1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
|
//===-- Execution.cpp - Implement code to simulate the program ------------===//
//
// This file contains the actual instruction interpreter.
//
//===----------------------------------------------------------------------===//
#include "Interpreter.h"
#include "ExecutionAnnotations.h"
#include "llvm/iOther.h"
#include "llvm/iTerminators.h"
#include "llvm/Type.h"
#include "llvm/ConstPoolVals.h"
#include "llvm/Assembly/Writer.h"
static unsigned getOperandSlot(Value *V) {
SlotNumber *SN = (SlotNumber*)V->getAnnotation(SlotNumberAID);
assert(SN && "Operand does not have a slot number annotation!");
return SN->SlotNum;
}
#define GET_CONST_VAL(TY, CLASS) \
case Type::TY##TyID: Result.TY##Val = ((CLASS*)CPV)->getValue(); break
static GenericValue getOperandValue(Value *V, ExecutionContext &SF) {
if (ConstPoolVal *CPV = V->castConstant()) {
GenericValue Result;
switch (CPV->getType()->getPrimitiveID()) {
GET_CONST_VAL(Bool , ConstPoolBool);
GET_CONST_VAL(UByte , ConstPoolUInt);
GET_CONST_VAL(SByte , ConstPoolSInt);
GET_CONST_VAL(UShort , ConstPoolUInt);
GET_CONST_VAL(Short , ConstPoolSInt);
GET_CONST_VAL(UInt , ConstPoolUInt);
GET_CONST_VAL(Int , ConstPoolSInt);
GET_CONST_VAL(Float , ConstPoolFP);
GET_CONST_VAL(Double , ConstPoolFP);
default:
cout << "ERROR: Constant unimp for type: " << CPV->getType() << endl;
}
return Result;
} else {
unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value
return SF.Values[TyP][getOperandSlot(V)];
}
}
static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value
SF.Values[TyP][getOperandSlot(V)] = Val;
}
//===----------------------------------------------------------------------===//
// Binary Instruction Implementations
//===----------------------------------------------------------------------===//
#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; break
static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_BINARY_OPERATOR(+, UByte);
IMPLEMENT_BINARY_OPERATOR(+, SByte);
IMPLEMENT_BINARY_OPERATOR(+, UShort);
IMPLEMENT_BINARY_OPERATOR(+, Short);
IMPLEMENT_BINARY_OPERATOR(+, UInt);
IMPLEMENT_BINARY_OPERATOR(+, Int);
IMPLEMENT_BINARY_OPERATOR(+, Float);
IMPLEMENT_BINARY_OPERATOR(+, Double);
case Type::ULongTyID:
case Type::LongTyID:
default:
cout << "Unhandled type for Add instruction: " << Ty << endl;
}
return Dest;
}
static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_BINARY_OPERATOR(-, UByte);
IMPLEMENT_BINARY_OPERATOR(-, SByte);
IMPLEMENT_BINARY_OPERATOR(-, UShort);
IMPLEMENT_BINARY_OPERATOR(-, Short);
IMPLEMENT_BINARY_OPERATOR(-, UInt);
IMPLEMENT_BINARY_OPERATOR(-, Int);
IMPLEMENT_BINARY_OPERATOR(-, Float);
IMPLEMENT_BINARY_OPERATOR(-, Double);
case Type::ULongTyID:
case Type::LongTyID:
default:
cout << "Unhandled type for Sub instruction: " << Ty << endl;
}
return Dest;
}
#define IMPLEMENT_SETCC(OP, TY) \
case Type::TY##TyID: Dest.BoolVal = Src1.TY##Val OP Src2.TY##Val; break
static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(==, UByte);
IMPLEMENT_SETCC(==, SByte);
IMPLEMENT_SETCC(==, UShort);
IMPLEMENT_SETCC(==, Short);
IMPLEMENT_SETCC(==, UInt);
IMPLEMENT_SETCC(==, Int);
IMPLEMENT_SETCC(==, Float);
IMPLEMENT_SETCC(==, Double);
case Type::ULongTyID:
case Type::LongTyID:
default:
cout << "Unhandled type for SetEQ instruction: " << Ty << endl;
}
return Dest;
}
static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(!=, UByte);
IMPLEMENT_SETCC(!=, SByte);
IMPLEMENT_SETCC(!=, UShort);
IMPLEMENT_SETCC(!=, Short);
IMPLEMENT_SETCC(!=, UInt);
IMPLEMENT_SETCC(!=, Int);
IMPLEMENT_SETCC(!=, Float);
IMPLEMENT_SETCC(!=, Double);
case Type::ULongTyID:
case Type::LongTyID:
default:
cout << "Unhandled type for SetNE instruction: " << Ty << endl;
}
return Dest;
}
static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(<=, UByte);
IMPLEMENT_SETCC(<=, SByte);
IMPLEMENT_SETCC(<=, UShort);
IMPLEMENT_SETCC(<=, Short);
IMPLEMENT_SETCC(<=, UInt);
IMPLEMENT_SETCC(<=, Int);
IMPLEMENT_SETCC(<=, Float);
IMPLEMENT_SETCC(<=, Double);
case Type::ULongTyID:
case Type::LongTyID:
default:
cout << "Unhandled type for SetLE instruction: " << Ty << endl;
}
return Dest;
}
static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(>=, UByte);
IMPLEMENT_SETCC(>=, SByte);
IMPLEMENT_SETCC(>=, UShort);
IMPLEMENT_SETCC(>=, Short);
IMPLEMENT_SETCC(>=, UInt);
IMPLEMENT_SETCC(>=, Int);
IMPLEMENT_SETCC(>=, Float);
IMPLEMENT_SETCC(>=, Double);
case Type::ULongTyID:
case Type::LongTyID:
default:
cout << "Unhandled type for SetGE instruction: " << Ty << endl;
}
return Dest;
}
static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(<, UByte);
IMPLEMENT_SETCC(<, SByte);
IMPLEMENT_SETCC(<, UShort);
IMPLEMENT_SETCC(<, Short);
IMPLEMENT_SETCC(<, UInt);
IMPLEMENT_SETCC(<, Int);
IMPLEMENT_SETCC(<, Float);
IMPLEMENT_SETCC(<, Double);
case Type::ULongTyID:
case Type::LongTyID:
default:
cout << "Unhandled type for SetLT instruction: " << Ty << endl;
}
return Dest;
}
static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(>, UByte);
IMPLEMENT_SETCC(>, SByte);
IMPLEMENT_SETCC(>, UShort);
IMPLEMENT_SETCC(>, Short);
IMPLEMENT_SETCC(>, UInt);
IMPLEMENT_SETCC(>, Int);
IMPLEMENT_SETCC(>, Float);
IMPLEMENT_SETCC(>, Double);
case Type::ULongTyID:
case Type::LongTyID:
default:
cout << "Unhandled type for SetGT instruction: " << Ty << endl;
}
return Dest;
}
static void executeBinaryInst(BinaryOperator *I, ExecutionContext &SF) {
const Type *Ty = I->getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I->getOperand(0), SF);
GenericValue Src2 = getOperandValue(I->getOperand(1), SF);
GenericValue R; // Result
switch (I->getOpcode()) {
case Instruction::Add: R = executeAddInst(Src1, Src2, Ty, SF); break;
case Instruction::Sub: R = executeSubInst(Src1, Src2, Ty, SF); break;
case Instruction::SetEQ: R = executeSetEQInst(Src1, Src2, Ty, SF); break;
case Instruction::SetNE: R = executeSetNEInst(Src1, Src2, Ty, SF); break;
case Instruction::SetLE: R = executeSetLEInst(Src1, Src2, Ty, SF); break;
case Instruction::SetGE: R = executeSetGEInst(Src1, Src2, Ty, SF); break;
case Instruction::SetLT: R = executeSetLTInst(Src1, Src2, Ty, SF); break;
case Instruction::SetGT: R = executeSetGTInst(Src1, Src2, Ty, SF); break;
default:
cout << "Don't know how to handle this binary operator!\n-->" << I;
}
SetValue(I, R, SF);
}
//===----------------------------------------------------------------------===//
// Terminator Instruction Implementations
//===----------------------------------------------------------------------===//
void Interpreter::executeRetInst(ReturnInst *I, ExecutionContext &SF) {
const Type *RetTy = 0;
GenericValue Result;
// Save away the return value... (if we are not 'ret void')
if (I->getNumOperands()) {
RetTy = I->getReturnValue()->getType();
Result = getOperandValue(I->getReturnValue(), SF);
}
// Save previously executing meth
const Method *M = ECStack.back().CurMethod;
// Pop the current stack frame... this invalidates SF
ECStack.pop_back();
if (ECStack.empty()) { // Finished main. Put result into exit code...
if (RetTy) { // Nonvoid return type?
cout << "Method " << M->getType() << " \"" << M->getName()
<< "\" returned ";
printValue(RetTy, Result);
cout << endl;
if (RetTy->isIntegral())
ExitCode = Result.SByteVal; // Capture the exit code of the program
} else {
ExitCode = 0;
}
return;
}
// If we have a previous stack frame, and we have a previous call, fill in
// the return value...
//
ExecutionContext &NewSF = ECStack.back();
if (NewSF.Caller) {
if (NewSF.Caller->getType() != Type::VoidTy) // Save result...
SetValue(NewSF.Caller, Result, NewSF);
NewSF.Caller = 0; // We returned from the call...
}
}
void Interpreter::executeBrInst(BranchInst *I, ExecutionContext &SF) {
SF.PrevBB = SF.CurBB; // Update PrevBB so that PHI nodes work...
BasicBlock *Dest;
Dest = I->getSuccessor(0); // Uncond branches have a fixed dest...
if (!I->isUnconditional()) {
if (getOperandValue(I->getCondition(), SF).BoolVal == 0) // If false cond...
Dest = I->getSuccessor(1);
}
SF.CurBB = Dest; // Update CurBB to branch destination
SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
}
//===----------------------------------------------------------------------===//
// Miscellaneous Instruction Implementations
//===----------------------------------------------------------------------===//
void Interpreter::executeCallInst(CallInst *I, ExecutionContext &SF) {
ECStack.back().Caller = I;
callMethod(I->getCalledMethod(), &ECStack.back());
}
static void executePHINode(PHINode *I, ExecutionContext &SF) {
BasicBlock *PrevBB = SF.PrevBB;
Value *IncomingValue = 0;
// Search for the value corresponding to this previous bb...
for (unsigned i = I->getNumIncomingValues(); i > 0;) {
if (I->getIncomingBlock(--i) == PrevBB) {
IncomingValue = I->getIncomingValue(i);
break;
}
}
assert(IncomingValue && "No PHI node predecessor for current PrevBB!");
// Found the value, set as the result...
SetValue(I, getOperandValue(IncomingValue, SF), SF);
}
//===----------------------------------------------------------------------===//
// Dispatch and Execution Code
//===----------------------------------------------------------------------===//
MethodInfo::MethodInfo(Method *M) : Annotation(MethodInfoAID) {
// Assign slot numbers to the method arguments...
const Method::ArgumentListType &ArgList = M->getArgumentList();
for (Method::ArgumentListType::const_iterator AI = ArgList.begin(),
AE = ArgList.end(); AI != AE; ++AI) {
MethodArgument *MA = *AI;
MA->addAnnotation(new SlotNumber(getValueSlot(MA)));
}
// Iterate over all of the instructions...
unsigned InstNum = 0;
for (Method::inst_iterator MI = M->inst_begin(), ME = M->inst_end();
MI != ME; ++MI) {
Instruction *I = *MI; // For each instruction...
I->addAnnotation(new InstNumber(++InstNum, getValueSlot(I))); // Add Annote
}
}
unsigned MethodInfo::getValueSlot(const Value *V) {
unsigned Plane = V->getType()->getUniqueID();
if (Plane >= NumPlaneElements.size())
NumPlaneElements.resize(Plane+1, 0);
return NumPlaneElements[Plane]++;
}
void Interpreter::initializeExecutionEngine() {
AnnotationManager::registerAnnotationFactory(MethodInfoAID, CreateMethodInfo);
}
//===----------------------------------------------------------------------===//
// callMethod - Execute the specified method...
//
void Interpreter::callMethod(Method *M, ExecutionContext *CallingSF = 0) {
if (M->isExternal()) {
// Handle builtin methods
cout << "Error: Method '" << M->getName() << "' is external!\n";
return;
}
// Process the method, assigning instruction numbers to the instructions in
// the method. Also calculate the number of values for each type slot active.
//
MethodInfo *MethInfo = (MethodInfo*)M->getOrCreateAnnotation(MethodInfoAID);
ECStack.push_back(ExecutionContext()); // Make a new stack frame...
ExecutionContext &StackFrame = ECStack.back(); // Fill it in...
StackFrame.CurMethod = M;
StackFrame.CurBB = M->front();
StackFrame.CurInst = StackFrame.CurBB->begin();
StackFrame.MethInfo = MethInfo;
// Initialize the values to nothing...
StackFrame.Values.resize(MethInfo->NumPlaneElements.size());
for (unsigned i = 0; i < MethInfo->NumPlaneElements.size(); ++i)
StackFrame.Values[i].resize(MethInfo->NumPlaneElements[i]);
StackFrame.PrevBB = 0; // No previous BB for PHI nodes...
// Run through the method arguments and initialize their values...
if (CallingSF) {
CallInst *Call = CallingSF->Caller;
assert(Call && "Caller improperly initialized!");
unsigned i = 0;
for (Method::ArgumentListType::iterator MI = M->getArgumentList().begin(),
ME = M->getArgumentList().end(); MI != ME; ++MI, ++i) {
Value *V = Call->getOperand(i+1);
MethodArgument *MA = *MI;
SetValue(MA, getOperandValue(V, *CallingSF), StackFrame);
}
}
}
// executeInstruction - Interpret a single instruction, increment the "PC", and
// return true if the next instruction is a breakpoint...
//
bool Interpreter::executeInstruction() {
assert(!ECStack.empty() && "No program running, cannot execute inst!");
ExecutionContext &SF = ECStack.back(); // Current stack frame
Instruction *I = *SF.CurInst++; // Increment before execute
if (I->isBinaryOp()) {
executeBinaryInst((BinaryOperator*)I, SF);
} else {
switch (I->getOpcode()) {
case Instruction::Ret: executeRetInst ((ReturnInst*)I, SF); break;
case Instruction::Br: executeBrInst ((BranchInst*)I, SF); break;
case Instruction::Call: executeCallInst ((CallInst*) I, SF); break;
case Instruction::PHINode: executePHINode ((PHINode*) I, SF); break;
default:
cout << "Don't know how to execute this instruction!\n-->" << I;
}
}
// Reset the current frame location to the top of stack
CurFrame = ECStack.size()-1;
if (CurFrame == -1) return false; // No breakpoint if no code
// Return true if there is a breakpoint annotation on the instruction...
return (*ECStack[CurFrame].CurInst)->getAnnotation(BreakpointAID) != 0;
}
void Interpreter::stepInstruction() { // Do the 'step' command
if (ECStack.empty()) {
cout << "Error: no program running, cannot step!\n";
return;
}
// Run an instruction...
executeInstruction();
// Print the next instruction to execute...
printCurrentInstruction();
}
// --- UI Stuff...
void Interpreter::nextInstruction() { // Do the 'next' command
if (ECStack.empty()) {
cout << "Error: no program running, cannot 'next'!\n";
return;
}
// If this is a call instruction, step over the call instruction...
// TODO: ICALL, CALL WITH, ...
if ((*ECStack.back().CurInst)->getOpcode() == Instruction::Call) {
// Step into the function...
if (executeInstruction()) {
// Hit a breakpoint, print current instruction, then return to user...
cout << "Breakpoint hit!\n";
printCurrentInstruction();
return;
}
// Finish executing the function...
finish();
} else {
// Normal instruction, just step...
stepInstruction();
}
}
void Interpreter::run() {
if (ECStack.empty()) {
cout << "Error: no program running, cannot run!\n";
return;
}
bool HitBreakpoint = false;
while (!ECStack.empty() && !HitBreakpoint) {
// Run an instruction...
HitBreakpoint = executeInstruction();
}
if (HitBreakpoint) {
cout << "Breakpoint hit!\n";
}
// Print the next instruction to execute...
printCurrentInstruction();
}
void Interpreter::finish() {
if (ECStack.empty()) {
cout << "Error: no program running, cannot run!\n";
return;
}
unsigned StackSize = ECStack.size();
bool HitBreakpoint = false;
while (ECStack.size() >= StackSize && !HitBreakpoint) {
// Run an instruction...
HitBreakpoint = executeInstruction();
}
if (HitBreakpoint) {
cout << "Breakpoint hit!\n";
}
// Print the next instruction to execute...
printCurrentInstruction();
}
// printCurrentInstruction - Print out the instruction that the virtual PC is
// at, or fail silently if no program is running.
//
void Interpreter::printCurrentInstruction() {
if (!ECStack.empty()) {
Instruction *I = *ECStack.back().CurInst;
InstNumber *IN = (InstNumber*)I->getAnnotation(SlotNumberAID);
assert(IN && "Instruction has no numbering annotation!");
cout << "#" << IN->InstNum << I;
}
}
void Interpreter::printValue(const Type *Ty, GenericValue V) {
cout << Ty << " ";
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID: cout << (V.BoolVal?"true":"false"); break;
case Type::SByteTyID: cout << V.SByteVal; break;
case Type::UByteTyID: cout << V.UByteVal; break;
case Type::ShortTyID: cout << V.ShortVal; break;
case Type::UShortTyID: cout << V.UShortVal; break;
case Type::IntTyID: cout << V.IntVal; break;
case Type::UIntTyID: cout << V.UIntVal; break;
case Type::FloatTyID: cout << V.FloatVal; break;
case Type::DoubleTyID: cout << V.DoubleVal; break;
default:
cout << "- Don't know how to print value of this type!";
break;
}
}
void Interpreter::printValue(const string &Name) {
Value *PickedVal = ChooseOneOption(Name, LookupMatchingNames(Name));
if (!PickedVal) return;
if (const Method *M = PickedVal->castMethod()) {
cout << M; // Print the method
} else { // Otherwise there should be an annotation for the slot#
printValue(PickedVal->getType(),
getOperandValue(PickedVal, ECStack[CurFrame]));
cout << endl;
}
}
void Interpreter::list() {
if (ECStack.empty())
cout << "Error: No program executing!\n";
else
cout << ECStack[CurFrame].CurMethod; // Just print the method out...
}
void Interpreter::printStackTrace() {
if (ECStack.empty()) cout << "No program executing!\n";
for (unsigned i = 0; i < ECStack.size(); ++i) {
cout << (((int)i == CurFrame) ? '>' : '-');
cout << "#" << i << ". " << ECStack[i].CurMethod->getType() << " \""
<< ECStack[i].CurMethod->getName() << "\"(";
// TODO: Print Args
cout << ")" << endl;
cout << *ECStack[i].CurInst;
}
}
|