1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
|
//===-- FunctionLoweringInfo.cpp ------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements routines for translating functions from LLVM IR into
// Machine IR.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "function-lowering-info"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Analysis/DebugInfo.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
using namespace llvm;
/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
/// PHI nodes or outside of the basic block that defines it, or used by a
/// switch or atomic instruction, which may expand to multiple basic blocks.
static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
if (I->use_empty()) return false;
if (isa<PHINode>(I)) return true;
const BasicBlock *BB = I->getParent();
for (Value::const_use_iterator UI = I->use_begin(), E = I->use_end();
UI != E; ++UI) {
const User *U = *UI;
if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
return true;
}
return false;
}
/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
/// entry block, return true. This includes arguments used by switches, since
/// the switch may expand into multiple basic blocks.
static bool isOnlyUsedInEntryBlock(const Argument *A, bool EnableFastISel) {
// With FastISel active, we may be splitting blocks, so force creation
// of virtual registers for all non-dead arguments.
if (EnableFastISel)
return A->use_empty();
const BasicBlock *Entry = A->getParent()->begin();
for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
UI != E; ++UI) {
const User *U = *UI;
if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
return false; // Use not in entry block.
}
return true;
}
FunctionLoweringInfo::FunctionLoweringInfo(const TargetLowering &tli)
: TLI(tli) {
}
void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf) {
Fn = &fn;
MF = &mf;
RegInfo = &MF->getRegInfo();
// Check whether the function can return without sret-demotion.
SmallVector<ISD::OutputArg, 4> Outs;
GetReturnInfo(Fn->getReturnType(),
Fn->getAttributes().getRetAttributes(), Outs, TLI);
CanLowerReturn = TLI.CanLowerReturn(Fn->getCallingConv(), Fn->isVarArg(),
Outs, Fn->getContext());
// Create a vreg for each argument register that is not dead and is used
// outside of the entry block for the function.
for (Function::const_arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end();
AI != E; ++AI)
if (!isOnlyUsedInEntryBlock(AI, EnableFastISel))
InitializeRegForValue(AI);
// Initialize the mapping of values to registers. This is only set up for
// instruction values that are used outside of the block that defines
// them.
Function::const_iterator BB = Fn->begin(), EB = Fn->end();
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
if (const AllocaInst *AI = dyn_cast<AllocaInst>(I))
if (const ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
const Type *Ty = AI->getAllocatedType();
uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
unsigned Align =
std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
AI->getAlignment());
TySize *= CUI->getZExtValue(); // Get total allocated size.
if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
// The object may need to be placed onto the stack near the stack
// protector if one exists. Determine here if this object is a suitable
// candidate. I.e., it would trigger the creation of a stack protector.
bool MayNeedSP =
(AI->isArrayAllocation() ||
(TySize > 8 && isa<ArrayType>(Ty) &&
cast<ArrayType>(Ty)->getElementType()->isIntegerTy(8)));
StaticAllocaMap[AI] =
MF->getFrameInfo()->CreateStackObject(TySize, Align, false, MayNeedSP);
}
for (; BB != EB; ++BB)
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
// Mark values used outside their block as exported, by allocating
// a virtual register for them.
if (isUsedOutsideOfDefiningBlock(I))
if (!isa<AllocaInst>(I) ||
!StaticAllocaMap.count(cast<AllocaInst>(I)))
InitializeRegForValue(I);
// Collect llvm.dbg.declare information. This is done now instead of
// during the initial isel pass through the IR so that it is done
// in a predictable order.
if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) {
MachineModuleInfo &MMI = MF->getMMI();
if (MMI.hasDebugInfo() &&
DIVariable(DI->getVariable()).Verify() &&
!DI->getDebugLoc().isUnknown()) {
// Don't handle byval struct arguments or VLAs, for example.
// Non-byval arguments are handled here (they refer to the stack
// temporary alloca at this point).
const Value *Address = DI->getAddress();
if (Address) {
if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
Address = BCI->getOperand(0);
if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
DenseMap<const AllocaInst *, int>::iterator SI =
StaticAllocaMap.find(AI);
if (SI != StaticAllocaMap.end()) { // Check for VLAs.
int FI = SI->second;
MMI.setVariableDbgInfo(DI->getVariable(),
FI, DI->getDebugLoc());
}
}
}
}
}
}
// Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
// also creates the initial PHI MachineInstrs, though none of the input
// operands are populated.
for (BB = Fn->begin(); BB != EB; ++BB) {
MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
MBBMap[BB] = MBB;
MF->push_back(MBB);
// Transfer the address-taken flag. This is necessary because there could
// be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
// the first one should be marked.
if (BB->hasAddressTaken())
MBB->setHasAddressTaken();
// Create Machine PHI nodes for LLVM PHI nodes, lowering them as
// appropriate.
for (BasicBlock::const_iterator I = BB->begin();
const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
if (PN->use_empty()) continue;
DebugLoc DL = PN->getDebugLoc();
unsigned PHIReg = ValueMap[PN];
assert(PHIReg && "PHI node does not have an assigned virtual register!");
SmallVector<EVT, 4> ValueVTs;
ComputeValueVTs(TLI, PN->getType(), ValueVTs);
for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
EVT VT = ValueVTs[vti];
unsigned NumRegisters = TLI.getNumRegisters(Fn->getContext(), VT);
const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
for (unsigned i = 0; i != NumRegisters; ++i)
BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
PHIReg += NumRegisters;
}
}
}
// Mark landing pad blocks.
for (BB = Fn->begin(); BB != EB; ++BB)
if (const InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator()))
MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
}
/// clear - Clear out all the function-specific state. This returns this
/// FunctionLoweringInfo to an empty state, ready to be used for a
/// different function.
void FunctionLoweringInfo::clear() {
assert(CatchInfoFound.size() == CatchInfoLost.size() &&
"Not all catch info was assigned to a landing pad!");
MBBMap.clear();
ValueMap.clear();
StaticAllocaMap.clear();
#ifndef NDEBUG
CatchInfoLost.clear();
CatchInfoFound.clear();
#endif
LiveOutRegInfo.clear();
ArgDbgValues.clear();
ByValArgFrameIndexMap.clear();
RegFixups.clear();
}
/// CreateReg - Allocate a single virtual register for the given type.
unsigned FunctionLoweringInfo::CreateReg(EVT VT) {
return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
}
/// CreateRegs - Allocate the appropriate number of virtual registers of
/// the correctly promoted or expanded types. Assign these registers
/// consecutive vreg numbers and return the first assigned number.
///
/// In the case that the given value has struct or array type, this function
/// will assign registers for each member or element.
///
unsigned FunctionLoweringInfo::CreateRegs(const Type *Ty) {
SmallVector<EVT, 4> ValueVTs;
ComputeValueVTs(TLI, Ty, ValueVTs);
unsigned FirstReg = 0;
for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
EVT ValueVT = ValueVTs[Value];
EVT RegisterVT = TLI.getRegisterType(Ty->getContext(), ValueVT);
unsigned NumRegs = TLI.getNumRegisters(Ty->getContext(), ValueVT);
for (unsigned i = 0; i != NumRegs; ++i) {
unsigned R = CreateReg(RegisterVT);
if (!FirstReg) FirstReg = R;
}
}
return FirstReg;
}
/// setByValArgumentFrameIndex - Record frame index for the byval
/// argument. This overrides previous frame index entry for this argument,
/// if any.
void FunctionLoweringInfo::setByValArgumentFrameIndex(const Argument *A,
int FI) {
assert (A->hasByValAttr() && "Argument does not have byval attribute!");
ByValArgFrameIndexMap[A] = FI;
}
/// getByValArgumentFrameIndex - Get frame index for the byval argument.
/// If the argument does not have any assigned frame index then 0 is
/// returned.
int FunctionLoweringInfo::getByValArgumentFrameIndex(const Argument *A) {
assert (A->hasByValAttr() && "Argument does not have byval attribute!");
DenseMap<const Argument *, int>::iterator I =
ByValArgFrameIndexMap.find(A);
if (I != ByValArgFrameIndexMap.end())
return I->second;
DEBUG(dbgs() << "Argument does not have assigned frame index!");
return 0;
}
/// AddCatchInfo - Extract the personality and type infos from an eh.selector
/// call, and add them to the specified machine basic block.
void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI,
MachineBasicBlock *MBB) {
// Inform the MachineModuleInfo of the personality for this landing pad.
const ConstantExpr *CE = cast<ConstantExpr>(I.getArgOperand(1));
assert(CE->getOpcode() == Instruction::BitCast &&
isa<Function>(CE->getOperand(0)) &&
"Personality should be a function");
MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
// Gather all the type infos for this landing pad and pass them along to
// MachineModuleInfo.
std::vector<const GlobalVariable *> TyInfo;
unsigned N = I.getNumArgOperands();
for (unsigned i = N - 1; i > 1; --i) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(i))) {
unsigned FilterLength = CI->getZExtValue();
unsigned FirstCatch = i + FilterLength + !FilterLength;
assert(FirstCatch <= N && "Invalid filter length");
if (FirstCatch < N) {
TyInfo.reserve(N - FirstCatch);
for (unsigned j = FirstCatch; j < N; ++j)
TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
MMI->addCatchTypeInfo(MBB, TyInfo);
TyInfo.clear();
}
if (!FilterLength) {
// Cleanup.
MMI->addCleanup(MBB);
} else {
// Filter.
TyInfo.reserve(FilterLength - 1);
for (unsigned j = i + 1; j < FirstCatch; ++j)
TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
MMI->addFilterTypeInfo(MBB, TyInfo);
TyInfo.clear();
}
N = i;
}
}
if (N > 2) {
TyInfo.reserve(N - 2);
for (unsigned j = 2; j < N; ++j)
TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
MMI->addCatchTypeInfo(MBB, TyInfo);
}
}
void llvm::CopyCatchInfo(const BasicBlock *SrcBB, const BasicBlock *DestBB,
MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
for (BasicBlock::const_iterator I = SrcBB->begin(), E = --SrcBB->end();
I != E; ++I)
if (const EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) {
// Apply the catch info to DestBB.
AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]);
#ifndef NDEBUG
if (!FLI.MBBMap[SrcBB]->isLandingPad())
FLI.CatchInfoFound.insert(EHSel);
#endif
}
}
|