports values with integer or pointer type and
/// vectors of integers.
bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
if (Constant *C = dyn_cast<Constant>(V)) {
if (C->isNullValue())
return false;
if (isa<ConstantInt>(C))
// Must be non-zero due to null test above.
return true;
// TODO: Handle vectors
return false;
}
// The remaining tests are all recursive, so bail out if we hit the limit.
if (Depth++ >= MaxDepth)
return false;
unsigned BitWidth = getBitWidth(V->getType(), TD);
// X | Y != 0 if X != 0 or Y != 0.
Value *X = 0, *Y = 0;
if (match(V, m_Or(m_Value(X), m_Value(Y))))
return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
// ext X != 0 if X != 0.
if (isa<SExtInst>(V) || isa<ZExtInst>(V))
return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
// shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
// if the lowest bit is shifted off the end.
if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
// shl nuw can't remove any non-zero bits.
OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
if (BO->hasNoUnsignedWrap())
return isKnownNonZero(X, TD, Depth);
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
if (KnownOne[0])
return true;
}
// shr X, Y != 0 if X is negative. Note that the value of the shift is not
// defined if the sign bit is shifted off the end.
else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
// shr exact can only shift out zero bits.
PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
if (BO->isExact())
return isKnownNonZero(X, TD, Depth);
bool XKnownNonNegative, XKnownNegative;
ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
if (XKnownNegative)
return true;
}
// div exact can only produce a zero if the dividend is zero.
else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
return isKnownNonZero(X, TD, Depth);
}
// X + Y.
else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
bool XKnownNonNegative, XKnownNegative;
bool YKnownNonNegative, YKnownNegative;
ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
// If X and Y are both non-negative (as signed values) then their sum is not
// zero unless both X and Y are zero.
if (XKnownNonNegative && YKnownNonNegative)
if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
return true;
// If X and Y are both negative (as signed values) then their sum is not
// zero unless both X and Y equal INT_MIN.
if (BitWidth && XKnownNegative && YKnownNegative) {
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
APInt Mask = APInt::getSignedMaxValue(BitWidth);
// The sign bit of X is set. If some other bit is set then X is not equal
// to INT_MIN.
ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
if ((KnownOne & Mask) != 0)
return true;
// The sign bit of Y is set. If some other bit is set then Y is not equal
// to INT_MIN.
ComputeMaskedBits(Y, KnownZero, KnownOne, TD, Depth);
if ((KnownOne & Mask) != 0)
return true;
}
// The sum of a non-negative number and a power of two is not zero.
if (XKnownNonNegative && isPowerOfTwo(Y, TD, /*OrZero*/false, Depth))
return true;
if (YKnownNonNegative && isPowerOfTwo(X, TD, /*OrZero*/false, Depth))
return true;
}
// X * Y.
else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
// If X and Y are non-zero then so is X * Y as long as the multiplication
// does not overflow.
if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth))
return true;
}
// (C ? X : Y) != 0 if X != 0 and Y != 0.
else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
isKnownNonZero(SI->getFalseValue(), TD, Depth))
return true;
}
if (!BitWidth) return false;
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
return KnownOne != 0;
}
/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
/// this predicate to simplify operations downstream. Mask is known to be zero
/// for bits that V cannot have.
///
/// This function is defined on values with integer type, values with pointer
/// type (but only if TD is non-null), and vectors of integers. In the case
/// where V is a vector, the mask, known zero, and known one values are the
/// same width as the vector element, and the bit is set only if it is true
/// for all of the elements in the vector.
bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
const DataLayout *TD, unsigned Depth) {
APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
return (KnownZero & Mask) == Mask;
}
/// ComputeNumSignBits - Return the number of times the sign bit of the
/// register is replicated into the other bits. We know that at least 1 bit
/// is always equal to the sign bit (itself), but other cases can give us
/// information. For example, immediately after an "ashr X, 2", we know that
/// the top 3 bits are all equal to each other, so we return 3.
///
/// 'Op' must have a scalar integer type.
///
unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
unsigned Depth) {
assert((TD || V->getType()->isIntOrIntVectorTy()) &&
"ComputeNumSignBits requires a DataLayout object to operate "
"on non-integer values!");
Type *Ty = V->getType();
unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
Ty->getScalarSizeInBits();
unsigned Tmp, Tmp2;
unsigned FirstAnswer = 1;
// Note that ConstantInt is handled by the general ComputeMaskedBits case
// below.
if (Depth == 6)
return 1; // Limit search depth.
Operator *U = dyn_cast<Operator>(V);
switch (Operator::getOpcode(V)) {
default: break;
case Instruction::SExt:
Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
case Instruction::AShr: {
Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
// ashr X, C -> adds C sign bits. Vectors too.
const APInt *ShAmt;
if (match(U->getOperand(1), m_APInt(ShAmt))) {
Tmp += ShAmt->getZExtValue();
if (Tmp > TyBits) Tmp = TyBits;
}
return Tmp;
}
case Instruction::Shl: {
const APInt *ShAmt;
if (match(U->getOperand(1), m_APInt(ShAmt))) {
// shl destroys sign bits.
Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
Tmp2 = ShAmt->getZExtValue();
if (Tmp2 >= TyBits || // Bad shift.
Tmp2 >= Tmp) break; // Shifted all sign bits out.
return Tmp - Tmp2;
}
break;
}
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: // NOT is handled here.
// Logical binary ops preserve the number of sign bits at the worst.
Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
if (Tmp != 1) {
Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
FirstAnswer = std::min(Tmp, Tmp2);
// We computed what we know about the sign bits as our first
// answer. Now proceed to the generic code that uses
// ComputeMaskedBits, and pick whichever answer is better.
}
break;
case Instruction::Select:
Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
if (Tmp == 1) return 1; // Early out.
Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
return std::min(Tmp, Tmp2);
case Instruction::Add:
// Add can have at most one carry bit. Thus we know that the output
// is, at worst, one more bit than the inputs.
Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
if (Tmp == 1) return 1; // Early out.
// Special case decrementing a value (ADD X, -1):
if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
if (CRHS->isAllOnesValue()) {
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
return TyBits;
// If we are subtracting one from a positive number, there is no carry
// out of the result.
if (KnownZero.isNegative())
return Tmp;
}
Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
if (Tmp2 == 1) return 1;
return std::min(Tmp, Tmp2)-1;
case Instruction::Sub:
Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
if (Tmp2 == 1) return 1;
// Handle NEG.
if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
if (CLHS->isNullValue()) {
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
ComputeMaskedBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
return TyBits;
// If the input is known to be positive (the sign bit is known clear),
// the output of the NEG has the same number of sign bits as the input.
if (KnownZero.isNegative())
return Tmp2;
// Otherwise, we treat this like a SUB.
}
// Sub can have at most one carry bit. Thus we know that the output
// is, at worst, one more bit than the inputs.
Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
if (Tmp == 1) return 1; // Early out.
return std::min(Tmp, Tmp2)-1;
case Instruction::PHI: {
PHINode *PN = cast<PHINode>(U);
// Don't analyze large in-degree PHIs.
if (PN->getNumIncomingValues() > 4) break;
// Take the minimum of all incoming values. This can't infinitely loop
// because of our depth threshold.
Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
if (Tmp == 1) return Tmp;
Tmp = std::min(Tmp,
ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
}
return Tmp;
}
case Instruction::Trunc:
// FIXME: it's tricky to do anything useful for this, but it is an important
// case for targets like X86.
break;
}
// Finally, if we can prove that the top bits of the result are 0's or 1's,
// use this information.
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
APInt Mask;
ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
if (KnownZero.isNegative()) { // sign bit is 0
Mask = KnownZero;
} else if (KnownOne.isNegative()) { // sign bit is 1;
Mask = KnownOne;
} else {
// Nothing known.
return FirstAnswer;
}
// Okay, we know that the sign bit in Mask is set. Use CLZ to determine
// the number of identical bits in the top of the input value.
Mask = ~Mask;
Mask <<= Mask.getBitWidth()-TyBits;
// Return # leading zeros. We use 'min' here in case Val was zero before
// shifting. We don't want to return '64' as for an i32 "0".
return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
}
/// ComputeMultiple - This function computes the integer multiple of Base that
/// equals V. If successful, it returns true and returns the multiple in
/// Multiple. If unsuccessful, it returns false. It looks
/// through SExt instructions only if LookThroughSExt is true.
bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
bool LookThroughSExt, unsigned Depth) {
const unsigned MaxDepth = 6;
assert(V && "No Value?");
assert(Depth <= MaxDepth && "Limit Search Depth");
assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Type *T = V->getType();
ConstantInt *CI = dyn_cast<ConstantInt>(V);
if (Base == 0)
return false;
if (Base == 1) {
Multiple = V;
return true;
}
ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
Constant *BaseVal = ConstantInt::get(T, Base);
if (CO && CO == BaseVal) {
// Multiple is 1.
Multiple = ConstantInt::get(T, 1);
return true;
}
if (CI && CI->getZExtValue() % Base == 0) {
Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
return true;
}
if (Depth == MaxDepth) return false; // Limit search depth.
Operator *I = dyn_cast<Operator>(V);
if (!I) return false;
switch (I->getOpcode()) {
default: break;
case Instruction::SExt:
if (!LookThroughSExt) return false;
// otherwise fall through to ZExt
case Instruction::ZExt:
return ComputeMultiple(I->getOperand(0), Base, Multiple,
LookThroughSExt, Depth+1);
case Instruction::Shl:
case Instruction::Mul: {
Value *Op0 = I->getOperand(0);
Value *Op1 = I->getOperand(1);
if (I->getOpcode() == Instruction::Shl) {
ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
if (!Op1CI) return false;
// Turn Op0 << Op1 into Op0 * 2^Op1
APInt Op1Int = Op1CI->getValue();
uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
APInt API(Op1Int.getBitWidth(), 0);
API.setBit(BitToSet);
Op1 = ConstantInt::get(V->getContext(), API);
}
Value *Mul0 = NULL;
if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
if (Constant *Op1C = dyn_cast<Constant>(Op1))
if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
if (Op1C->getType()->getPrimitiveSizeInBits() <
MulC->getType()->getPrimitiveSizeInBits())
Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
if (Op1C->getType()->getPrimitiveSizeInBits() >
MulC->getType()->getPrimitiveSizeInBits())
MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
// V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
Multiple = ConstantExpr::getMul(MulC, Op1C);
return true;
}
if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
if (Mul0CI->getValue() == 1) {
// V == Base * Op1, so return Op1
Multiple = Op1;
return true;
}
}
Value *Mul1 = NULL;
if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
if (Constant *Op0C = dyn_cast<Constant>(Op0))
if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
if (Op0C->getType()->getPrimitiveSizeInBits() <
MulC->getType()->getPrimitiveSizeInBits())
Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
if (Op0C->getType()->getPrimitiveSizeInBits() >
MulC->getType()->getPrimitiveSizeInBits())
MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
// V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
Multiple = ConstantExpr::getMul(MulC, Op0C);
return true;
}
if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
if (Mul1CI->getValue() == 1) {
// V == Base * Op0, so return Op0
Multiple = Op0;
return true;
}
}
}
}
// We could not determine if V is a multiple of Base.
return false;
}
/// CannotBeNegativeZero - Return true if we can prove that the specified FP
/// value is never equal to -0.0.
///
/// NOTE: this function will need to be revisited when we support non-default
/// rounding modes!
///
bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
return !CFP->getValueAPF().isNegZero();
if (Depth == 6)
return 1; // Limit search depth.
const Operator *I = dyn_cast<Operator>(V);
if (I == 0) return false;
// (add x, 0.0) is guaranteed to return +0.0, not -0.0.
if (I->getOpcode() == Instruction::FAdd &&
isa<ConstantFP>(I->getOperand(1)) &&
cast<ConstantFP>(I->getOperand(1))->isNullValue())
return true;
// sitofp and uitofp turn into +0.0 for zero.
if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
return true;
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
// sqrt(-0.0) = -0.0, no other negative results are possible.
if (II->getIntrinsicID() == Intrinsic::sqrt)
return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
if (const CallInst *CI = dyn_cast<CallInst>(I))
if (const Function *F = CI->getCalledFunction()) {
if (F->isDeclaration()) {
// abs(x) != -0.0
if (F->getName() == "abs") return true;
// fabs[lf](x) != -0.0
if (F->getName() == "fabs") return true;
if (F->getName() == "fabsf") return true;
if (F->getName() == "fabsl") return true;
if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
F->getName() == "sqrtl")
return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
}
}
return false;
}
/// isBytewiseValue - If the specified value can be set by repeating the same
/// byte in memory, return the i8 value that it is represented with. This is
/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
/// byte store (e.g. i16 0x1234), return null.
Value *llvm::isBytewiseValue(Value *V) {
// All byte-wide stores are splatable, even of arbitrary variables.
if (V->getType()->isIntegerTy(8)) return V;
// Handle 'null' ConstantArrayZero etc.
if (Constant *C = dyn_cast<Constant>(V))
if (C->isNullValue())
return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
// Constant float and double values can be handled as integer values if the
// corresponding integer value is "byteable". An important case is 0.0.
if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
if (CFP->getType()->isFloatTy())
V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
if (CFP->getType()->isDoubleTy())
V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
// Don't handle long double formats, which have strange constraints.
}
// We can handle constant integers that are power of two in size and a
// multiple of 8 bits.
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
unsigned Width = CI->getBitWidth();
if (isPowerOf2_32(Width) && Width > 8) {
// We can handle this value if the recursive binary decomposition is the
// same at all levels.
APInt Val = CI->getValue();
APInt Val2;
while (Val.getBitWidth() != 8) {
unsigned NextWidth = Val.getBitWidth()/2;
Val2 = Val.lshr(NextWidth);
Val2 = Val2.trunc(Val.getBitWidth()/2);
Val = Val.trunc(Val.getBitWidth()/2);
// If the top/bottom halves aren't the same, reject it.
if (Val != Val2)
return 0;
}
return ConstantInt::get(V->getContext(), Val);
}
}
// A ConstantDataArray/Vector is splatable if all its members are equal and
// also splatable.
if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
Value *Elt = CA->getElementAsConstant(0);
Value *Val = isBytewiseValue(Elt);
if (!Val)
return 0;
for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
if (CA->getElementAsConstant(I) != Elt)
return 0;
return Val;
}
// Conceptually, we could handle things like:
// %a = zext i8 %X to i16
// %b = shl i16 %a, 8
// %c = or i16 %a, %b
// but until there is an example that actually needs this, it doesn't seem
// worth worrying about.
return 0;
}
// This is the recursive version of BuildSubAggregate. It takes a few different
// arguments. Idxs is the index within the nested struct From that we are
// looking at now (which is of type IndexedType). IdxSkip is the number of
// indices from Idxs that should be left out when inserting into the resulting
// struct. To is the result struct built so far, new insertvalue instructions
// build on that.
static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
SmallVector<unsigned, 10> &Idxs,
unsigned IdxSkip,
Instruction *InsertBefore) {
llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
if (STy) {
// Save the original To argument so we can modify it
Value *OrigTo = To;
// General case, the type indexed by Idxs is a struct
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
// Process each struct element recursively
Idxs.push_back(i);
Value *PrevTo = To;
To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
InsertBefore);
Idxs.pop_back();
if (!To) {
// Couldn't find any inserted value for this index? Cleanup
while (PrevTo != OrigTo) {
InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
PrevTo = Del->getAggregateOperand();
Del->eraseFromParent();
}
// Stop processing elements
break;
}
}
// If we successfully found a value for each of our subaggregates
if (To)
return To;
}
// Base case, the type indexed by SourceIdxs is not a struct, or not all of
// the struct's elements had a value that was inserted directly. In the latter
// case, perhaps we can't determine each of the subelements individually, but
// we might be able to find the complete struct somewhere.
// Find the value that is at that particular spot
Value *V = FindInsertedValue(From, Idxs);
if (!V)
return NULL;
// Insert the value in the new (sub) aggregrate
return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
"tmp", InsertBefore);
}
// This helper takes a nested struct and extracts a part of it (which is again a
// struct) into a new value. For example, given the struct:
// { a, { b, { c, d }, e } }
// and the indices "1, 1" this returns
// { c, d }.
//
// It does this by inserting an insertvalue for each element in the resulting
// struct, as opposed to just inserting a single struct. This will only work if
// each of the elements of the substruct are known (ie, inserted into From by an
// insertvalue instruction somewhere).
//
// All inserted insertvalue instructions are inserted before InsertBefore
static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Instruction *InsertBefore) {
assert(InsertBefore && "Must have someplace to insert!");
Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
idx_range);
Value *To = UndefValue::get(IndexedType);
SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
unsigned IdxSkip = Idxs.size();
return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
}
/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
/// the scalar value indexed is already around as a register, for example if it
/// were inserted directly into the aggregrate.
///
/// If InsertBefore is not null, this function will duplicate (modified)
/// insertvalues when a part of a nested struct is extracted.
Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
Instruction *InsertBefore) {
// Nothing to index? Just return V then (this is useful at the end of our
// recursion).
if (idx_range.empty())
return V;
// We have indices, so V should have an indexable type.
assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
"Not looking at a struct or array?");
assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
"Invalid indices for type?");
if (Constant *C = dyn_cast<Constant>(V)) {
C = C->getAggregateElement(idx_range[0]);
if (C == 0) return 0;
return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
}
if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
// Loop the indices for the insertvalue instruction in parallel with the
// requested indices
const unsigned *req_idx = idx_range.begin();
for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
i != e; ++i, ++req_idx) {
if (req_idx == idx_range.end()) {
// We can't handle this without inserting insertvalues
if (!InsertBefore)
return 0;
// The requested index identifies a part of a nested aggregate. Handle
// this specially. For example,
// %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
// %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
// %C = extractvalue {i32, { i32, i32 } } %B, 1
// This can be changed into
// %A = insertvalue {i32, i32 } undef, i32 10, 0
// %C = insertvalue {i32, i32 } %A, i32 11, 1
// which allows the unused 0,0 element from the nested struct to be
// removed.
return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
InsertBefore);
}
// This insert value inserts something else than what we are looking for.
// See if the (aggregrate) value inserted into has the value we are
// looking for, then.
if (*req_idx != *i)
return FindInsertedValue(I->getAggregateOperand(), idx_range,
InsertBefore);
}
// If we end up here, the indices of the insertvalue match with those
// requested (though possibly only partially). Now we recursively look at
// the inserted value, passing any remaining indices.
return FindInsertedValue(I->getInsertedValueOperand(),
makeArrayRef(req_idx, idx_range.end()),
InsertBefore);
}
if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
// If we're extracting a value from an aggregrate that was extracted from
// something else, we can extract from that something else directly instead.
// However, we will need to chain I's indices with the requested indices.
// Calculate the number of indices required
unsigned size = I->getNumIndices() + idx_range.size();
// Allocate some space to put the new indices in
SmallVector<unsigned, 5> Idxs;
Idxs.reserve(size);
// Add indices from the extract value instruction
Idxs.append(I->idx_begin(), I->idx_end());
// Add requested indices
Idxs.append(idx_range.begin(), idx_range.end());
assert(Idxs.size() == size
&& "Number of indices added not correct?");
return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
}
// Otherwise, we don't know (such as, extracting from a function return value
// or load instruction)
return 0;
}
/// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
/// it can be expressed as a base pointer plus a constant offset. Return the
/// base and offset to the caller.
Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
const DataLayout &TD) {
Operator *PtrOp = dyn_cast<Operator>(Ptr);
if (PtrOp == 0 || Ptr->getType()->isVectorTy())
return Ptr;
// Just look through bitcasts.
if (PtrOp->getOpcode() == Instruction::BitCast)
return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
// If this is a GEP with constant indices, we can look through it.
GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
gep_type_iterator GTI = gep_type_begin(GEP);
for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
++I, ++GTI) {
ConstantInt *OpC = cast<ConstantInt>(*I);
if (OpC->isZero()) continue;
// Handle a struct and array indices which add their offset to the pointer.
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
} else {
uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
Offset += OpC->getSExtValue()*Size;
}
}
// Re-sign extend from the pointer size if needed to get overflow edge cases
// right.
unsigned AS = GEP->getPointerAddressSpace();
unsigned PtrSize = TD.getPointerSizeInBits(AS);
if (PtrSize < 64)
Offset = SignExtend64(Offset, PtrSize);
return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
}
/// getConstantStringInfo - This function computes the length of a
/// null-terminated C string pointed to by V. If successful, it returns true
/// and returns the string in Str. If unsuccessful, it returns false.
bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
uint64_t Offset, bool TrimAtNul) {
assert(V);
// Look through bitcast instructions and geps.
V = V->stripPointerCasts();
// If the value is a GEP instructionor constant expression, treat it as an
// offset.
if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
// Make sure the GEP has exactly three arguments.
if (GEP->getNumOperands() != 3)
return false;
// Make sure the index-ee is a pointer to array of i8.
PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
return false;
// Check to make sure that the first operand of the GEP is an integer and
// has value 0 so that we are sure we're indexing into the initializer.
const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
if (FirstIdx == 0 || !FirstIdx->isZero())
return false;
// If the second index isn't a ConstantInt, then this is a variable index
// into the array. If this occurs, we can't say anything meaningful about
// the string.
uint64_t StartIdx = 0;
if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
StartIdx = CI->getZExtValue();
else
return false;
return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
}
// The GEP instruction, constant or instruction, must reference a global
// variable that is a constant and is initialized. The referenced constant
// initializer is the array that we'll use for optimization.
const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
return false;
// Handle the all-zeros case
if (GV->getInitializer()->isNullValue()) {
// This is a degenerate case. The initializer is constant zero so the
// length of the string must be zero.
Str = "";
return true;
}
// Must be a Constant Array
const ConstantDataArray *Array =
dyn_cast<ConstantDataArray>(GV->getInitializer());
if (Array == 0 || !Array->isString())
return false;
// Get the number of elements in the array
uint64_t NumElts = Array->getType()->getArrayNumElements();
// Start out with the entire array in the StringRef.
Str = Array->getAsString();
if (Offset > NumElts)
return false;
// Skip over 'offset' bytes.
Str = Str.substr(Offset);
if (TrimAtNul) {
// Trim off the \0 and anything after it. If the array is not nul
// terminated, we just return the whole end of string. The client may know
// some other way that the string is length-bound.
Str = Str.substr(0, Str.find('\0'));
}
return true;
}
// These next two are very similar to the above, but also look through PHI
// nodes.
// TODO: See if we can integrate these two together.
/// GetStringLengthH - If we can compute the length of the string pointed to by
/// the specified pointer, return 'len+1'. If we can't, return 0.
static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
// Look through noop bitcast instructions.
V = V->stripPointerCasts();
// If this is a PHI node, there are two cases: either we have already seen it
// or we haven't.
if (PHINode *PN = dyn_cast<PHINode>(V)) {
if (!PHIs.insert(PN))
return ~0ULL; // already in the set.
// If it was new, see if all the input strings are the same length.
uint64_t LenSoFar = ~0ULL;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
if (Len == 0) return 0; // Unknown length -> unknown.
if (Len == ~0ULL) continue;
if (Len != LenSoFar && LenSoFar != ~0ULL)
return 0; // Disagree -> unknown.
LenSoFar = Len;
}
// Success, all agree.
return LenSoFar;
}
// strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
if (Len1 == 0) return 0;
uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
if (Len2 == 0) return 0;
if (Len1 == ~0ULL) return Len2;
if (Len2 == ~0ULL) return Len1;
if (Len1 != Len2) return 0;
return Len1;
}
// Otherwise, see if we can read the string.
StringRef StrData;
if (!getConstantStringInfo(V, StrData))
return 0;
return StrData.size()+1;
}
/// GetStringLength - If we can compute the length of the string pointed to by
/// the specified pointer, return 'len+1'. If we can't, return 0.
uint64_t llvm::GetStringLength(Value *V) {
if (!V->getType()->isPointerTy()) return 0;
SmallPtrSet<PHINode*, 32> PHIs;
uint64_t Len = GetStringLengthH(V, PHIs);
// If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
// an empty string as a length.
return Len == ~0ULL ? 1 : Len;
}
Value *
llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
if (!V->getType()->isPointerTy())
return V;
for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
V = GEP->getPointerOperand();
} else if (Operator::getOpcode(V) == Instruction::BitCast) {
V = cast<Operator>(V)->getOperand(0);
} else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
if (GA->mayBeOverridden())
return V;
V = GA->getAliasee();
} else {
// See if InstructionSimplify knows any relevant tricks.
if (Instruction *I = dyn_cast<Instruction>(V))
// TODO: Acquire a DominatorTree and use it.
if (Value *Simplified = SimplifyInstruction(I, TD, 0)) {
V = Simplified;
continue;
}
return V;
}
assert(V->getType()->isPointerTy() && "Unexpected operand type!");
}
return V;
}
void
llvm::GetUnderlyingObjects(Value *V,
SmallVectorImpl<Value *> &Objects,
const DataLayout *TD,
unsigned MaxLookup) {
SmallPtrSet<Value *, 4> Visited;
SmallVector<Value *, 4> Worklist;
Worklist.push_back(V);
do {
Value *P = Worklist.pop_back_val();
P = GetUnderlyingObject(P, TD, MaxLookup);
if (!Visited.insert(P))
continue;
if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
Worklist.push_back(SI->getTrueValue());
Worklist.push_back(SI->getFalseValue());
continue;
}
if (PHINode *PN = dyn_cast<PHINode>(P)) {
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
Worklist.push_back(PN->getIncomingValue(i));
continue;
}
Objects.push_back(P);
} while (!Worklist.empty());
}
/// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
/// are lifetime markers.
///
bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
UI != UE; ++UI) {
const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI);
if (!II) return false;
if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
II->getIntrinsicID() != Intrinsic::lifetime_end)
return false;
}
return true;
}
bool llvm::isSafeToSpeculativelyExecute(const Value *V,
const DataLayout *TD) {
const Operator *Inst = dyn_cast<Operator>(V);
if (!Inst)
return false;
for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
if (C->canTrap())
return false;
switch (Inst->getOpcode()) {
default:
return true;
case Instruction::UDiv:
case Instruction::URem:
// x / y is undefined if y == 0, but calcuations like x / 3 are safe.
return isKnownNonZero(Inst->getOperand(1), TD);
case Instruction::SDiv:
case Instruction::SRem: {
Value *Op = Inst->getOperand(1);
// x / y is undefined if y == 0
if (!isKnownNonZero(Op, TD))
return false;
// x / y might be undefined if y == -1
unsigned BitWidth = getBitWidth(Op->getType(), TD);
if (BitWidth == 0)
return false;
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
ComputeMaskedBits(Op, KnownZero, KnownOne, TD);
return !!KnownZero;
}
case Instruction::Load: {
const LoadInst *LI = cast<LoadInst>(Inst);
if (!LI->isUnordered())
return false;
return LI->getPointerOperand()->isDereferenceablePointer();
}
case Instruction::Call: {
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
switch (II->getIntrinsicID()) {
// These synthetic intrinsics have no side-effects, and just mark
// information about their operands.
// FIXME: There are other no-op synthetic instructions that potentially
// should be considered at least *safe* to speculate...
case Intrinsic::dbg_declare:
case Intrinsic::dbg_value:
return true;
case Intrinsic::bswap:
case Intrinsic::ctlz:
case Intrinsic::ctpop:
case Intrinsic::cttz:
case Intrinsic::objectsize:
case Intrinsic::sadd_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::uadd_with_overflow:
case Intrinsic::umul_with_overflow:
case Intrinsic::usub_with_overflow:
return true;
// TODO: some fp intrinsics are marked as having the same error handling
// as libm. They're safe to speculate when they won't error.
// TODO: are convert_{from,to}_fp16 safe?
// TODO: can we list target-specific intrinsics here?
default: break;
}
}
return false; // The called function could have undefined behavior or
// side-effects, even if marked readnone nounwind.
}
case Instruction::VAArg:
case Instruction::Alloca:
case Instruction::Invoke:
case Instruction::PHI:
case Instruction::Store:
case Instruction::Ret:
case Instruction::Br:
case Instruction::IndirectBr:
case Instruction::Switch:
case Instruction::Unreachable:
case Instruction::Fence:
case Instruction::LandingPad:
case Instruction::AtomicRMW:
case Instruction::AtomicCmpXchg:
case Instruction::Resume:
return false; // Misc instructions which have effects
}
}
|