summaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/StrongPHIElimination.cpp
blob: 5abab305766bf6807cc1851f367c56daa7a2c1d4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
//===- StrongPhiElimination.cpp - Eliminate PHI nodes by inserting copies -===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass eliminates machine instruction PHI nodes by inserting copy
// instructions, using an intelligent copy-folding technique based on
// dominator information.  This is technique is derived from:
// 
//    Budimlic, et al. Fast copy coalescing and live-range identification.
//    In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
//    Design and Implementation (Berlin, Germany, June 17 - 19, 2002).
//    PLDI '02. ACM, New York, NY, 25-32.
//    DOI= http://doi.acm.org/10.1145/512529.512534
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "strongphielim"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
using namespace llvm;

namespace {
  struct VISIBILITY_HIDDEN StrongPHIElimination : public MachineFunctionPass {
    static char ID; // Pass identification, replacement for typeid
    StrongPHIElimination() : MachineFunctionPass((intptr_t)&ID) {}

    // Waiting stores, for each MBB, the set of copies that need to
    // be inserted into that MBB
    DenseMap<MachineBasicBlock*,
             std::map<unsigned, unsigned> > Waiting;
    
    // Stacks holds the renaming stack for each register
    std::map<unsigned, std::vector<unsigned> > Stacks;
    
    // Registers in UsedByAnother are PHI nodes that are themselves
    // used as operands to another another PHI node
    std::set<unsigned> UsedByAnother;
    
    // RenameSets are the sets of operands (and their VNInfo IDs) to a PHI
    // (the defining instruction of the key) that can be renamed without copies.
    std::map<unsigned, std::map<unsigned, unsigned> > RenameSets;
    
    // PhiValueNumber holds the ID numbers of the VNs for each phi that we're
    // eliminating, indexed by the register defined by that phi.
    std::map<unsigned, unsigned> PhiValueNumber;

    // Store the DFS-in number of each block
    DenseMap<MachineBasicBlock*, unsigned> preorder;
    
    // Store the DFS-out number of each block
    DenseMap<MachineBasicBlock*, unsigned> maxpreorder;

    bool runOnMachineFunction(MachineFunction &Fn);
    
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequired<MachineDominatorTree>();
      AU.addRequired<LiveIntervals>();
      
      // TODO: Actually make this true.
      AU.addPreserved<LiveIntervals>();
      AU.addPreserved<RegisterCoalescer>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }
    
    virtual void releaseMemory() {
      preorder.clear();
      maxpreorder.clear();
      
      Waiting.clear();
      Stacks.clear();
      UsedByAnother.clear();
      RenameSets.clear();
    }

  private:
    
    /// DomForestNode - Represents a node in the "dominator forest".  This is
    /// a forest in which the nodes represent registers and the edges
    /// represent a dominance relation in the block defining those registers.
    struct DomForestNode {
    private:
      // Store references to our children
      std::vector<DomForestNode*> children;
      // The register we represent
      unsigned reg;
      
      // Add another node as our child
      void addChild(DomForestNode* DFN) { children.push_back(DFN); }
      
    public:
      typedef std::vector<DomForestNode*>::iterator iterator;
      
      // Create a DomForestNode by providing the register it represents, and
      // the node to be its parent.  The virtual root node has register 0
      // and a null parent.
      DomForestNode(unsigned r, DomForestNode* parent) : reg(r) {
        if (parent)
          parent->addChild(this);
      }
      
      ~DomForestNode() {
        for (iterator I = begin(), E = end(); I != E; ++I)
          delete *I;
      }
      
      /// getReg - Return the regiser that this node represents
      inline unsigned getReg() { return reg; }
      
      // Provide iterator access to our children
      inline DomForestNode::iterator begin() { return children.begin(); }
      inline DomForestNode::iterator end() { return children.end(); }
    };
    
    void computeDFS(MachineFunction& MF);
    void processBlock(MachineBasicBlock* MBB);
    
    std::vector<DomForestNode*> computeDomForest(std::map<unsigned, unsigned>& instrs,
                                                 MachineRegisterInfo& MRI);
    void processPHIUnion(MachineInstr* Inst,
                         std::map<unsigned, unsigned>& PHIUnion,
                         std::vector<StrongPHIElimination::DomForestNode*>& DF,
                         std::vector<std::pair<unsigned, unsigned> >& locals);
    void ScheduleCopies(MachineBasicBlock* MBB, std::set<unsigned>& pushed);
    void InsertCopies(MachineBasicBlock* MBB,
                      SmallPtrSet<MachineBasicBlock*, 16>& v);
    void mergeLiveIntervals(unsigned primary, unsigned secondary, unsigned VN);
  };
}

char StrongPHIElimination::ID = 0;
static RegisterPass<StrongPHIElimination>
X("strong-phi-node-elimination",
  "Eliminate PHI nodes for register allocation, intelligently");

const PassInfo *const llvm::StrongPHIEliminationID = &X;

/// computeDFS - Computes the DFS-in and DFS-out numbers of the dominator tree
/// of the given MachineFunction.  These numbers are then used in other parts
/// of the PHI elimination process.
void StrongPHIElimination::computeDFS(MachineFunction& MF) {
  SmallPtrSet<MachineDomTreeNode*, 8> frontier;
  SmallPtrSet<MachineDomTreeNode*, 8> visited;
  
  unsigned time = 0;
  
  MachineDominatorTree& DT = getAnalysis<MachineDominatorTree>();
  
  MachineDomTreeNode* node = DT.getRootNode();
  
  std::vector<MachineDomTreeNode*> worklist;
  worklist.push_back(node);
  
  while (!worklist.empty()) {
    MachineDomTreeNode* currNode = worklist.back();
    
    if (!frontier.count(currNode)) {
      frontier.insert(currNode);
      ++time;
      preorder.insert(std::make_pair(currNode->getBlock(), time));
    }
    
    bool inserted = false;
    for (MachineDomTreeNode::iterator I = currNode->begin(), E = currNode->end();
         I != E; ++I)
      if (!frontier.count(*I) && !visited.count(*I)) {
        worklist.push_back(*I);
        inserted = true;
        break;
      }
    
    if (!inserted) {
      frontier.erase(currNode);
      visited.insert(currNode);
      maxpreorder.insert(std::make_pair(currNode->getBlock(), time));
      
      worklist.pop_back();
    }
  }
}

namespace {

/// PreorderSorter - a helper class that is used to sort registers
/// according to the preorder number of their defining blocks
class PreorderSorter {
private:
  DenseMap<MachineBasicBlock*, unsigned>& preorder;
  MachineRegisterInfo& MRI;
  
public:
  PreorderSorter(DenseMap<MachineBasicBlock*, unsigned>& p,
                MachineRegisterInfo& M) : preorder(p), MRI(M) { }
  
  bool operator()(unsigned A, unsigned B) {
    if (A == B)
      return false;
    
    MachineBasicBlock* ABlock = MRI.getVRegDef(A)->getParent();
    MachineBasicBlock* BBlock = MRI.getVRegDef(B)->getParent();
    
    if (preorder[ABlock] < preorder[BBlock])
      return true;
    else if (preorder[ABlock] > preorder[BBlock])
      return false;
    
    return false;
  }
};

}

/// computeDomForest - compute the subforest of the DomTree corresponding
/// to the defining blocks of the registers in question
std::vector<StrongPHIElimination::DomForestNode*>
StrongPHIElimination::computeDomForest(std::map<unsigned, unsigned>& regs, 
                                       MachineRegisterInfo& MRI) {
  // Begin by creating a virtual root node, since the actual results
  // may well be a forest.  Assume this node has maximum DFS-out number.
  DomForestNode* VirtualRoot = new DomForestNode(0, 0);
  maxpreorder.insert(std::make_pair((MachineBasicBlock*)0, ~0UL));
  
  // Populate a worklist with the registers
  std::vector<unsigned> worklist;
  worklist.reserve(regs.size());
  for (std::map<unsigned, unsigned>::iterator I = regs.begin(), E = regs.end();
       I != E; ++I)
    worklist.push_back(I->first);
  
  // Sort the registers by the DFS-in number of their defining block
  PreorderSorter PS(preorder, MRI);
  std::sort(worklist.begin(), worklist.end(), PS);
  
  // Create a "current parent" stack, and put the virtual root on top of it
  DomForestNode* CurrentParent = VirtualRoot;
  std::vector<DomForestNode*> stack;
  stack.push_back(VirtualRoot);
  
  // Iterate over all the registers in the previously computed order
  for (std::vector<unsigned>::iterator I = worklist.begin(), E = worklist.end();
       I != E; ++I) {
    unsigned pre = preorder[MRI.getVRegDef(*I)->getParent()];
    MachineBasicBlock* parentBlock = CurrentParent->getReg() ?
                 MRI.getVRegDef(CurrentParent->getReg())->getParent() :
                 0;
    
    // If the DFS-in number of the register is greater than the DFS-out number
    // of the current parent, repeatedly pop the parent stack until it isn't.
    while (pre > maxpreorder[parentBlock]) {
      stack.pop_back();
      CurrentParent = stack.back();
      
      parentBlock = CurrentParent->getReg() ?
                   MRI.getVRegDef(CurrentParent->getReg())->getParent() :
                   0;
    }
    
    // Now that we've found the appropriate parent, create a DomForestNode for
    // this register and attach it to the forest
    DomForestNode* child = new DomForestNode(*I, CurrentParent);
    
    // Push this new node on the "current parent" stack
    stack.push_back(child);
    CurrentParent = child;
  }
  
  // Return a vector containing the children of the virtual root node
  std::vector<DomForestNode*> ret;
  ret.insert(ret.end(), VirtualRoot->begin(), VirtualRoot->end());
  return ret;
}

/// isLiveIn - helper method that determines, from a regno, if a register
/// is live into a block
static bool isLiveIn(unsigned r, MachineBasicBlock* MBB,
                     LiveIntervals& LI) {
  LiveInterval& I = LI.getOrCreateInterval(r);
  unsigned idx = LI.getMBBStartIdx(MBB);
  return I.liveBeforeAndAt(idx);
}

/// isLiveOut - help method that determines, from a regno, if a register is
/// live out of a block.
static bool isLiveOut(unsigned r, MachineBasicBlock* MBB,
                      LiveIntervals& LI) {
  for (MachineBasicBlock::succ_iterator PI = MBB->succ_begin(),
       E = MBB->succ_end(); PI != E; ++PI) {
    if (isLiveIn(r, *PI, LI))
      return true;
  }
  
  return false;
}

/// interferes - checks for local interferences by scanning a block.  The only
/// trick parameter is 'mode' which tells it the relationship of the two
/// registers. 0 - defined in the same block, 1 - first properly dominates
/// second, 2 - second properly dominates first 
static bool interferes(unsigned a, unsigned b, MachineBasicBlock* scan,
                       LiveIntervals& LV, unsigned mode) {
  MachineInstr* def = 0;
  MachineInstr* kill = 0;
  
  // The code is still in SSA form at this point, so there is only one
  // definition per VReg.  Thus we can safely use MRI->getVRegDef().
  const MachineRegisterInfo* MRI = &scan->getParent()->getRegInfo();
  
  bool interference = false;
  
  // Wallk the block, checking for interferences
  for (MachineBasicBlock::iterator MBI = scan->begin(), MBE = scan->end();
       MBI != MBE; ++MBI) {
    MachineInstr* curr = MBI;
    
    // Same defining block...
    if (mode == 0) {
      if (curr == MRI->getVRegDef(a)) {
        // If we find our first definition, save it
        if (!def) {
          def = curr;
        // If there's already an unkilled definition, then 
        // this is an interference
        } else if (!kill) {
          interference = true;
          break;
        // If there's a definition followed by a KillInst, then
        // they can't interfere
        } else {
          interference = false;
          break;
        }
      // Symmetric with the above
      } else if (curr == MRI->getVRegDef(b)) {
        if (!def) {
          def = curr;
        } else if (!kill) {
          interference = true;
          break;
        } else {
          interference = false;
          break;
        }
      // Store KillInsts if they match up with the definition
      } else if (curr->killsRegister(a)) {
        if (def == MRI->getVRegDef(a)) {
          kill = curr;
        } else if (curr->killsRegister(b)) {
          if (def == MRI->getVRegDef(b)) {
            kill = curr;
          }
        }
      }
    // First properly dominates second...
    } else if (mode == 1) {
      if (curr == MRI->getVRegDef(b)) {
        // Definition of second without kill of first is an interference
        if (!kill) {
          interference = true;
          break;
        // Definition after a kill is a non-interference
        } else {
          interference = false;
          break;
        }
      // Save KillInsts of First
      } else if (curr->killsRegister(a)) {
        kill = curr;
      }
    // Symmetric with the above
    } else if (mode == 2) {
      if (curr == MRI->getVRegDef(a)) {
        if (!kill) {
          interference = true;
          break;
        } else {
          interference = false;
          break;
        }
      } else if (curr->killsRegister(b)) {
        kill = curr;
      }
    }
  }
  
  return interference;
}

/// processBlock - Determine how to break up PHIs in the current block.  Each
/// PHI is broken up by some combination of renaming its operands and inserting
/// copies.  This method is responsible for determining which operands receive
/// which treatment.
void StrongPHIElimination::processBlock(MachineBasicBlock* MBB) {
  LiveIntervals& LI = getAnalysis<LiveIntervals>();
  MachineRegisterInfo& MRI = MBB->getParent()->getRegInfo();
  
  // Holds names that have been added to a set in any PHI within this block
  // before the current one.
  std::set<unsigned> ProcessedNames;
  
  // Iterate over all the PHI nodes in this block
  MachineBasicBlock::iterator P = MBB->begin();
  while (P != MBB->end() && P->getOpcode() == TargetInstrInfo::PHI) {
    unsigned DestReg = P->getOperand(0).getReg();

    // Don't both doing PHI elimination for dead PHI's.
    if (P->registerDefIsDead(DestReg)) {
      ++P;
      continue;
    }

    LiveInterval& PI = LI.getOrCreateInterval(DestReg);
    unsigned pIdx = LI.getDefIndex(LI.getInstructionIndex(P));
    VNInfo* PVN = PI.getLiveRangeContaining(pIdx)->valno;
    PhiValueNumber.insert(std::make_pair(DestReg, PVN->id));

    // PHIUnion is the set of incoming registers to the PHI node that
    // are going to be renames rather than having copies inserted.  This set
    // is refinded over the course of this function.  UnionedBlocks is the set
    // of corresponding MBBs.
    std::map<unsigned, unsigned> PHIUnion;
    SmallPtrSet<MachineBasicBlock*, 8> UnionedBlocks;
  
    // Iterate over the operands of the PHI node
    for (int i = P->getNumOperands() - 1; i >= 2; i-=2) {
      unsigned SrcReg = P->getOperand(i-1).getReg();
    
      // Check for trivial interferences via liveness information, allowing us
      // to avoid extra work later.  Any registers that interfere cannot both
      // be in the renaming set, so choose one and add copies for it instead.
      // The conditions are:
      //   1) if the operand is live into the PHI node's block OR
      //   2) if the PHI node is live out of the operand's defining block OR
      //   3) if the operand is itself a PHI node and the original PHI is
      //      live into the operand's defining block OR
      //   4) if the operand is already being renamed for another PHI node
      //      in this block OR
      //   5) if any two operands are defined in the same block, insert copies
      //      for one of them
      if (isLiveIn(SrcReg, P->getParent(), LI) ||
          isLiveOut(P->getOperand(0).getReg(),
                    MRI.getVRegDef(SrcReg)->getParent(), LI) ||
          ( MRI.getVRegDef(SrcReg)->getOpcode() == TargetInstrInfo::PHI &&
            isLiveIn(P->getOperand(0).getReg(),
                     MRI.getVRegDef(SrcReg)->getParent(), LI) ) ||
          ProcessedNames.count(SrcReg) ||
          UnionedBlocks.count(MRI.getVRegDef(SrcReg)->getParent())) {
        
        // Add a copy for the selected register
        MachineBasicBlock* From = P->getOperand(i).getMBB();
        Waiting[From].insert(std::make_pair(SrcReg, DestReg));
        UsedByAnother.insert(SrcReg);
      } else {
        // Otherwise, add it to the renaming set
        LiveInterval& I = LI.getOrCreateInterval(SrcReg);
        // We need to subtract one from the index because live ranges are open
        // at the end.
        unsigned idx = LI.getMBBEndIdx(P->getOperand(i).getMBB()) - 1;
        VNInfo* VN = I.getLiveRangeContaining(idx)->valno;
        
        assert(VN && "No VNInfo for register?");
        
        PHIUnion.insert(std::make_pair(SrcReg, VN->id));
        UnionedBlocks.insert(MRI.getVRegDef(SrcReg)->getParent());
      }
    }
    
    // Compute the dominator forest for the renaming set.  This is a forest
    // where the nodes are the registers and the edges represent dominance 
    // relations between the defining blocks of the registers
    std::vector<StrongPHIElimination::DomForestNode*> DF = 
                                                computeDomForest(PHIUnion, MRI);
    
    // Walk DomForest to resolve interferences at an inter-block level.  This
    // will remove registers from the renaming set (and insert copies for them)
    // if interferences are found.
    std::vector<std::pair<unsigned, unsigned> > localInterferences;
    processPHIUnion(P, PHIUnion, DF, localInterferences);
    
    // If one of the inputs is defined in the same block as the current PHI
    // then we need to check for a local interference between that input and
    // the PHI.
    for (std::map<unsigned, unsigned>::iterator I = PHIUnion.begin(),
         E = PHIUnion.end(); I != E; ++I)
      if (MRI.getVRegDef(I->first)->getParent() == P->getParent())
        localInterferences.push_back(std::make_pair(I->first,
                                                    P->getOperand(0).getReg()));
    
    // The dominator forest walk may have returned some register pairs whose
    // interference cannot be determined from dominator analysis.  We now 
    // examine these pairs for local interferences.
    for (std::vector<std::pair<unsigned, unsigned> >::iterator I =
        localInterferences.begin(), E = localInterferences.end(); I != E; ++I) {
      std::pair<unsigned, unsigned> p = *I;
      
      MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
      
      // Determine the block we need to scan and the relationship between
      // the two registers
      MachineBasicBlock* scan = 0;
      unsigned mode = 0;
      if (MRI.getVRegDef(p.first)->getParent() ==
          MRI.getVRegDef(p.second)->getParent()) {
        scan = MRI.getVRegDef(p.first)->getParent();
        mode = 0; // Same block
      } else if (MDT.dominates(MRI.getVRegDef(p.first)->getParent(),
                               MRI.getVRegDef(p.second)->getParent())) {
        scan = MRI.getVRegDef(p.second)->getParent();
        mode = 1; // First dominates second
      } else {
        scan = MRI.getVRegDef(p.first)->getParent();
        mode = 2; // Second dominates first
      }
      
      // If there's an interference, we need to insert  copies
      if (interferes(p.first, p.second, scan, LI, mode)) {
        // Insert copies for First
        for (int i = P->getNumOperands() - 1; i >= 2; i-=2) {
          if (P->getOperand(i-1).getReg() == p.first) {
            unsigned SrcReg = p.first;
            MachineBasicBlock* From = P->getOperand(i).getMBB();
            
            Waiting[From].insert(std::make_pair(SrcReg,
                                                P->getOperand(0).getReg()));
            UsedByAnother.insert(SrcReg);
            
            PHIUnion.erase(SrcReg);
          }
        }
      }
    }
    
    // Add the renaming set for this PHI node to our overall renaming information
    RenameSets.insert(std::make_pair(P->getOperand(0).getReg(), PHIUnion));
    
    // Remember which registers are already renamed, so that we don't try to 
    // rename them for another PHI node in this block
    for (std::map<unsigned, unsigned>::iterator I = PHIUnion.begin(),
         E = PHIUnion.end(); I != E; ++I)
      ProcessedNames.insert(I->first);
    
    ++P;
  }
}

/// processPHIUnion - Take a set of candidate registers to be coalesced when
/// decomposing the PHI instruction.  Use the DominanceForest to remove the ones
/// that are known to interfere, and flag others that need to be checked for
/// local interferences.
void StrongPHIElimination::processPHIUnion(MachineInstr* Inst,
                                        std::map<unsigned, unsigned>& PHIUnion,
                        std::vector<StrongPHIElimination::DomForestNode*>& DF,
                        std::vector<std::pair<unsigned, unsigned> >& locals) {
  
  std::vector<DomForestNode*> worklist(DF.begin(), DF.end());
  SmallPtrSet<DomForestNode*, 4> visited;
  
  // Code is still in SSA form, so we can use MRI::getVRegDef()
  MachineRegisterInfo& MRI = Inst->getParent()->getParent()->getRegInfo();
  
  LiveIntervals& LI = getAnalysis<LiveIntervals>();
  unsigned DestReg = Inst->getOperand(0).getReg();
  
  // DF walk on the DomForest
  while (!worklist.empty()) {
    DomForestNode* DFNode = worklist.back();
    
    visited.insert(DFNode);
    
    bool inserted = false;
    for (DomForestNode::iterator CI = DFNode->begin(), CE = DFNode->end();
         CI != CE; ++CI) {
      DomForestNode* child = *CI;   
      
      // If the current node is live-out of the defining block of one of its
      // children, insert a copy for it.  NOTE: The paper actually calls for
      // a more elaborate heuristic for determining whether to insert copies
      // for the child or the parent.  In the interest of simplicity, we're
      // just always choosing the parent.
      if (isLiveOut(DFNode->getReg(),
          MRI.getVRegDef(child->getReg())->getParent(), LI)) {
        // Insert copies for parent
        for (int i = Inst->getNumOperands() - 1; i >= 2; i-=2) {
          if (Inst->getOperand(i-1).getReg() == DFNode->getReg()) {
            unsigned SrcReg = DFNode->getReg();
            MachineBasicBlock* From = Inst->getOperand(i).getMBB();
            
            Waiting[From].insert(std::make_pair(SrcReg, DestReg));
            UsedByAnother.insert(SrcReg);
            
            PHIUnion.erase(SrcReg);
          }
        }
      
      // If a node is live-in to the defining block of one of its children, but
      // not live-out, then we need to scan that block for local interferences.
      } else if (isLiveIn(DFNode->getReg(),
                          MRI.getVRegDef(child->getReg())->getParent(), LI) ||
                 MRI.getVRegDef(DFNode->getReg())->getParent() ==
                                 MRI.getVRegDef(child->getReg())->getParent()) {
        // Add (p, c) to possible local interferences
        locals.push_back(std::make_pair(DFNode->getReg(), child->getReg()));
      }
      
      if (!visited.count(child)) {
        worklist.push_back(child);
        inserted = true;
      }
    }
    
    if (!inserted) worklist.pop_back();
  }
}

/// ScheduleCopies - Insert copies into predecessor blocks, scheduling
/// them properly so as to avoid the 'lost copy' and the 'virtual swap'
/// problems.
///
/// Based on "Practical Improvements to the Construction and Destruction
/// of Static Single Assignment Form" by Briggs, et al.
void StrongPHIElimination::ScheduleCopies(MachineBasicBlock* MBB,
                                          std::set<unsigned>& pushed) {
  // FIXME: This function needs to update LiveIntervals
  std::map<unsigned, unsigned>& copy_set= Waiting[MBB];
  
  std::map<unsigned, unsigned> worklist;
  std::map<unsigned, unsigned> map;
  
  // Setup worklist of initial copies
  for (std::map<unsigned, unsigned>::iterator I = copy_set.begin(),
       E = copy_set.end(); I != E; ) {
    map.insert(std::make_pair(I->first, I->first));
    map.insert(std::make_pair(I->second, I->second));
         
    if (!UsedByAnother.count(I->second)) {
      worklist.insert(*I);
      
      // Avoid iterator invalidation
      unsigned first = I->first;
      ++I;
      copy_set.erase(first);
    } else {
      ++I;
    }
  }
  
  LiveIntervals& LI = getAnalysis<LiveIntervals>();
  MachineFunction* MF = MBB->getParent();
  MachineRegisterInfo& MRI = MF->getRegInfo();
  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
  
  SmallVector<std::pair<unsigned, MachineInstr*>, 4> InsertedPHIDests;
  
  // Iterate over the worklist, inserting copies
  while (!worklist.empty() || !copy_set.empty()) {
    while (!worklist.empty()) {
      std::pair<unsigned, unsigned> curr = *worklist.begin();
      worklist.erase(curr.first);
      
      const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(curr.first);
      
      if (isLiveOut(curr.second, MBB, LI)) {
        // Create a temporary
        unsigned t = MF->getRegInfo().createVirtualRegister(RC);
        
        // Insert copy from curr.second to a temporary at
        // the Phi defining curr.second
        MachineBasicBlock::iterator PI = MRI.getVRegDef(curr.second);
        TII->copyRegToReg(*PI->getParent(), PI, t,
                          curr.second, RC, RC);
        
        // Push temporary on Stacks
        Stacks[curr.second].push_back(t);
        
        // Insert curr.second in pushed
        pushed.insert(curr.second);
      }
      
      // Insert copy from map[curr.first] to curr.second
      TII->copyRegToReg(*MBB, MBB->getFirstTerminator(), curr.second,
                        map[curr.first], RC, RC);
      map[curr.first] = curr.second;
      
      // Push this copy onto InsertedPHICopies so we can
      // update LiveIntervals with it.
      MachineBasicBlock::iterator MI = MBB->getFirstTerminator();
      InsertedPHIDests.push_back(std::make_pair(curr.second, --MI));
      
      // If curr.first is a destination in copy_set...
      for (std::map<unsigned, unsigned>::iterator I = copy_set.begin(),
           E = copy_set.end(); I != E; )
        if (curr.first == I->second) {
          std::pair<unsigned, unsigned> temp = *I;
          
          // Avoid iterator invalidation
          ++I;
          copy_set.erase(temp.first);
          worklist.insert(temp);
          
          break;
        } else {
          ++I;
        }
    }
    
    if (!copy_set.empty()) {
      std::pair<unsigned, unsigned> curr = *copy_set.begin();
      copy_set.erase(curr.first);
      
      const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(curr.first);
      
      // Insert a copy from dest to a new temporary t at the end of b
      unsigned t = MF->getRegInfo().createVirtualRegister(RC);
      TII->copyRegToReg(*MBB, MBB->getFirstTerminator(), t,
                        curr.second, RC, RC);
      map[curr.second] = t;
      
      worklist.insert(curr);
    }
  }
  
  // Renumber the instructions so that we can perform the index computations
  // needed to create new live intervals.
  LI.computeNumbering();
  
  // For copies that we inserted at the ends of predecessors, we construct
  // live intervals.  This is pretty easy, since we know that the destination
  // register cannot have be in live at that point previously.  We just have
  // to make sure that, for registers that serve as inputs to more than one
  // PHI, we don't create multiple overlapping live intervals.
  std::set<unsigned> RegHandled;
  for (SmallVector<std::pair<unsigned, MachineInstr*>, 4>::iterator I =
       InsertedPHIDests.begin(), E = InsertedPHIDests.end(); I != E; ++I) {
    if (!RegHandled.count(I->first)) {
      LiveInterval& Interval = LI.getOrCreateInterval(I->first);
      VNInfo* VN = Interval.getNextValue(
          LI.getInstructionIndex(I->second) + LiveIntervals::InstrSlots::DEF,
                                         I->second, LI.getVNInfoAllocator());
      VN->hasPHIKill = true;
      VN->kills.push_back(LI.getMBBEndIdx(I->second->getParent()));
      LiveRange LR(LI.getInstructionIndex(I->second) +
                      LiveIntervals::InstrSlots::DEF,
                   LI.getMBBEndIdx(I->second->getParent()) + 1, VN);
      Interval.addRange(LR);
      
      RegHandled.insert(I->first);
    }
  }
}

/// InsertCopies - insert copies into MBB and all of its successors
void StrongPHIElimination::InsertCopies(MachineBasicBlock* MBB,
                                 SmallPtrSet<MachineBasicBlock*, 16>& visited) {
  visited.insert(MBB);
  
  std::set<unsigned> pushed;
  
  // Rewrite register uses from Stacks
  for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
      I != E; ++I)
    for (unsigned i = 0; i < I->getNumOperands(); ++i)
      if (I->getOperand(i).isRegister() &&
          Stacks[I->getOperand(i).getReg()].size()) {
        I->getOperand(i).setReg(Stacks[I->getOperand(i).getReg()].back());
      }
  
  // Schedule the copies for this block
  ScheduleCopies(MBB, pushed);
  
  // Recur to our successors
  for (GraphTraits<MachineBasicBlock*>::ChildIteratorType I = 
       GraphTraits<MachineBasicBlock*>::child_begin(MBB), E =
       GraphTraits<MachineBasicBlock*>::child_end(MBB); I != E; ++I)
    if (!visited.count(*I))
      InsertCopies(*I, visited);
  
  // As we exit this block, pop the names we pushed while processing it
  for (std::set<unsigned>::iterator I = pushed.begin(), 
       E = pushed.end(); I != E; ++I)
    Stacks[*I].pop_back();
}

/// ComputeUltimateVN - Assuming we are going to join two live intervals,
/// compute what the resultant value numbers for each value in the input two
/// ranges will be.  This is complicated by copies between the two which can
/// and will commonly cause multiple value numbers to be merged into one.
///
/// VN is the value number that we're trying to resolve.  InstDefiningValue
/// keeps track of the new InstDefiningValue assignment for the result
/// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
/// whether a value in this or other is a copy from the opposite set.
/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
/// already been assigned.
///
/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
/// contains the value number the copy is from.
///
static unsigned ComputeUltimateVN(VNInfo *VNI,
                                  SmallVector<VNInfo*, 16> &NewVNInfo,
                                  DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
                                  DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
                                  SmallVector<int, 16> &ThisValNoAssignments,
                                  SmallVector<int, 16> &OtherValNoAssignments) {
  unsigned VN = VNI->id;

  // If the VN has already been computed, just return it.
  if (ThisValNoAssignments[VN] >= 0)
    return ThisValNoAssignments[VN];
//  assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");

  // If this val is not a copy from the other val, then it must be a new value
  // number in the destination.
  DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
  if (I == ThisFromOther.end()) {
    NewVNInfo.push_back(VNI);
    return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
  }
  VNInfo *OtherValNo = I->second;

  // Otherwise, this *is* a copy from the RHS.  If the other side has already
  // been computed, return it.
  if (OtherValNoAssignments[OtherValNo->id] >= 0)
    return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
  
  // Mark this value number as currently being computed, then ask what the
  // ultimate value # of the other value is.
  ThisValNoAssignments[VN] = -2;
  unsigned UltimateVN =
    ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
                      OtherValNoAssignments, ThisValNoAssignments);
  return ThisValNoAssignments[VN] = UltimateVN;
}

void StrongPHIElimination::mergeLiveIntervals(unsigned primary,
                                              unsigned secondary,
                                              unsigned secondaryVN) {
  
  LiveIntervals& LI = getAnalysis<LiveIntervals>();
  LiveInterval& LHS = LI.getOrCreateInterval(primary);
  LiveInterval& RHS = LI.getOrCreateInterval(secondary);
  
  // Compute the final value assignment, assuming that the live ranges can be
  // coalesced.
  SmallVector<int, 16> LHSValNoAssignments;
  SmallVector<int, 16> RHSValNoAssignments;
  SmallVector<VNInfo*, 16> NewVNInfo;
  
  LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
  RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
  NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
  
  for (LiveInterval::vni_iterator I = LHS.vni_begin(), E = LHS.vni_end();
       I != E; ++I) {
    VNInfo *VNI = *I;
    unsigned VN = VNI->id;
    if (LHSValNoAssignments[VN] >= 0 || VNI->def == ~1U) 
      continue;
    
    NewVNInfo.push_back(VNI);
    LHSValNoAssignments[VN] = NewVNInfo.size()-1;
  }
  
  for (LiveInterval::vni_iterator I = RHS.vni_begin(), E = RHS.vni_end();
       I != E; ++I) {
    VNInfo *VNI = *I;
    unsigned VN = VNI->id;
    if (RHSValNoAssignments[VN] >= 0 || VNI->def == ~1U)
      continue;
      
    NewVNInfo.push_back(VNI);
    RHSValNoAssignments[VN] = NewVNInfo.size()-1;
  }

  // If we get here, we know that we can coalesce the live ranges.  Ask the
  // intervals to coalesce themselves now.

  LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo);
  LI.removeInterval(secondary);
  
  // The valno that was previously the input to the PHI node
  // now has a PHIKill.
  LHS.getValNumInfo(RHSValNoAssignments[secondaryVN])->hasPHIKill = true;
}

bool StrongPHIElimination::runOnMachineFunction(MachineFunction &Fn) {
  LiveIntervals& LI = getAnalysis<LiveIntervals>();
  
  // Compute DFS numbers of each block
  computeDFS(Fn);
  
  // Determine which phi node operands need copies
  for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
    if (!I->empty() &&
        I->begin()->getOpcode() == TargetInstrInfo::PHI)
      processBlock(I);
  
  // Insert copies
  // FIXME: This process should probably preserve LiveVariables
  SmallPtrSet<MachineBasicBlock*, 16> visited;
  InsertCopies(Fn.begin(), visited);
  
  // Perform renaming
  typedef std::map<unsigned, std::map<unsigned, unsigned> > RenameSetType;
  for (RenameSetType::iterator I = RenameSets.begin(), E = RenameSets.end();
       I != E; ++I)
    for (std::map<unsigned, unsigned>::iterator SI = I->second.begin(),
         SE = I->second.end(); SI != SE; ++SI) {
      mergeLiveIntervals(I->first, SI->first, SI->second);
      Fn.getRegInfo().replaceRegWith(SI->first, I->first);
    }
  
  // FIXME: Insert last-minute copies
  
  // Remove PHIs
  std::vector<MachineInstr*> phis;
  for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
    for (MachineBasicBlock::iterator BI = I->begin(), BE = I->end();
         BI != BE; ++BI)
      if (BI->getOpcode() == TargetInstrInfo::PHI)
        phis.push_back(BI);
  }
  
  for (std::vector<MachineInstr*>::iterator I = phis.begin(), E = phis.end();
       I != E; ) {
    MachineInstr* PInstr = *(I++);
    
    // If this is a dead PHI node, then remove it from LiveIntervals.
    unsigned DestReg = PInstr->getOperand(0).getReg();
    LiveInterval& PI = LI.getInterval(DestReg);
    if (PInstr->registerDefIsDead(DestReg)) {
      if (PI.containsOneValue()) {
        LI.removeInterval(DestReg);
      } else {
        unsigned idx = LI.getDefIndex(LI.getInstructionIndex(PInstr));
        PI.removeRange(*PI.getLiveRangeContaining(idx), true);
      }
    } else {
      // If the PHI is not dead, then the valno defined by the PHI
      // now has an unknown def.
      unsigned idx = LI.getDefIndex(LI.getInstructionIndex(PInstr));
      PI.getLiveRangeContaining(idx)->valno->def = ~0U;
    }
    
    LI.RemoveMachineInstrFromMaps(PInstr);
    PInstr->eraseFromParent();
  }
  
  LI.computeNumbering();
  
  return true;
}