summaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/VirtRegMap.cpp
blob: 0d17d43d972dc69e1cb2ac402906a38367d9b633 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the VirtRegMap class.
//
// It also contains implementations of the Spiller interface, which, given a
// virtual register map and a machine function, eliminates all virtual
// references by replacing them with physical register references - adding spill
// code as necessary.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/VirtRegMap.h"
#include "LiveDebugVariables.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SparseSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm>
using namespace llvm;

#define DEBUG_TYPE "regalloc"

STATISTIC(NumSpillSlots, "Number of spill slots allocated");
STATISTIC(NumIdCopies,   "Number of identity moves eliminated after rewriting");

//===----------------------------------------------------------------------===//
//  VirtRegMap implementation
//===----------------------------------------------------------------------===//

char VirtRegMap::ID = 0;

INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false)

bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
  MRI = &mf.getRegInfo();
  TII = mf.getSubtarget().getInstrInfo();
  TRI = mf.getSubtarget().getRegisterInfo();
  MF = &mf;

  Virt2PhysMap.clear();
  Virt2StackSlotMap.clear();
  Virt2SplitMap.clear();

  grow();
  return false;
}

void VirtRegMap::grow() {
  unsigned NumRegs = MF->getRegInfo().getNumVirtRegs();
  Virt2PhysMap.resize(NumRegs);
  Virt2StackSlotMap.resize(NumRegs);
  Virt2SplitMap.resize(NumRegs);
}

unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
  int SS = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
                                                      RC->getAlignment());
  ++NumSpillSlots;
  return SS;
}

bool VirtRegMap::hasPreferredPhys(unsigned VirtReg) {
  unsigned Hint = MRI->getSimpleHint(VirtReg);
  if (!Hint)
    return 0;
  if (TargetRegisterInfo::isVirtualRegister(Hint))
    Hint = getPhys(Hint);
  return getPhys(VirtReg) == Hint;
}

bool VirtRegMap::hasKnownPreference(unsigned VirtReg) {
  std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg);
  if (TargetRegisterInfo::isPhysicalRegister(Hint.second))
    return true;
  if (TargetRegisterInfo::isVirtualRegister(Hint.second))
    return hasPhys(Hint.second);
  return false;
}

int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
         "attempt to assign stack slot to already spilled register");
  const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg);
  return Virt2StackSlotMap[virtReg] = createSpillSlot(RC);
}

void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) {
  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
         "attempt to assign stack slot to already spilled register");
  assert((SS >= 0 ||
          (SS >= MF->getFrameInfo()->getObjectIndexBegin())) &&
         "illegal fixed frame index");
  Virt2StackSlotMap[virtReg] = SS;
}

void VirtRegMap::print(raw_ostream &OS, const Module*) const {
  OS << "********** REGISTER MAP **********\n";
  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) {
      OS << '[' << PrintReg(Reg, TRI) << " -> "
         << PrintReg(Virt2PhysMap[Reg], TRI) << "] "
         << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
    }
  }

  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) {
      OS << '[' << PrintReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg]
         << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
    }
  }
  OS << '\n';
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VirtRegMap::dump() const {
  print(dbgs());
}
#endif

//===----------------------------------------------------------------------===//
//                              VirtRegRewriter
//===----------------------------------------------------------------------===//
//
// The VirtRegRewriter is the last of the register allocator passes.
// It rewrites virtual registers to physical registers as specified in the
// VirtRegMap analysis. It also updates live-in information on basic blocks
// according to LiveIntervals.
//
namespace {
class VirtRegRewriter : public MachineFunctionPass {
  MachineFunction *MF;
  const TargetMachine *TM;
  const TargetRegisterInfo *TRI;
  const TargetInstrInfo *TII;
  MachineRegisterInfo *MRI;
  SlotIndexes *Indexes;
  LiveIntervals *LIS;
  VirtRegMap *VRM;
  SparseSet<unsigned> PhysRegs;

  void rewrite();
  void addMBBLiveIns();
public:
  static char ID;
  VirtRegRewriter() : MachineFunctionPass(ID) {}

  void getAnalysisUsage(AnalysisUsage &AU) const override;

  bool runOnMachineFunction(MachineFunction&) override;
};
} // end anonymous namespace

char &llvm::VirtRegRewriterID = VirtRegRewriter::ID;

INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter",
                      "Virtual Register Rewriter", false, false)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
INITIALIZE_PASS_DEPENDENCY(LiveStacks)
INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter",
                    "Virtual Register Rewriter", false, false)

char VirtRegRewriter::ID = 0;

void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequired<LiveIntervals>();
  AU.addRequired<SlotIndexes>();
  AU.addPreserved<SlotIndexes>();
  AU.addRequired<LiveDebugVariables>();
  AU.addRequired<LiveStacks>();
  AU.addPreserved<LiveStacks>();
  AU.addRequired<VirtRegMap>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) {
  MF = &fn;
  TM = &MF->getTarget();
  TRI = MF->getSubtarget().getRegisterInfo();
  TII = MF->getSubtarget().getInstrInfo();
  MRI = &MF->getRegInfo();
  Indexes = &getAnalysis<SlotIndexes>();
  LIS = &getAnalysis<LiveIntervals>();
  VRM = &getAnalysis<VirtRegMap>();
  DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
               << "********** Function: "
               << MF->getName() << '\n');
  DEBUG(VRM->dump());

  // Add kill flags while we still have virtual registers.
  LIS->addKillFlags(VRM);

  // Live-in lists on basic blocks are required for physregs.
  addMBBLiveIns();

  // Rewrite virtual registers.
  rewrite();

  // Write out new DBG_VALUE instructions.
  getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);

  // All machine operands and other references to virtual registers have been
  // replaced. Remove the virtual registers and release all the transient data.
  VRM->clearAllVirt();
  MRI->clearVirtRegs();
  return true;
}

// Compute MBB live-in lists from virtual register live ranges and their
// assignments.
void VirtRegRewriter::addMBBLiveIns() {
  SmallVector<MachineBasicBlock*, 16> LiveIn;
  for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) {
    unsigned VirtReg = TargetRegisterInfo::index2VirtReg(Idx);
    if (MRI->reg_nodbg_empty(VirtReg))
      continue;
    LiveInterval &LI = LIS->getInterval(VirtReg);
    if (LI.empty() || LIS->intervalIsInOneMBB(LI))
      continue;
    // This is a virtual register that is live across basic blocks. Its
    // assigned PhysReg must be marked as live-in to those blocks.
    unsigned PhysReg = VRM->getPhys(VirtReg);
    assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register.");

    // Scan the segments of LI.
    for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I != E;
         ++I) {
      if (!Indexes->findLiveInMBBs(I->start, I->end, LiveIn))
        continue;
      for (unsigned i = 0, e = LiveIn.size(); i != e; ++i)
        if (!LiveIn[i]->isLiveIn(PhysReg))
          LiveIn[i]->addLiveIn(PhysReg);
      LiveIn.clear();
    }
  }
}

void VirtRegRewriter::rewrite() {
  SmallVector<unsigned, 8> SuperDeads;
  SmallVector<unsigned, 8> SuperDefs;
  SmallVector<unsigned, 8> SuperKills;
  SmallPtrSet<const MachineInstr *, 4> NoReturnInsts;

  // Here we have a SparseSet to hold which PhysRegs are actually encountered
  // in the MF we are about to iterate over so that later when we call
  // setPhysRegUsed, we are only doing it for physRegs that were actually found
  // in the program and not for all of the possible physRegs for the given
  // target architecture. If the target has a lot of physRegs, then for a small
  // program there will be a significant compile time reduction here.
  PhysRegs.clear();
  PhysRegs.setUniverse(TRI->getNumRegs());

  // The function with uwtable should guarantee that the stack unwinder
  // can unwind the stack to the previous frame.  Thus, we can't apply the
  // noreturn optimization if the caller function has uwtable attribute.
  bool HasUWTable = MF->getFunction()->hasFnAttribute(Attribute::UWTable);

  for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
       MBBI != MBBE; ++MBBI) {
    DEBUG(MBBI->print(dbgs(), Indexes));
    bool IsExitBB = MBBI->succ_empty();
    for (MachineBasicBlock::instr_iterator
           MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) {
      MachineInstr *MI = MII;
      ++MII;

      // Check if this instruction is a call to a noreturn function.  If this
      // is a call to noreturn function and we don't need the stack unwinding
      // functionality (i.e. this function does not have uwtable attribute and
      // the callee function has the nounwind attribute), then we can ignore
      // the definitions set by this instruction.
      if (!HasUWTable && IsExitBB && MI->isCall()) {
        for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
               MOE = MI->operands_end(); MOI != MOE; ++MOI) {
          MachineOperand &MO = *MOI;
          if (!MO.isGlobal())
            continue;
          const Function *Func = dyn_cast<Function>(MO.getGlobal());
          if (!Func || !Func->hasFnAttribute(Attribute::NoReturn) ||
              // We need to keep correct unwind information
              // even if the function will not return, since the
              // runtime may need it.
              !Func->hasFnAttribute(Attribute::NoUnwind))
            continue;
          NoReturnInsts.insert(MI);
          break;
        }
      }

      for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
           MOE = MI->operands_end(); MOI != MOE; ++MOI) {
        MachineOperand &MO = *MOI;

        // Make sure MRI knows about registers clobbered by regmasks.
        if (MO.isRegMask())
          MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());

        // If we encounter a VirtReg or PhysReg then get at the PhysReg and add
        // it to the physreg bitset.  Later we use only the PhysRegs that were
        // actually encountered in the MF to populate the MRI's used physregs.
        if (MO.isReg() && MO.getReg())
          PhysRegs.insert(
              TargetRegisterInfo::isVirtualRegister(MO.getReg()) ?
              VRM->getPhys(MO.getReg()) :
              MO.getReg());

        if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
          continue;
        unsigned VirtReg = MO.getReg();
        unsigned PhysReg = VRM->getPhys(VirtReg);
        assert(PhysReg != VirtRegMap::NO_PHYS_REG &&
               "Instruction uses unmapped VirtReg");
        assert(!MRI->isReserved(PhysReg) && "Reserved register assignment");

        // Preserve semantics of sub-register operands.
        if (MO.getSubReg()) {
          // A virtual register kill refers to the whole register, so we may
          // have to add <imp-use,kill> operands for the super-register.  A
          // partial redef always kills and redefines the super-register.
          if (MO.readsReg() && (MO.isDef() || MO.isKill()))
            SuperKills.push_back(PhysReg);

          if (MO.isDef()) {
            // The <def,undef> flag only makes sense for sub-register defs, and
            // we are substituting a full physreg.  An <imp-use,kill> operand
            // from the SuperKills list will represent the partial read of the
            // super-register.
            MO.setIsUndef(false);

            // Also add implicit defs for the super-register.
            if (MO.isDead())
              SuperDeads.push_back(PhysReg);
            else
              SuperDefs.push_back(PhysReg);
          }

          // PhysReg operands cannot have subregister indexes.
          PhysReg = TRI->getSubReg(PhysReg, MO.getSubReg());
          assert(PhysReg && "Invalid SubReg for physical register");
          MO.setSubReg(0);
        }
        // Rewrite. Note we could have used MachineOperand::substPhysReg(), but
        // we need the inlining here.
        MO.setReg(PhysReg);
      }

      // Add any missing super-register kills after rewriting the whole
      // instruction.
      while (!SuperKills.empty())
        MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true);

      while (!SuperDeads.empty())
        MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true);

      while (!SuperDefs.empty())
        MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI);

      DEBUG(dbgs() << "> " << *MI);

      // Finally, remove any identity copies.
      if (MI->isIdentityCopy()) {
        ++NumIdCopies;
        if (MI->getNumOperands() == 2) {
          DEBUG(dbgs() << "Deleting identity copy.\n");
          if (Indexes)
            Indexes->removeMachineInstrFromMaps(MI);
          // It's safe to erase MI because MII has already been incremented.
          MI->eraseFromParent();
        } else {
          // Transform identity copy to a KILL to deal with subregisters.
          MI->setDesc(TII->get(TargetOpcode::KILL));
          DEBUG(dbgs() << "Identity copy: " << *MI);
        }
      }
    }
  }

  // Tell MRI about physical registers in use.
  if (NoReturnInsts.empty()) {
    for (SparseSet<unsigned>::iterator
        RegI = PhysRegs.begin(), E = PhysRegs.end(); RegI != E; ++RegI)
      if (!MRI->reg_nodbg_empty(*RegI))
        MRI->setPhysRegUsed(*RegI);
  } else {
    for (SparseSet<unsigned>::iterator
        I = PhysRegs.begin(), E = PhysRegs.end(); I != E; ++I) {
      unsigned Reg = *I;
      if (MRI->reg_nodbg_empty(Reg))
        continue;
      // Check if this register has a use that will impact the rest of the
      // code. Uses in debug and noreturn instructions do not impact the
      // generated code.
      for (MachineInstr &It : MRI->reg_nodbg_instructions(Reg)) {
        if (!NoReturnInsts.count(&It)) {
          MRI->setPhysRegUsed(Reg);
          break;
        }
      }
    }
  }
}