summaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/AsmPrinter/DwarfException.cpp
blob: bf7f7eec9fe18bb8482ee469a7a82361d86478c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
//===-- CodeGen/AsmPrinter/DwarfException.cpp - Dwarf Exception Impl ------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains support for writing DWARF exception info into asm files.
//
//===----------------------------------------------------------------------===//

#include "DwarfException.h"
#include "llvm/Module.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/Mangler.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
using namespace llvm;

DwarfException::DwarfException(AsmPrinter *A)
  : Asm(A), MMI(Asm->MMI) {}

DwarfException::~DwarfException() {}

/// SharedTypeIds - How many leading type ids two landing pads have in common.
unsigned DwarfException::SharedTypeIds(const LandingPadInfo *L,
                                       const LandingPadInfo *R) {
  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
  unsigned LSize = LIds.size(), RSize = RIds.size();
  unsigned MinSize = LSize < RSize ? LSize : RSize;
  unsigned Count = 0;

  for (; Count != MinSize; ++Count)
    if (LIds[Count] != RIds[Count])
      return Count;

  return Count;
}

/// PadLT - Order landing pads lexicographically by type id.
bool DwarfException::PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
  unsigned LSize = LIds.size(), RSize = RIds.size();
  unsigned MinSize = LSize < RSize ? LSize : RSize;

  for (unsigned i = 0; i != MinSize; ++i)
    if (LIds[i] != RIds[i])
      return LIds[i] < RIds[i];

  return LSize < RSize;
}

/// ComputeActionsTable - Compute the actions table and gather the first action
/// index for each landing pad site.
unsigned DwarfException::
ComputeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads,
                    SmallVectorImpl<ActionEntry> &Actions,
                    SmallVectorImpl<unsigned> &FirstActions) {

  // The action table follows the call-site table in the LSDA. The individual
  // records are of two types:
  //
  //   * Catch clause
  //   * Exception specification
  //
  // The two record kinds have the same format, with only small differences.
  // They are distinguished by the "switch value" field: Catch clauses
  // (TypeInfos) have strictly positive switch values, and exception
  // specifications (FilterIds) have strictly negative switch values. Value 0
  // indicates a catch-all clause.
  //
  // Negative type IDs index into FilterIds. Positive type IDs index into
  // TypeInfos.  The value written for a positive type ID is just the type ID
  // itself.  For a negative type ID, however, the value written is the
  // (negative) byte offset of the corresponding FilterIds entry.  The byte
  // offset is usually equal to the type ID (because the FilterIds entries are
  // written using a variable width encoding, which outputs one byte per entry
  // as long as the value written is not too large) but can differ.  This kind
  // of complication does not occur for positive type IDs because type infos are
  // output using a fixed width encoding.  FilterOffsets[i] holds the byte
  // offset corresponding to FilterIds[i].

  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
  SmallVector<int, 16> FilterOffsets;
  FilterOffsets.reserve(FilterIds.size());
  int Offset = -1;

  for (std::vector<unsigned>::const_iterator
         I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
    FilterOffsets.push_back(Offset);
    Offset -= MCAsmInfo::getULEB128Size(*I);
  }

  FirstActions.reserve(LandingPads.size());

  int FirstAction = 0;
  unsigned SizeActions = 0;
  const LandingPadInfo *PrevLPI = 0;

  for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
         I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
    const LandingPadInfo *LPI = *I;
    const std::vector<int> &TypeIds = LPI->TypeIds;
    unsigned NumShared = PrevLPI ? SharedTypeIds(LPI, PrevLPI) : 0;
    unsigned SizeSiteActions = 0;

    if (NumShared < TypeIds.size()) {
      unsigned SizeAction = 0;
      unsigned PrevAction = (unsigned)-1;

      if (NumShared) {
        unsigned SizePrevIds = PrevLPI->TypeIds.size();
        assert(Actions.size());
        PrevAction = Actions.size() - 1;
        SizeAction =
          MCAsmInfo::getSLEB128Size(Actions[PrevAction].NextAction) +
          MCAsmInfo::getSLEB128Size(Actions[PrevAction].ValueForTypeID);

        for (unsigned j = NumShared; j != SizePrevIds; ++j) {
          assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
          SizeAction -=
            MCAsmInfo::getSLEB128Size(Actions[PrevAction].ValueForTypeID);
          SizeAction += -Actions[PrevAction].NextAction;
          PrevAction = Actions[PrevAction].Previous;
        }
      }

      // Compute the actions.
      for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
        int TypeID = TypeIds[J];
        assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
        int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
        unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);

        int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
        SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
        SizeSiteActions += SizeAction;

        ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
        Actions.push_back(Action);
        PrevAction = Actions.size() - 1;
      }

      // Record the first action of the landing pad site.
      FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
    } // else identical - re-use previous FirstAction

    // Information used when created the call-site table. The action record
    // field of the call site record is the offset of the first associated
    // action record, relative to the start of the actions table. This value is
    // biased by 1 (1 indicating the start of the actions table), and 0
    // indicates that there are no actions.
    FirstActions.push_back(FirstAction);

    // Compute this sites contribution to size.
    SizeActions += SizeSiteActions;

    PrevLPI = LPI;
  }

  return SizeActions;
}

/// CallToNoUnwindFunction - Return `true' if this is a call to a function
/// marked `nounwind'. Return `false' otherwise.
bool DwarfException::CallToNoUnwindFunction(const MachineInstr *MI) {
  assert(MI->isCall() && "This should be a call instruction!");

  bool MarkedNoUnwind = false;
  bool SawFunc = false;

  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
    const MachineOperand &MO = MI->getOperand(I);

    if (!MO.isGlobal()) continue;

    const Function *F = dyn_cast<Function>(MO.getGlobal());
    if (F == 0) continue;

    if (SawFunc) {
      // Be conservative. If we have more than one function operand for this
      // call, then we can't make the assumption that it's the callee and
      // not a parameter to the call.
      //
      // FIXME: Determine if there's a way to say that `F' is the callee or
      // parameter.
      MarkedNoUnwind = false;
      break;
    }

    MarkedNoUnwind = F->doesNotThrow();
    SawFunc = true;
  }

  return MarkedNoUnwind;
}

/// ComputeCallSiteTable - Compute the call-site table.  The entry for an invoke
/// has a try-range containing the call, a non-zero landing pad, and an
/// appropriate action.  The entry for an ordinary call has a try-range
/// containing the call and zero for the landing pad and the action.  Calls
/// marked 'nounwind' have no entry and must not be contained in the try-range
/// of any entry - they form gaps in the table.  Entries must be ordered by
/// try-range address.
void DwarfException::
ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
                     const RangeMapType &PadMap,
                     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
                     const SmallVectorImpl<unsigned> &FirstActions) {
  // The end label of the previous invoke or nounwind try-range.
  MCSymbol *LastLabel = 0;

  // Whether there is a potentially throwing instruction (currently this means
  // an ordinary call) between the end of the previous try-range and now.
  bool SawPotentiallyThrowing = false;

  // Whether the last CallSite entry was for an invoke.
  bool PreviousIsInvoke = false;

  // Visit all instructions in order of address.
  for (MachineFunction::const_iterator I = Asm->MF->begin(), E = Asm->MF->end();
       I != E; ++I) {
    for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
         MI != E; ++MI) {
      if (!MI->isLabel()) {
        if (MI->isCall())
          SawPotentiallyThrowing |= !CallToNoUnwindFunction(MI);
        continue;
      }

      // End of the previous try-range?
      MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol();
      if (BeginLabel == LastLabel)
        SawPotentiallyThrowing = false;

      // Beginning of a new try-range?
      RangeMapType::const_iterator L = PadMap.find(BeginLabel);
      if (L == PadMap.end())
        // Nope, it was just some random label.
        continue;

      const PadRange &P = L->second;
      const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
      assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
             "Inconsistent landing pad map!");

      // For Dwarf exception handling (SjLj handling doesn't use this). If some
      // instruction between the previous try-range and this one may throw,
      // create a call-site entry with no landing pad for the region between the
      // try-ranges.
      if (SawPotentiallyThrowing && Asm->MAI->isExceptionHandlingDwarf()) {
        CallSiteEntry Site = { LastLabel, BeginLabel, 0, 0 };
        CallSites.push_back(Site);
        PreviousIsInvoke = false;
      }

      LastLabel = LandingPad->EndLabels[P.RangeIndex];
      assert(BeginLabel && LastLabel && "Invalid landing pad!");

      if (!LandingPad->LandingPadLabel) {
        // Create a gap.
        PreviousIsInvoke = false;
      } else {
        // This try-range is for an invoke.
        CallSiteEntry Site = {
          BeginLabel,
          LastLabel,
          LandingPad->LandingPadLabel,
          FirstActions[P.PadIndex]
        };

        // Try to merge with the previous call-site. SJLJ doesn't do this
        if (PreviousIsInvoke && Asm->MAI->isExceptionHandlingDwarf()) {
          CallSiteEntry &Prev = CallSites.back();
          if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
            // Extend the range of the previous entry.
            Prev.EndLabel = Site.EndLabel;
            continue;
          }
        }

        // Otherwise, create a new call-site.
        if (Asm->MAI->isExceptionHandlingDwarf())
          CallSites.push_back(Site);
        else {
          // SjLj EH must maintain the call sites in the order assigned
          // to them by the SjLjPrepare pass.
          unsigned SiteNo = MMI->getCallSiteBeginLabel(BeginLabel);
          if (CallSites.size() < SiteNo)
            CallSites.resize(SiteNo);
          CallSites[SiteNo - 1] = Site;
        }
        PreviousIsInvoke = true;
      }
    }
  }

  // If some instruction between the previous try-range and the end of the
  // function may throw, create a call-site entry with no landing pad for the
  // region following the try-range.
  if (SawPotentiallyThrowing && Asm->MAI->isExceptionHandlingDwarf()) {
    CallSiteEntry Site = { LastLabel, 0, 0, 0 };
    CallSites.push_back(Site);
  }
}

/// EmitExceptionTable - Emit landing pads and actions.
///
/// The general organization of the table is complex, but the basic concepts are
/// easy.  First there is a header which describes the location and organization
/// of the three components that follow.
///
///  1. The landing pad site information describes the range of code covered by
///     the try.  In our case it's an accumulation of the ranges covered by the
///     invokes in the try.  There is also a reference to the landing pad that
///     handles the exception once processed.  Finally an index into the actions
///     table.
///  2. The action table, in our case, is composed of pairs of type IDs and next
///     action offset.  Starting with the action index from the landing pad
///     site, each type ID is checked for a match to the current exception.  If
///     it matches then the exception and type id are passed on to the landing
///     pad.  Otherwise the next action is looked up.  This chain is terminated
///     with a next action of zero.  If no type id is found then the frame is
///     unwound and handling continues.
///  3. Type ID table contains references to all the C++ typeinfo for all
///     catches in the function.  This tables is reverse indexed base 1.
void DwarfException::EmitExceptionTable() {
  const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
  const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();

  // Sort the landing pads in order of their type ids.  This is used to fold
  // duplicate actions.
  SmallVector<const LandingPadInfo *, 64> LandingPads;
  LandingPads.reserve(PadInfos.size());

  for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
    LandingPads.push_back(&PadInfos[i]);

  std::sort(LandingPads.begin(), LandingPads.end(), PadLT);

  // Compute the actions table and gather the first action index for each
  // landing pad site.
  SmallVector<ActionEntry, 32> Actions;
  SmallVector<unsigned, 64> FirstActions;
  unsigned SizeActions=ComputeActionsTable(LandingPads, Actions, FirstActions);

  // Invokes and nounwind calls have entries in PadMap (due to being bracketed
  // by try-range labels when lowered).  Ordinary calls do not, so appropriate
  // try-ranges for them need be deduced when using DWARF exception handling.
  RangeMapType PadMap;
  for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
    const LandingPadInfo *LandingPad = LandingPads[i];
    for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
      MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
      assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
      PadRange P = { i, j };
      PadMap[BeginLabel] = P;
    }
  }

  // Compute the call-site table.
  SmallVector<CallSiteEntry, 64> CallSites;
  ComputeCallSiteTable(CallSites, PadMap, LandingPads, FirstActions);

  // Final tallies.

  // Call sites.
  bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
  bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true;

  unsigned CallSiteTableLength;
  if (IsSJLJ)
    CallSiteTableLength = 0;
  else {
    unsigned SiteStartSize  = 4; // dwarf::DW_EH_PE_udata4
    unsigned SiteLengthSize = 4; // dwarf::DW_EH_PE_udata4
    unsigned LandingPadSize = 4; // dwarf::DW_EH_PE_udata4
    CallSiteTableLength =
      CallSites.size() * (SiteStartSize + SiteLengthSize + LandingPadSize);
  }

  for (unsigned i = 0, e = CallSites.size(); i < e; ++i) {
    CallSiteTableLength += MCAsmInfo::getULEB128Size(CallSites[i].Action);
    if (IsSJLJ)
      CallSiteTableLength += MCAsmInfo::getULEB128Size(i);
  }

  // Type infos.
  const MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
  unsigned TTypeEncoding;
  unsigned TypeFormatSize;

  if (!HaveTTData) {
    // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say
    // that we're omitting that bit.
    TTypeEncoding = dwarf::DW_EH_PE_omit;
    // dwarf::DW_EH_PE_absptr
    TypeFormatSize = Asm->getTargetData().getPointerSize();
  } else {
    // Okay, we have actual filters or typeinfos to emit.  As such, we need to
    // pick a type encoding for them.  We're about to emit a list of pointers to
    // typeinfo objects at the end of the LSDA.  However, unless we're in static
    // mode, this reference will require a relocation by the dynamic linker.
    //
    // Because of this, we have a couple of options:
    //
    //   1) If we are in -static mode, we can always use an absolute reference
    //      from the LSDA, because the static linker will resolve it.
    //
    //   2) Otherwise, if the LSDA section is writable, we can output the direct
    //      reference to the typeinfo and allow the dynamic linker to relocate
    //      it.  Since it is in a writable section, the dynamic linker won't
    //      have a problem.
    //
    //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
    //      we need to use some form of indirection.  For example, on Darwin,
    //      we can output a statically-relocatable reference to a dyld stub. The
    //      offset to the stub is constant, but the contents are in a section
    //      that is updated by the dynamic linker.  This is easy enough, but we
    //      need to tell the personality function of the unwinder to indirect
    //      through the dyld stub.
    //
    // FIXME: When (3) is actually implemented, we'll have to emit the stubs
    // somewhere.  This predicate should be moved to a shared location that is
    // in target-independent code.
    //
    TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
    TypeFormatSize = Asm->GetSizeOfEncodedValue(TTypeEncoding);
  }

  // Begin the exception table.
  // Sometimes we want not to emit the data into separate section (e.g. ARM
  // EHABI). In this case LSDASection will be NULL.
  if (LSDASection)
    Asm->OutStreamer.SwitchSection(LSDASection);
  Asm->EmitAlignment(2);

  // Emit the LSDA.
  MCSymbol *GCCETSym =
    Asm->OutContext.GetOrCreateSymbol(Twine("GCC_except_table")+
                                      Twine(Asm->getFunctionNumber()));
  Asm->OutStreamer.EmitLabel(GCCETSym);
  Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("exception",
                                                Asm->getFunctionNumber()));

  if (IsSJLJ)
    Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("_LSDA_",
                                                  Asm->getFunctionNumber()));

  // Emit the LSDA header.
  Asm->EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
  Asm->EmitEncodingByte(TTypeEncoding, "@TType");

  // The type infos need to be aligned. GCC does this by inserting padding just
  // before the type infos. However, this changes the size of the exception
  // table, so you need to take this into account when you output the exception
  // table size. However, the size is output using a variable length encoding.
  // So by increasing the size by inserting padding, you may increase the number
  // of bytes used for writing the size. If it increases, say by one byte, then
  // you now need to output one less byte of padding to get the type infos
  // aligned. However this decreases the size of the exception table. This
  // changes the value you have to output for the exception table size. Due to
  // the variable length encoding, the number of bytes used for writing the
  // length may decrease. If so, you then have to increase the amount of
  // padding. And so on. If you look carefully at the GCC code you will see that
  // it indeed does this in a loop, going on and on until the values stabilize.
  // We chose another solution: don't output padding inside the table like GCC
  // does, instead output it before the table.
  unsigned SizeTypes = TypeInfos.size() * TypeFormatSize;
  unsigned CallSiteTableLengthSize =
    MCAsmInfo::getULEB128Size(CallSiteTableLength);
  unsigned TTypeBaseOffset =
    sizeof(int8_t) +                            // Call site format
    CallSiteTableLengthSize +                   // Call site table length size
    CallSiteTableLength +                       // Call site table length
    SizeActions +                               // Actions size
    SizeTypes;
  unsigned TTypeBaseOffsetSize = MCAsmInfo::getULEB128Size(TTypeBaseOffset);
  unsigned TotalSize =
    sizeof(int8_t) +                            // LPStart format
    sizeof(int8_t) +                            // TType format
    (HaveTTData ? TTypeBaseOffsetSize : 0) +    // TType base offset size
    TTypeBaseOffset;                            // TType base offset
  unsigned SizeAlign = (4 - TotalSize) & 3;

  if (HaveTTData) {
    // Account for any extra padding that will be added to the call site table
    // length.
    Asm->EmitULEB128(TTypeBaseOffset, "@TType base offset", SizeAlign);
    SizeAlign = 0;
  }

  bool VerboseAsm = Asm->OutStreamer.isVerboseAsm();

  // SjLj Exception handling
  if (IsSJLJ) {
    Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");

    // Add extra padding if it wasn't added to the TType base offset.
    Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);

    // Emit the landing pad site information.
    unsigned idx = 0;
    for (SmallVectorImpl<CallSiteEntry>::const_iterator
         I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
      const CallSiteEntry &S = *I;

      // Offset of the landing pad, counted in 16-byte bundles relative to the
      // @LPStart address.
      if (VerboseAsm) {
        Asm->OutStreamer.AddComment(">> Call Site " + Twine(idx) + " <<");
        Asm->OutStreamer.AddComment("  On exception at call site "+Twine(idx));
      }
      Asm->EmitULEB128(idx);

      // Offset of the first associated action record, relative to the start of
      // the action table. This value is biased by 1 (1 indicates the start of
      // the action table), and 0 indicates that there are no actions.
      if (VerboseAsm) {
        if (S.Action == 0)
          Asm->OutStreamer.AddComment("  Action: cleanup");
        else
          Asm->OutStreamer.AddComment("  Action: " +
                                      Twine((S.Action - 1) / 2 + 1));
      }
      Asm->EmitULEB128(S.Action);
    }
  } else {
    // DWARF Exception handling
    assert(Asm->MAI->isExceptionHandlingDwarf());

    // The call-site table is a list of all call sites that may throw an
    // exception (including C++ 'throw' statements) in the procedure
    // fragment. It immediately follows the LSDA header. Each entry indicates,
    // for a given call, the first corresponding action record and corresponding
    // landing pad.
    //
    // The table begins with the number of bytes, stored as an LEB128
    // compressed, unsigned integer. The records immediately follow the record
    // count. They are sorted in increasing call-site address. Each record
    // indicates:
    //
    //   * The position of the call-site.
    //   * The position of the landing pad.
    //   * The first action record for that call site.
    //
    // A missing entry in the call-site table indicates that a call is not
    // supposed to throw.

    // Emit the landing pad call site table.
    Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");

    // Add extra padding if it wasn't added to the TType base offset.
    Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);

    unsigned Entry = 0;
    for (SmallVectorImpl<CallSiteEntry>::const_iterator
         I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
      const CallSiteEntry &S = *I;

      MCSymbol *EHFuncBeginSym =
        Asm->GetTempSymbol("eh_func_begin", Asm->getFunctionNumber());

      MCSymbol *BeginLabel = S.BeginLabel;
      if (BeginLabel == 0)
        BeginLabel = EHFuncBeginSym;
      MCSymbol *EndLabel = S.EndLabel;
      if (EndLabel == 0)
        EndLabel = Asm->GetTempSymbol("eh_func_end", Asm->getFunctionNumber());


      // Offset of the call site relative to the previous call site, counted in
      // number of 16-byte bundles. The first call site is counted relative to
      // the start of the procedure fragment.
      if (VerboseAsm)
        Asm->OutStreamer.AddComment(">> Call Site " + Twine(++Entry) + " <<");
      Asm->EmitLabelDifference(BeginLabel, EHFuncBeginSym, 4);
      if (VerboseAsm)
        Asm->OutStreamer.AddComment(Twine("  Call between ") +
                                    BeginLabel->getName() + " and " +
                                    EndLabel->getName());
      Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);

      // Offset of the landing pad, counted in 16-byte bundles relative to the
      // @LPStart address.
      if (!S.PadLabel) {
        if (VerboseAsm)
          Asm->OutStreamer.AddComment("    has no landing pad");
        Asm->OutStreamer.EmitIntValue(0, 4/*size*/, 0/*addrspace*/);
      } else {
        if (VerboseAsm)
          Asm->OutStreamer.AddComment(Twine("    jumps to ") +
                                      S.PadLabel->getName());
        Asm->EmitLabelDifference(S.PadLabel, EHFuncBeginSym, 4);
      }

      // Offset of the first associated action record, relative to the start of
      // the action table. This value is biased by 1 (1 indicates the start of
      // the action table), and 0 indicates that there are no actions.
      if (VerboseAsm) {
        if (S.Action == 0)
          Asm->OutStreamer.AddComment("  On action: cleanup");
        else
          Asm->OutStreamer.AddComment("  On action: " +
                                      Twine((S.Action - 1) / 2 + 1));
      }
      Asm->EmitULEB128(S.Action);
    }
  }

  // Emit the Action Table.
  int Entry = 0;
  for (SmallVectorImpl<ActionEntry>::const_iterator
         I = Actions.begin(), E = Actions.end(); I != E; ++I) {
    const ActionEntry &Action = *I;

    if (VerboseAsm) {
      // Emit comments that decode the action table.
      Asm->OutStreamer.AddComment(">> Action Record " + Twine(++Entry) + " <<");
    }

    // Type Filter
    //
    //   Used by the runtime to match the type of the thrown exception to the
    //   type of the catch clauses or the types in the exception specification.
    if (VerboseAsm) {
      if (Action.ValueForTypeID > 0)
        Asm->OutStreamer.AddComment("  Catch TypeInfo " +
                                    Twine(Action.ValueForTypeID));
      else if (Action.ValueForTypeID < 0)
        Asm->OutStreamer.AddComment("  Filter TypeInfo " +
                                    Twine(Action.ValueForTypeID));
      else
        Asm->OutStreamer.AddComment("  Cleanup");
    }
    Asm->EmitSLEB128(Action.ValueForTypeID);

    // Action Record
    //
    //   Self-relative signed displacement in bytes of the next action record,
    //   or 0 if there is no next action record.
    if (VerboseAsm) {
      if (Action.NextAction == 0) {
        Asm->OutStreamer.AddComment("  No further actions");
      } else {
        unsigned NextAction = Entry + (Action.NextAction + 1) / 2;
        Asm->OutStreamer.AddComment("  Continue to action "+Twine(NextAction));
      }
    }
    Asm->EmitSLEB128(Action.NextAction);
  }

  // Emit the Catch TypeInfos.
  if (VerboseAsm && !TypeInfos.empty()) {
    Asm->OutStreamer.AddComment(">> Catch TypeInfos <<");
    Asm->OutStreamer.AddBlankLine();
    Entry = TypeInfos.size();
  }

  for (std::vector<const GlobalVariable *>::const_reverse_iterator
         I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) {
    const GlobalVariable *GV = *I;
    if (VerboseAsm)
      Asm->OutStreamer.AddComment("TypeInfo " + Twine(Entry--));
    if (GV)
      Asm->EmitReference(GV, TTypeEncoding);
    else
      Asm->OutStreamer.EmitIntValue(0,Asm->GetSizeOfEncodedValue(TTypeEncoding),
                                    0);
  }

  // Emit the Exception Specifications.
  if (VerboseAsm && !FilterIds.empty()) {
    Asm->OutStreamer.AddComment(">> Filter TypeInfos <<");
    Asm->OutStreamer.AddBlankLine();
    Entry = 0;
  }
  for (std::vector<unsigned>::const_iterator
         I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
    unsigned TypeID = *I;
    if (VerboseAsm) {
      --Entry;
      if (TypeID != 0)
        Asm->OutStreamer.AddComment("FilterInfo " + Twine(Entry));
    }

    Asm->EmitULEB128(TypeID);
  }

  Asm->EmitAlignment(2);
}

/// EndModule - Emit all exception information that should come after the
/// content.
void DwarfException::EndModule() {
  assert(0 && "Should be implemented");
}

/// BeginFunction - Gather pre-function exception information. Assumes it's
/// being emitted immediately after the function entry point.
void DwarfException::BeginFunction(const MachineFunction *MF) {
  assert(0 && "Should be implemented");
}

/// EndFunction - Gather and emit post-function exception information.
///
void DwarfException::EndFunction() {
  assert(0 && "Should be implemented");
}