summaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/SlotIndexes.cpp
blob: 1bc148f160bc86a3585fcd1d0a33edf6ff3adbca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
//===-- SlotIndexes.cpp - Slot Indexes Pass  ------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "slotindexes"

#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Target/TargetInstrInfo.h"

using namespace llvm;


// Yep - these are thread safe. See the header for details. 
namespace {


  class EmptyIndexListEntry : public IndexListEntry {
  public:
    EmptyIndexListEntry() : IndexListEntry(EMPTY_KEY) {}
  };

  class TombstoneIndexListEntry : public IndexListEntry {
  public:
    TombstoneIndexListEntry() : IndexListEntry(TOMBSTONE_KEY) {}
  };

  // The following statics are thread safe. They're read only, and you
  // can't step from them to any other list entries.
  ManagedStatic<EmptyIndexListEntry> IndexListEntryEmptyKey;
  ManagedStatic<TombstoneIndexListEntry> IndexListEntryTombstoneKey;
}

char SlotIndexes::ID = 0;
INITIALIZE_PASS(SlotIndexes, "slotindexes",
                "Slot index numbering", false, false);

IndexListEntry* IndexListEntry::getEmptyKeyEntry() {
  return &*IndexListEntryEmptyKey;
}

IndexListEntry* IndexListEntry::getTombstoneKeyEntry() {
  return &*IndexListEntryTombstoneKey;
}


void SlotIndexes::getAnalysisUsage(AnalysisUsage &au) const {
  au.setPreservesAll();
  MachineFunctionPass::getAnalysisUsage(au);
}

void SlotIndexes::releaseMemory() {
  mi2iMap.clear();
  mbb2IdxMap.clear();
  idx2MBBMap.clear();
  terminatorGaps.clear();
  clearList();
}

bool SlotIndexes::runOnMachineFunction(MachineFunction &fn) {

  // Compute numbering as follows:
  // Grab an iterator to the start of the index list.
  // Iterate over all MBBs, and within each MBB all MIs, keeping the MI
  // iterator in lock-step (though skipping it over indexes which have
  // null pointers in the instruction field).
  // At each iteration assert that the instruction pointed to in the index
  // is the same one pointed to by the MI iterator. This 

  // FIXME: This can be simplified. The mi2iMap_, Idx2MBBMap, etc. should
  // only need to be set up once after the first numbering is computed.

  mf = &fn;
  initList();

  // Check that the list contains only the sentinal.
  assert(indexListHead->getNext() == 0 &&
         "Index list non-empty at initial numbering?");
  assert(idx2MBBMap.empty() &&
         "Index -> MBB mapping non-empty at initial numbering?");
  assert(mbb2IdxMap.empty() &&
         "MBB -> Index mapping non-empty at initial numbering?");
  assert(mi2iMap.empty() &&
         "MachineInstr -> Index mapping non-empty at initial numbering?");

  functionSize = 0;
  unsigned index = 0;

  push_back(createEntry(0, index));

  // Iterate over the function.
  for (MachineFunction::iterator mbbItr = mf->begin(), mbbEnd = mf->end();
       mbbItr != mbbEnd; ++mbbItr) {
    MachineBasicBlock *mbb = &*mbbItr;

    // Insert an index for the MBB start.
    SlotIndex blockStartIndex(back(), SlotIndex::LOAD);

    index += SlotIndex::NUM;

    for (MachineBasicBlock::iterator miItr = mbb->begin(), miEnd = mbb->end();
         miItr != miEnd; ++miItr) {
      MachineInstr *mi = miItr;
      if (mi->isDebugValue())
        continue;

      if (miItr == mbb->getFirstTerminator()) {
        push_back(createEntry(0, index));
        terminatorGaps.insert(
          std::make_pair(mbb, SlotIndex(back(), SlotIndex::PHI_BIT)));
        index += SlotIndex::NUM;
      }

      // Insert a store index for the instr.
      push_back(createEntry(mi, index));

      // Save this base index in the maps.
      mi2iMap.insert(
        std::make_pair(mi, SlotIndex(back(), SlotIndex::LOAD)));
 
      ++functionSize;

      unsigned Slots = mi->getDesc().getNumDefs();
      if (Slots == 0)
        Slots = 1;

      index += (Slots + 1) * SlotIndex::NUM;
    }

    if (mbb->getFirstTerminator() == mbb->end()) {
      push_back(createEntry(0, index));
      terminatorGaps.insert(
        std::make_pair(mbb, SlotIndex(back(), SlotIndex::PHI_BIT)));
      index += SlotIndex::NUM;
    }

    // One blank instruction at the end.
    push_back(createEntry(0, index));    

    SlotIndex blockEndIndex(back(), SlotIndex::LOAD);
    mbb2IdxMap.insert(
      std::make_pair(mbb, std::make_pair(blockStartIndex, blockEndIndex)));

    idx2MBBMap.push_back(IdxMBBPair(blockStartIndex, mbb));
  }

  // Sort the Idx2MBBMap
  std::sort(idx2MBBMap.begin(), idx2MBBMap.end(), Idx2MBBCompare());

  DEBUG(dump());

  // And we're done!
  return false;
}

void SlotIndexes::renumberIndexes() {

  // Renumber updates the index of every element of the index list.
  // If all instrs in the function have been allocated an index (which has been
  // placed in the index list in the order of instruction iteration) then the
  // resulting numbering will match what would have been generated by the
  // pass during the initial numbering of the function if the new instructions
  // had been present.

  functionSize = 0;
  unsigned index = 0;

  for (IndexListEntry *curEntry = front(); curEntry != getTail();
       curEntry = curEntry->getNext()) {

    curEntry->setIndex(index);

    if (curEntry->getInstr() == 0) {
      // MBB start entry or terminator gap. Just step index by 1.
      index += SlotIndex::NUM;
    }
    else {
      ++functionSize;
      unsigned Slots = curEntry->getInstr()->getDesc().getNumDefs();
      if (Slots == 0)
        Slots = 1;

      index += (Slots + 1) * SlotIndex::NUM;
    }
  }
}

void SlotIndexes::dump() const {
  for (const IndexListEntry *itr = front(); itr != getTail();
       itr = itr->getNext()) {
    dbgs() << itr->getIndex() << " ";

    if (itr->getInstr() != 0) {
      dbgs() << *itr->getInstr();
    } else {
      dbgs() << "\n";
    }
  }

  for (MBB2IdxMap::const_iterator itr = mbb2IdxMap.begin();
       itr != mbb2IdxMap.end(); ++itr) {
    dbgs() << "MBB " << itr->first->getNumber() << " (" << itr->first << ") - ["
           << itr->second.first << ", " << itr->second.second << "]\n";
  }
}

// Print a SlotIndex to a raw_ostream.
void SlotIndex::print(raw_ostream &os) const {
  os << entry().getIndex();
  if (isPHI())
    os << "*";
  else
    os << "LudS"[getSlot()];
}

// Dump a SlotIndex to stderr.
void SlotIndex::dump() const {
  print(dbgs());
  dbgs() << "\n";
}