1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
|
//===-- RegAllocSimple.cpp - A simple generic register allocator --- ------===//
//
// This file implements a simple register allocator. *Very* simple.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Target/MachineInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "Support/Statistic.h"
#include <iostream>
#include <set>
/// PhysRegClassMap - Construct a mapping of physical register numbers to their
/// register classes.
///
/// NOTE: This class will eventually be pulled out to somewhere shared.
///
class PhysRegClassMap {
std::map<unsigned, const TargetRegisterClass*> PhysReg2RegClassMap;
public:
PhysRegClassMap(const MRegisterInfo *RI) {
for (MRegisterInfo::const_iterator I = RI->regclass_begin(),
E = RI->regclass_end(); I != E; ++I)
for (unsigned i=0; i < (*I)->getNumRegs(); ++i)
PhysReg2RegClassMap[(*I)->getRegister(i)] = *I;
}
const TargetRegisterClass *operator[](unsigned Reg) {
assert(PhysReg2RegClassMap[Reg] && "Register is not a known physreg!");
return PhysReg2RegClassMap[Reg];
}
const TargetRegisterClass *get(unsigned Reg) { return operator[](Reg); }
};
namespace {
Statistic<> NumSpilled ("ra-simple", "Number of registers spilled");
Statistic<> NumReloaded("ra-simple", "Number of registers reloaded");
class RegAllocSimple : public FunctionPass {
TargetMachine &TM;
MachineFunction *MF;
const MRegisterInfo *RegInfo;
unsigned NumBytesAllocated;
// Maps SSA Regs => offsets on the stack where these values are stored
std::map<unsigned, unsigned> VirtReg2OffsetMap;
// Maps SSA Regs => physical regs
std::map<unsigned, unsigned> SSA2PhysRegMap;
// Maps physical register to their register classes
PhysRegClassMap PhysRegClasses;
// Made to combat the incorrect allocation of r2 = add r1, r1
std::map<unsigned, unsigned> VirtReg2PhysRegMap;
// RegsUsed - Keep track of what registers are currently in use.
std::set<unsigned> RegsUsed;
// RegClassIdx - Maps RegClass => which index we can take a register
// from. Since this is a simple register allocator, when we need a register
// of a certain class, we just take the next available one.
std::map<const TargetRegisterClass*, unsigned> RegClassIdx;
public:
RegAllocSimple(TargetMachine &tm)
: TM(tm), RegInfo(tm.getRegisterInfo()), PhysRegClasses(RegInfo) {
RegsUsed.insert(RegInfo->getFramePointer());
RegsUsed.insert(RegInfo->getStackPointer());
cleanupAfterFunction();
}
bool runOnFunction(Function &Fn) {
return runOnMachineFunction(MachineFunction::get(&Fn));
}
virtual const char *getPassName() const {
return "Simple Register Allocator";
}
private:
/// runOnMachineFunction - Register allocate the whole function
bool runOnMachineFunction(MachineFunction &Fn);
/// AllocateBasicBlock - Register allocate the specified basic block.
void AllocateBasicBlock(MachineBasicBlock &MBB);
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
/// in predecessor basic blocks.
void EliminatePHINodes(MachineBasicBlock &MBB);
bool isAvailableReg(unsigned Reg) {
// assert(Reg < MRegisterInfo::FirstVirtualReg && "...");
return RegsUsed.find(Reg) == RegsUsed.end();
}
/// allocateStackSpaceFor - This allocates space for the specified virtual
/// register to be held on the stack.
unsigned allocateStackSpaceFor(unsigned VirtReg,
const TargetRegisterClass *regClass);
/// Given a virtual register, returns a physical register that is currently
/// unused.
///
/// Side effect: marks that register as being used until manually cleared
///
unsigned getFreeReg(unsigned virtualReg);
/// Returns all `borrowed' registers back to the free pool
void clearAllRegs() {
RegClassIdx.clear();
}
/// Invalidates any references, real or implicit, to physical registers
///
void invalidatePhysRegs(const MachineInstr *MI) {
unsigned Opcode = MI->getOpcode();
const MachineInstrDescriptor &Desc = TM.getInstrInfo().get(Opcode);
const unsigned *regs = Desc.ImplicitUses;
while (*regs)
RegsUsed.insert(*regs++);
regs = Desc.ImplicitDefs;
while (*regs)
RegsUsed.insert(*regs++);
}
void cleanupAfterFunction() {
VirtReg2OffsetMap.clear();
SSA2PhysRegMap.clear();
NumBytesAllocated = 4; // FIXME: This is X86 specific
}
/// Moves value from memory into that register
MachineBasicBlock::iterator
moveUseToReg (MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, unsigned VirtReg,
unsigned &PhysReg);
/// Saves reg value on the stack (maps virtual register to stack value)
MachineBasicBlock::iterator
saveVirtRegToStack (MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, unsigned VirtReg,
unsigned PhysReg);
MachineBasicBlock::iterator
savePhysRegToStack (MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, unsigned PhysReg);
};
}
/// allocateStackSpaceFor - This allocates space for the specified virtual
/// register to be held on the stack.
unsigned RegAllocSimple::allocateStackSpaceFor(unsigned VirtReg,
const TargetRegisterClass *regClass)
{
if (VirtReg2OffsetMap.find(VirtReg) == VirtReg2OffsetMap.end()) {
unsigned RegSize = regClass->getDataSize();
// Align NumBytesAllocated. We should be using TargetData alignment stuff
// to determine this, but we don't know the LLVM type associated with the
// virtual register. Instead, just align to a multiple of the size for now.
NumBytesAllocated += RegSize-1;
NumBytesAllocated = NumBytesAllocated/RegSize*RegSize;
// Assign the slot...
VirtReg2OffsetMap[VirtReg] = NumBytesAllocated;
// Reserve the space!
NumBytesAllocated += RegSize;
}
return VirtReg2OffsetMap[VirtReg];
}
unsigned RegAllocSimple::getFreeReg(unsigned virtualReg) {
const TargetRegisterClass* regClass = MF->getRegClass(virtualReg);
unsigned physReg;
assert(regClass);
if (RegClassIdx.find(regClass) != RegClassIdx.end()) {
unsigned regIdx = RegClassIdx[regClass]++;
assert(regIdx < regClass->getNumRegs() && "Not enough registers!");
physReg = regClass->getRegister(regIdx);
} else {
physReg = regClass->getRegister(0);
// assert(physReg < regClass->getNumRegs() && "No registers in class!");
RegClassIdx[regClass] = 1;
}
if (isAvailableReg(physReg))
return physReg;
else
return getFreeReg(virtualReg);
}
MachineBasicBlock::iterator
RegAllocSimple::moveUseToReg (MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
unsigned VirtReg, unsigned &PhysReg)
{
const TargetRegisterClass* regClass = MF->getRegClass(VirtReg);
assert(regClass);
unsigned stackOffset = allocateStackSpaceFor(VirtReg, regClass);
PhysReg = getFreeReg(VirtReg);
// Add move instruction(s)
++NumReloaded;
return RegInfo->loadRegOffset2Reg(MBB, I, PhysReg,
RegInfo->getFramePointer(),
-stackOffset, regClass->getDataSize());
}
MachineBasicBlock::iterator
RegAllocSimple::saveVirtRegToStack (MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
unsigned VirtReg, unsigned PhysReg)
{
const TargetRegisterClass* regClass = MF->getRegClass(VirtReg);
assert(regClass);
unsigned stackOffset = allocateStackSpaceFor(VirtReg, regClass);
// Add move instruction(s)
++NumSpilled;
return RegInfo->storeReg2RegOffset(MBB, I, PhysReg,
RegInfo->getFramePointer(),
-stackOffset, regClass->getDataSize());
}
MachineBasicBlock::iterator
RegAllocSimple::savePhysRegToStack (MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
unsigned PhysReg)
{
const TargetRegisterClass* regClass = MF->getRegClass(PhysReg);
assert(regClass);
unsigned offset = allocateStackSpaceFor(PhysReg, regClass);
// Add move instruction(s)
++NumSpilled;
return RegInfo->storeReg2RegOffset(MBB, I, PhysReg,
RegInfo->getFramePointer(),
offset, regClass->getDataSize());
}
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
/// predecessor basic blocks.
void RegAllocSimple::EliminatePHINodes(MachineBasicBlock &MBB) {
const MachineInstrInfo &MII = TM.getInstrInfo();
while (MBB.front()->getOpcode() == 0) {
MachineInstr *MI = MBB.front();
// Unlink the PHI node from the basic block... but don't delete the PHI
MBB.erase(MBB.begin());
// a preliminary pass that will invalidate any registers that
// are used by the instruction (including implicit uses)
invalidatePhysRegs(MI);
DEBUG(std::cerr << "num invalid regs: " << RegsUsed.size() << "\n");
DEBUG(std::cerr << "num ops: " << MI->getNumOperands() << "\n");
MachineOperand &targetReg = MI->getOperand(0);
// If it's a virtual register, allocate a physical one otherwise, just use
// whatever register is there now note: it MUST be a register -- we're
// assigning to it!
//
unsigned virtualReg = (unsigned) targetReg.getAllocatedRegNum();
unsigned physReg;
if (targetReg.isVirtualRegister()) {
physReg = getFreeReg(virtualReg);
} else {
physReg = virtualReg;
}
// Find the register class of the target register: should be the
// same as the values we're trying to store there
const TargetRegisterClass* regClass = PhysRegClasses[physReg];
assert(regClass && "Target register class not found!");
unsigned dataSize = regClass->getDataSize();
for (int i = MI->getNumOperands() - 1; i >= 2; i-=2) {
MachineOperand &opVal = MI->getOperand(i-1);
// Get the MachineBasicBlock equivalent of the BasicBlock that is the
// source path the phi
MachineBasicBlock &opBlock = *MI->getOperand(i).getMachineBasicBlock();
// Check to make sure we haven't already emitted the copy for this block.
// This can happen because PHI nodes may have multiple entries for the
// same basic block. It doesn't matter which entry we use though, because
// all incoming values are guaranteed to be the same for a particular bb.
//
// Note that this is N^2 in the number of phi node entries, but since the
// # of entries is tiny, this is not a problem.
//
bool HaveNotEmitted = true;
for (int op = MI->getNumOperands() - 1; op != i; op -= 2)
if (&opBlock == MI->getOperand(op).getMachineBasicBlock()) {
HaveNotEmitted = false;
break;
}
if (HaveNotEmitted) {
MachineBasicBlock::iterator opI = opBlock.end();
MachineInstr *opMI = *--opI;
// must backtrack over ALL the branches in the previous block
while (MII.isBranch(opMI->getOpcode()) && opI != opBlock.begin())
opMI = *--opI;
// move back to the first branch instruction so new instructions
// are inserted right in front of it and not in front of a non-branch
if (!MII.isBranch(opMI->getOpcode()))
++opI;
// Retrieve the constant value from this op, move it to target
// register of the phi
if (opVal.isImmediate()) {
opI = RegInfo->moveImm2Reg(opBlock, opI, physReg,
(unsigned) opVal.getImmedValue(),
dataSize);
saveVirtRegToStack(opBlock, opI, virtualReg, physReg);
} else {
// Allocate a physical register and add a move in the BB
unsigned opVirtualReg = opVal.getAllocatedRegNum();
unsigned opPhysReg;
opI = moveUseToReg(opBlock, opI, opVirtualReg, physReg);
// Save that register value to the stack of the TARGET REG
saveVirtRegToStack(opBlock, opI, virtualReg, physReg);
}
}
// make regs available to other instructions
clearAllRegs();
}
// really delete the instruction
delete MI;
}
}
void RegAllocSimple::AllocateBasicBlock(MachineBasicBlock &MBB) {
// Handle PHI instructions specially: add moves to each pred block
EliminatePHINodes(MBB);
//loop over each basic block
for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) {
MachineInstr *MI = *I;
// a preliminary pass that will invalidate any registers that
// are used by the instruction (including implicit uses)
invalidatePhysRegs(MI);
// Loop over uses, move from memory into registers
for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
MachineOperand &op = MI->getOperand(i);
if (op.isVirtualRegister()) {
unsigned virtualReg = (unsigned) op.getAllocatedRegNum();
DEBUG(std::cerr << "op: " << op << "\n");
DEBUG(std::cerr << "\t inst[" << i << "]: ";
MI->print(std::cerr, TM));
// make sure the same virtual register maps to the same physical
// register in any given instruction
unsigned physReg;
if (VirtReg2PhysRegMap.find(virtualReg) != VirtReg2PhysRegMap.end()) {
physReg = VirtReg2PhysRegMap[virtualReg];
} else {
if (op.opIsDef()) {
if (TM.getInstrInfo().isTwoAddrInstr(MI->getOpcode()) && i == 0) {
// must be same register number as the first operand
// This maps a = b + c into b += c, and saves b into a's spot
assert(MI->getOperand(1).isRegister() &&
MI->getOperand(1).getAllocatedRegNum() &&
MF->getRegClass(virtualReg) ==
PhysRegClasses[MI->getOperand(1).getAllocatedRegNum()] &&
"Two address instruction invalid!");
physReg = MI->getOperand(1).getAllocatedRegNum();
} else {
physReg = getFreeReg(virtualReg);
}
MachineBasicBlock::iterator J = I;
J = saveVirtRegToStack(MBB, ++J, virtualReg, physReg);
I = --J;
} else {
I = moveUseToReg(MBB, I, virtualReg, physReg);
}
VirtReg2PhysRegMap[virtualReg] = physReg;
}
MI->SetMachineOperandReg(i, physReg);
DEBUG(std::cerr << "virt: " << virtualReg <<
", phys: " << op.getAllocatedRegNum() << "\n");
}
}
clearAllRegs();
VirtReg2PhysRegMap.clear();
}
}
/// runOnMachineFunction - Register allocate the whole function
///
bool RegAllocSimple::runOnMachineFunction(MachineFunction &Fn) {
DEBUG(std::cerr << "Machine Function " << "\n");
MF = &Fn;
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB)
AllocateBasicBlock(*MBB);
// add prologue we should preserve callee-save registers...
RegInfo->emitPrologue(Fn, NumBytesAllocated);
const MachineInstrInfo &MII = TM.getInstrInfo();
// add epilogue to restore the callee-save registers
// loop over the basic block
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB) {
// check if last instruction is a RET
if (MII.isReturn(MBB->back()->getOpcode())) {
// this block has a return instruction, add epilogue
RegInfo->emitEpilogue(*MBB, NumBytesAllocated);
}
}
cleanupAfterFunction();
return false; // We never modify the LLVM itself.
}
Pass *createSimpleX86RegisterAllocator(TargetMachine &TM) {
return new RegAllocSimple(TM);
}
|