1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
|
//===-- Execution.cpp - Implement code to simulate the program ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the actual instruction interpreter.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "interpreter"
#include "Interpreter.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cmath>
using namespace llvm;
STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden,
cl::desc("make the interpreter print every volatile load and store"));
//===----------------------------------------------------------------------===//
// Various Helper Functions
//===----------------------------------------------------------------------===//
static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
SF.Values[V] = Val;
}
//===----------------------------------------------------------------------===//
// Binary Instruction Implementations
//===----------------------------------------------------------------------===//
#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
case Type::TY##TyID: \
Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
break
static void executeFAddInst(GenericValue &Dest, GenericValue Src1,
GenericValue Src2, const Type *Ty) {
switch (Ty->getTypeID()) {
IMPLEMENT_BINARY_OPERATOR(+, Float);
IMPLEMENT_BINARY_OPERATOR(+, Double);
default:
dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
}
static void executeFSubInst(GenericValue &Dest, GenericValue Src1,
GenericValue Src2, const Type *Ty) {
switch (Ty->getTypeID()) {
IMPLEMENT_BINARY_OPERATOR(-, Float);
IMPLEMENT_BINARY_OPERATOR(-, Double);
default:
dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
}
static void executeFMulInst(GenericValue &Dest, GenericValue Src1,
GenericValue Src2, const Type *Ty) {
switch (Ty->getTypeID()) {
IMPLEMENT_BINARY_OPERATOR(*, Float);
IMPLEMENT_BINARY_OPERATOR(*, Double);
default:
dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
}
static void executeFDivInst(GenericValue &Dest, GenericValue Src1,
GenericValue Src2, const Type *Ty) {
switch (Ty->getTypeID()) {
IMPLEMENT_BINARY_OPERATOR(/, Float);
IMPLEMENT_BINARY_OPERATOR(/, Double);
default:
dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
}
static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
GenericValue Src2, const Type *Ty) {
switch (Ty->getTypeID()) {
case Type::FloatTyID:
Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
break;
case Type::DoubleTyID:
Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
break;
default:
dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
}
#define IMPLEMENT_INTEGER_ICMP(OP, TY) \
case Type::IntegerTyID: \
Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
break;
// Handle pointers specially because they must be compared with only as much
// width as the host has. We _do not_ want to be comparing 64 bit values when
// running on a 32-bit target, otherwise the upper 32 bits might mess up
// comparisons if they contain garbage.
#define IMPLEMENT_POINTER_ICMP(OP) \
case Type::PointerTyID: \
Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
(void*)(intptr_t)Src2.PointerVal); \
break;
static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(eq,Ty);
IMPLEMENT_POINTER_ICMP(==);
default:
dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(ne,Ty);
IMPLEMENT_POINTER_ICMP(!=);
default:
dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(ult,Ty);
IMPLEMENT_POINTER_ICMP(<);
default:
dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(slt,Ty);
IMPLEMENT_POINTER_ICMP(<);
default:
dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(ugt,Ty);
IMPLEMENT_POINTER_ICMP(>);
default:
dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(sgt,Ty);
IMPLEMENT_POINTER_ICMP(>);
default:
dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(ule,Ty);
IMPLEMENT_POINTER_ICMP(<=);
default:
dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(sle,Ty);
IMPLEMENT_POINTER_ICMP(<=);
default:
dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(uge,Ty);
IMPLEMENT_POINTER_ICMP(>=);
default:
dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(sge,Ty);
IMPLEMENT_POINTER_ICMP(>=);
default:
dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
void Interpreter::visitICmpInst(ICmpInst &I) {
ExecutionContext &SF = ECStack.back();
const Type *Ty = I.getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue R; // Result
switch (I.getPredicate()) {
case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break;
case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break;
case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break;
case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break;
case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break;
case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break;
case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break;
case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break;
case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
default:
dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I;
llvm_unreachable(0);
}
SetValue(&I, R, SF);
}
#define IMPLEMENT_FCMP(OP, TY) \
case Type::TY##TyID: \
Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
break
static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(==, Float);
IMPLEMENT_FCMP(==, Double);
default:
dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(!=, Float);
IMPLEMENT_FCMP(!=, Double);
default:
dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(<=, Float);
IMPLEMENT_FCMP(<=, Double);
default:
dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(>=, Float);
IMPLEMENT_FCMP(>=, Double);
default:
dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(<, Float);
IMPLEMENT_FCMP(<, Double);
default:
dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(>, Float);
IMPLEMENT_FCMP(>, Double);
default:
dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
#define IMPLEMENT_UNORDERED(TY, X,Y) \
if (TY->isFloatTy()) { \
if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
Dest.IntVal = APInt(1,true); \
return Dest; \
} \
} else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
Dest.IntVal = APInt(1,true); \
return Dest; \
}
static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
return executeFCMP_OEQ(Src1, Src2, Ty);
}
static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
return executeFCMP_ONE(Src1, Src2, Ty);
}
static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
return executeFCMP_OLE(Src1, Src2, Ty);
}
static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
return executeFCMP_OGE(Src1, Src2, Ty);
}
static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
return executeFCMP_OLT(Src1, Src2, Ty);
}
static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
return executeFCMP_OGT(Src1, Src2, Ty);
}
static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
if (Ty->isFloatTy())
Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
Src2.FloatVal == Src2.FloatVal));
else
Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
Src2.DoubleVal == Src2.DoubleVal));
return Dest;
}
static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
if (Ty->isFloatTy())
Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
Src2.FloatVal != Src2.FloatVal));
else
Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
Src2.DoubleVal != Src2.DoubleVal));
return Dest;
}
void Interpreter::visitFCmpInst(FCmpInst &I) {
ExecutionContext &SF = ECStack.back();
const Type *Ty = I.getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue R; // Result
switch (I.getPredicate()) {
case FCmpInst::FCMP_FALSE: R.IntVal = APInt(1,false); break;
case FCmpInst::FCMP_TRUE: R.IntVal = APInt(1,true); break;
case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break;
case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break;
case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break;
case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break;
case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break;
case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break;
case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break;
case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break;
case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break;
case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break;
case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break;
case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break;
case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break;
case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break;
default:
dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
llvm_unreachable(0);
}
SetValue(&I, R, SF);
}
static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,
GenericValue Src2, const Type *Ty) {
GenericValue Result;
switch (predicate) {
case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty);
case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty);
case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty);
case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty);
case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty);
case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty);
case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty);
case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty);
case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty);
case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty);
case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty);
case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty);
case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty);
case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty);
case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty);
case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty);
case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty);
case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty);
case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty);
case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty);
case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty);
case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty);
case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty);
case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty);
case FCmpInst::FCMP_FALSE: {
GenericValue Result;
Result.IntVal = APInt(1, false);
return Result;
}
case FCmpInst::FCMP_TRUE: {
GenericValue Result;
Result.IntVal = APInt(1, true);
return Result;
}
default:
dbgs() << "Unhandled Cmp predicate\n";
llvm_unreachable(0);
}
}
void Interpreter::visitBinaryOperator(BinaryOperator &I) {
ExecutionContext &SF = ECStack.back();
const Type *Ty = I.getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue R; // Result
switch (I.getOpcode()) {
case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break;
case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break;
case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break;
case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break;
case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break;
case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break;
case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break;
case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break;
case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
default:
dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
llvm_unreachable(0);
}
SetValue(&I, R, SF);
}
static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
GenericValue Src3) {
return Src1.IntVal == 0 ? Src3 : Src2;
}
void Interpreter::visitSelectInst(SelectInst &I) {
ExecutionContext &SF = ECStack.back();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
GenericValue R = executeSelectInst(Src1, Src2, Src3);
SetValue(&I, R, SF);
}
//===----------------------------------------------------------------------===//
// Terminator Instruction Implementations
//===----------------------------------------------------------------------===//
void Interpreter::exitCalled(GenericValue GV) {
// runAtExitHandlers() assumes there are no stack frames, but
// if exit() was called, then it had a stack frame. Blow away
// the stack before interpreting atexit handlers.
ECStack.clear();
runAtExitHandlers();
exit(GV.IntVal.zextOrTrunc(32).getZExtValue());
}
/// Pop the last stack frame off of ECStack and then copy the result
/// back into the result variable if we are not returning void. The
/// result variable may be the ExitValue, or the Value of the calling
/// CallInst if there was a previous stack frame. This method may
/// invalidate any ECStack iterators you have. This method also takes
/// care of switching to the normal destination BB, if we are returning
/// from an invoke.
///
void Interpreter::popStackAndReturnValueToCaller(const Type *RetTy,
GenericValue Result) {
// Pop the current stack frame.
ECStack.pop_back();
if (ECStack.empty()) { // Finished main. Put result into exit code...
if (RetTy && !RetTy->isVoidTy()) { // Nonvoid return type?
ExitValue = Result; // Capture the exit value of the program
} else {
memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
}
} else {
// If we have a previous stack frame, and we have a previous call,
// fill in the return value...
ExecutionContext &CallingSF = ECStack.back();
if (Instruction *I = CallingSF.Caller.getInstruction()) {
// Save result...
if (!CallingSF.Caller.getType()->isVoidTy())
SetValue(I, Result, CallingSF);
if (InvokeInst *II = dyn_cast<InvokeInst> (I))
SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
CallingSF.Caller = CallSite(); // We returned from the call...
}
}
}
void Interpreter::visitReturnInst(ReturnInst &I) {
ExecutionContext &SF = ECStack.back();
const Type *RetTy = Type::getVoidTy(I.getContext());
GenericValue Result;
// Save away the return value... (if we are not 'ret void')
if (I.getNumOperands()) {
RetTy = I.getReturnValue()->getType();
Result = getOperandValue(I.getReturnValue(), SF);
}
popStackAndReturnValueToCaller(RetTy, Result);
}
void Interpreter::visitUnwindInst(UnwindInst &I) {
// Unwind stack
Instruction *Inst;
do {
ECStack.pop_back();
if (ECStack.empty())
report_fatal_error("Empty stack during unwind!");
Inst = ECStack.back().Caller.getInstruction();
} while (!(Inst && isa<InvokeInst>(Inst)));
// Return from invoke
ExecutionContext &InvokingSF = ECStack.back();
InvokingSF.Caller = CallSite();
// Go to exceptional destination BB of invoke instruction
SwitchToNewBasicBlock(cast<InvokeInst>(Inst)->getUnwindDest(), InvokingSF);
}
void Interpreter::visitUnreachableInst(UnreachableInst &I) {
report_fatal_error("Program executed an 'unreachable' instruction!");
}
void Interpreter::visitBranchInst(BranchInst &I) {
ExecutionContext &SF = ECStack.back();
BasicBlock *Dest;
Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
if (!I.isUnconditional()) {
Value *Cond = I.getCondition();
if (getOperandValue(Cond, SF).IntVal == 0) // If false cond...
Dest = I.getSuccessor(1);
}
SwitchToNewBasicBlock(Dest, SF);
}
void Interpreter::visitSwitchInst(SwitchInst &I) {
ExecutionContext &SF = ECStack.back();
GenericValue CondVal = getOperandValue(I.getOperand(0), SF);
const Type *ElTy = I.getOperand(0)->getType();
// Check to see if any of the cases match...
BasicBlock *Dest = 0;
for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2)
if (executeICMP_EQ(CondVal, getOperandValue(I.getOperand(i), SF), ElTy)
.IntVal != 0) {
Dest = cast<BasicBlock>(I.getOperand(i+1));
break;
}
if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default
SwitchToNewBasicBlock(Dest, SF);
}
void Interpreter::visitIndirectBrInst(IndirectBrInst &I) {
ExecutionContext &SF = ECStack.back();
void *Dest = GVTOP(getOperandValue(I.getAddress(), SF));
SwitchToNewBasicBlock((BasicBlock*)Dest, SF);
}
// SwitchToNewBasicBlock - This method is used to jump to a new basic block.
// This function handles the actual updating of block and instruction iterators
// as well as execution of all of the PHI nodes in the destination block.
//
// This method does this because all of the PHI nodes must be executed
// atomically, reading their inputs before any of the results are updated. Not
// doing this can cause problems if the PHI nodes depend on other PHI nodes for
// their inputs. If the input PHI node is updated before it is read, incorrect
// results can happen. Thus we use a two phase approach.
//
void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
BasicBlock *PrevBB = SF.CurBB; // Remember where we came from...
SF.CurBB = Dest; // Update CurBB to branch destination
SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do
// Loop over all of the PHI nodes in the current block, reading their inputs.
std::vector<GenericValue> ResultValues;
for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
// Search for the value corresponding to this previous bb...
int i = PN->getBasicBlockIndex(PrevBB);
assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
Value *IncomingValue = PN->getIncomingValue(i);
// Save the incoming value for this PHI node...
ResultValues.push_back(getOperandValue(IncomingValue, SF));
}
// Now loop over all of the PHI nodes setting their values...
SF.CurInst = SF.CurBB->begin();
for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
PHINode *PN = cast<PHINode>(SF.CurInst);
SetValue(PN, ResultValues[i], SF);
}
}
//===----------------------------------------------------------------------===//
// Memory Instruction Implementations
//===----------------------------------------------------------------------===//
void Interpreter::visitAllocaInst(AllocaInst &I) {
ExecutionContext &SF = ECStack.back();
const Type *Ty = I.getType()->getElementType(); // Type to be allocated
// Get the number of elements being allocated by the array...
unsigned NumElements =
getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
unsigned TypeSize = (size_t)TD.getTypeAllocSize(Ty);
// Avoid malloc-ing zero bytes, use max()...
unsigned MemToAlloc = std::max(1U, NumElements * TypeSize);
// Allocate enough memory to hold the type...
void *Memory = malloc(MemToAlloc);
DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x "
<< NumElements << " (Total: " << MemToAlloc << ") at "
<< uintptr_t(Memory) << '\n');
GenericValue Result = PTOGV(Memory);
assert(Result.PointerVal != 0 && "Null pointer returned by malloc!");
SetValue(&I, Result, SF);
if (I.getOpcode() == Instruction::Alloca)
ECStack.back().Allocas.add(Memory);
}
// getElementOffset - The workhorse for getelementptr.
//
GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
gep_type_iterator E,
ExecutionContext &SF) {
assert(Ptr->getType()->isPointerTy() &&
"Cannot getElementOffset of a nonpointer type!");
uint64_t Total = 0;
for (; I != E; ++I) {
if (const StructType *STy = dyn_cast<StructType>(*I)) {
const StructLayout *SLO = TD.getStructLayout(STy);
const ConstantInt *CPU = cast<ConstantInt>(I.getOperand());
unsigned Index = unsigned(CPU->getZExtValue());
Total += SLO->getElementOffset(Index);
} else {
const SequentialType *ST = cast<SequentialType>(*I);
// Get the index number for the array... which must be long type...
GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
int64_t Idx;
unsigned BitWidth =
cast<IntegerType>(I.getOperand()->getType())->getBitWidth();
if (BitWidth == 32)
Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue();
else {
assert(BitWidth == 64 && "Invalid index type for getelementptr");
Idx = (int64_t)IdxGV.IntVal.getZExtValue();
}
Total += TD.getTypeAllocSize(ST->getElementType())*Idx;
}
}
GenericValue Result;
Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n");
return Result;
}
void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeGEPOperation(I.getPointerOperand(),
gep_type_begin(I), gep_type_end(I), SF), SF);
}
void Interpreter::visitLoadInst(LoadInst &I) {
ExecutionContext &SF = ECStack.back();
GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
GenericValue Result;
LoadValueFromMemory(Result, Ptr, I.getType());
SetValue(&I, Result, SF);
if (I.isVolatile() && PrintVolatile)
dbgs() << "Volatile load " << I;
}
void Interpreter::visitStoreInst(StoreInst &I) {
ExecutionContext &SF = ECStack.back();
GenericValue Val = getOperandValue(I.getOperand(0), SF);
GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
I.getOperand(0)->getType());
if (I.isVolatile() && PrintVolatile)
dbgs() << "Volatile store: " << I;
}
//===----------------------------------------------------------------------===//
// Miscellaneous Instruction Implementations
//===----------------------------------------------------------------------===//
void Interpreter::visitCallSite(CallSite CS) {
ExecutionContext &SF = ECStack.back();
// Check to see if this is an intrinsic function call...
Function *F = CS.getCalledFunction();
if (F && F->isDeclaration())
switch (F->getIntrinsicID()) {
case Intrinsic::not_intrinsic:
break;
case Intrinsic::vastart: { // va_start
GenericValue ArgIndex;
ArgIndex.UIntPairVal.first = ECStack.size() - 1;
ArgIndex.UIntPairVal.second = 0;
SetValue(CS.getInstruction(), ArgIndex, SF);
return;
}
case Intrinsic::vaend: // va_end is a noop for the interpreter
return;
case Intrinsic::vacopy: // va_copy: dest = src
SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF);
return;
default:
// If it is an unknown intrinsic function, use the intrinsic lowering
// class to transform it into hopefully tasty LLVM code.
//
BasicBlock::iterator me(CS.getInstruction());
BasicBlock *Parent = CS.getInstruction()->getParent();
bool atBegin(Parent->begin() == me);
if (!atBegin)
--me;
IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction()));
// Restore the CurInst pointer to the first instruction newly inserted, if
// any.
if (atBegin) {
SF.CurInst = Parent->begin();
} else {
SF.CurInst = me;
++SF.CurInst;
}
return;
}
SF.Caller = CS;
std::vector<GenericValue> ArgVals;
const unsigned NumArgs = SF.Caller.arg_size();
ArgVals.reserve(NumArgs);
uint16_t pNum = 1;
for (CallSite::arg_iterator i = SF.Caller.arg_begin(),
e = SF.Caller.arg_end(); i != e; ++i, ++pNum) {
Value *V = *i;
ArgVals.push_back(getOperandValue(V, SF));
}
// To handle indirect calls, we must get the pointer value from the argument
// and treat it as a function pointer.
GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF);
callFunction((Function*)GVTOP(SRC), ArgVals);
}
void Interpreter::visitShl(BinaryOperator &I) {
ExecutionContext &SF = ECStack.back();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Dest;
if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth())
Dest.IntVal = Src1.IntVal.shl(Src2.IntVal.getZExtValue());
else
Dest.IntVal = Src1.IntVal;
SetValue(&I, Dest, SF);
}
void Interpreter::visitLShr(BinaryOperator &I) {
ExecutionContext &SF = ECStack.back();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Dest;
if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth())
Dest.IntVal = Src1.IntVal.lshr(Src2.IntVal.getZExtValue());
else
Dest.IntVal = Src1.IntVal;
SetValue(&I, Dest, SF);
}
void Interpreter::visitAShr(BinaryOperator &I) {
ExecutionContext &SF = ECStack.back();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Dest;
if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth())
Dest.IntVal = Src1.IntVal.ashr(Src2.IntVal.getZExtValue());
else
Dest.IntVal = Src1.IntVal;
SetValue(&I, Dest, SF);
}
GenericValue Interpreter::executeTruncInst(Value *SrcVal, const Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
const IntegerType *DITy = cast<IntegerType>(DstTy);
unsigned DBitWidth = DITy->getBitWidth();
Dest.IntVal = Src.IntVal.trunc(DBitWidth);
return Dest;
}
GenericValue Interpreter::executeSExtInst(Value *SrcVal, const Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
const IntegerType *DITy = cast<IntegerType>(DstTy);
unsigned DBitWidth = DITy->getBitWidth();
Dest.IntVal = Src.IntVal.sext(DBitWidth);
return Dest;
}
GenericValue Interpreter::executeZExtInst(Value *SrcVal, const Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
const IntegerType *DITy = cast<IntegerType>(DstTy);
unsigned DBitWidth = DITy->getBitWidth();
Dest.IntVal = Src.IntVal.zext(DBitWidth);
return Dest;
}
GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, const Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() &&
"Invalid FPTrunc instruction");
Dest.FloatVal = (float) Src.DoubleVal;
return Dest;
}
GenericValue Interpreter::executeFPExtInst(Value *SrcVal, const Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() &&
"Invalid FPTrunc instruction");
Dest.DoubleVal = (double) Src.FloatVal;
return Dest;
}
GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, const Type *DstTy,
ExecutionContext &SF) {
const Type *SrcTy = SrcVal->getType();
uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction");
if (SrcTy->getTypeID() == Type::FloatTyID)
Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
else
Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
return Dest;
}
GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, const Type *DstTy,
ExecutionContext &SF) {
const Type *SrcTy = SrcVal->getType();
uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction");
if (SrcTy->getTypeID() == Type::FloatTyID)
Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
else
Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
return Dest;
}
GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, const Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction");
if (DstTy->getTypeID() == Type::FloatTyID)
Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
else
Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
return Dest;
}
GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, const Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction");
if (DstTy->getTypeID() == Type::FloatTyID)
Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal);
else
Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal);
return Dest;
}
GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, const Type *DstTy,
ExecutionContext &SF) {
uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction");
Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);
return Dest;
}
GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, const Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction");
uint32_t PtrSize = TD.getPointerSizeInBits();
if (PtrSize != Src.IntVal.getBitWidth())
Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);
Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue()));
return Dest;
}
GenericValue Interpreter::executeBitCastInst(Value *SrcVal, const Type *DstTy,
ExecutionContext &SF) {
const Type *SrcTy = SrcVal->getType();
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
if (DstTy->isPointerTy()) {
assert(SrcTy->isPointerTy() && "Invalid BitCast");
Dest.PointerVal = Src.PointerVal;
} else if (DstTy->isIntegerTy()) {
if (SrcTy->isFloatTy()) {
Dest.IntVal.zext(sizeof(Src.FloatVal) * CHAR_BIT);
Dest.IntVal.floatToBits(Src.FloatVal);
} else if (SrcTy->isDoubleTy()) {
Dest.IntVal.zext(sizeof(Src.DoubleVal) * CHAR_BIT);
Dest.IntVal.doubleToBits(Src.DoubleVal);
} else if (SrcTy->isIntegerTy()) {
Dest.IntVal = Src.IntVal;
} else
llvm_unreachable("Invalid BitCast");
} else if (DstTy->isFloatTy()) {
if (SrcTy->isIntegerTy())
Dest.FloatVal = Src.IntVal.bitsToFloat();
else
Dest.FloatVal = Src.FloatVal;
} else if (DstTy->isDoubleTy()) {
if (SrcTy->isIntegerTy())
Dest.DoubleVal = Src.IntVal.bitsToDouble();
else
Dest.DoubleVal = Src.DoubleVal;
} else
llvm_unreachable("Invalid Bitcast");
return Dest;
}
void Interpreter::visitTruncInst(TruncInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitSExtInst(SExtInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitZExtInst(ZExtInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitFPTruncInst(FPTruncInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitFPExtInst(FPExtInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitUIToFPInst(UIToFPInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitSIToFPInst(SIToFPInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitFPToUIInst(FPToUIInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitFPToSIInst(FPToSIInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitPtrToIntInst(PtrToIntInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitIntToPtrInst(IntToPtrInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitBitCastInst(BitCastInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);
}
#define IMPLEMENT_VAARG(TY) \
case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
void Interpreter::visitVAArgInst(VAArgInst &I) {
ExecutionContext &SF = ECStack.back();
// Get the incoming valist parameter. LLI treats the valist as a
// (ec-stack-depth var-arg-index) pair.
GenericValue VAList = getOperandValue(I.getOperand(0), SF);
GenericValue Dest;
GenericValue Src = ECStack[VAList.UIntPairVal.first]
.VarArgs[VAList.UIntPairVal.second];
const Type *Ty = I.getType();
switch (Ty->getTypeID()) {
case Type::IntegerTyID: Dest.IntVal = Src.IntVal;
IMPLEMENT_VAARG(Pointer);
IMPLEMENT_VAARG(Float);
IMPLEMENT_VAARG(Double);
default:
dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
// Set the Value of this Instruction.
SetValue(&I, Dest, SF);
// Move the pointer to the next vararg.
++VAList.UIntPairVal.second;
}
GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
ExecutionContext &SF) {
switch (CE->getOpcode()) {
case Instruction::Trunc:
return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::ZExt:
return executeZExtInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::SExt:
return executeSExtInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::FPTrunc:
return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::FPExt:
return executeFPExtInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::UIToFP:
return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::SIToFP:
return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::FPToUI:
return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::FPToSI:
return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::PtrToInt:
return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::IntToPtr:
return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::BitCast:
return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::GetElementPtr:
return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
gep_type_end(CE), SF);
case Instruction::FCmp:
case Instruction::ICmp:
return executeCmpInst(CE->getPredicate(),
getOperandValue(CE->getOperand(0), SF),
getOperandValue(CE->getOperand(1), SF),
CE->getOperand(0)->getType());
case Instruction::Select:
return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
getOperandValue(CE->getOperand(1), SF),
getOperandValue(CE->getOperand(2), SF));
default :
break;
}
// The cases below here require a GenericValue parameter for the result
// so we initialize one, compute it and then return it.
GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);
GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);
GenericValue Dest;
const Type * Ty = CE->getOperand(0)->getType();
switch (CE->getOpcode()) {
case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break;
case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break;
case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break;
case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break;
case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break;
case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break;
case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break;
case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break;
case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break;
case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break;
case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break;
case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break;
case Instruction::And: Dest.IntVal = Op0.IntVal & Op1.IntVal; break;
case Instruction::Or: Dest.IntVal = Op0.IntVal | Op1.IntVal; break;
case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break;
case Instruction::Shl:
Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
break;
case Instruction::LShr:
Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue());
break;
case Instruction::AShr:
Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue());
break;
default:
dbgs() << "Unhandled ConstantExpr: " << *CE << "\n";
llvm_unreachable(0);
return GenericValue();
}
return Dest;
}
GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
return getConstantExprValue(CE, SF);
} else if (Constant *CPV = dyn_cast<Constant>(V)) {
return getConstantValue(CPV);
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
return PTOGV(getPointerToGlobal(GV));
} else {
return SF.Values[V];
}
}
//===----------------------------------------------------------------------===//
// Dispatch and Execution Code
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// callFunction - Execute the specified function...
//
void Interpreter::callFunction(Function *F,
const std::vector<GenericValue> &ArgVals) {
assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 ||
ECStack.back().Caller.arg_size() == ArgVals.size()) &&
"Incorrect number of arguments passed into function call!");
// Make a new stack frame... and fill it in.
ECStack.push_back(ExecutionContext());
ExecutionContext &StackFrame = ECStack.back();
StackFrame.CurFunction = F;
// Special handling for external functions.
if (F->isDeclaration()) {
GenericValue Result = callExternalFunction (F, ArgVals);
// Simulate a 'ret' instruction of the appropriate type.
popStackAndReturnValueToCaller (F->getReturnType (), Result);
return;
}
// Get pointers to first LLVM BB & Instruction in function.
StackFrame.CurBB = F->begin();
StackFrame.CurInst = StackFrame.CurBB->begin();
// Run through the function arguments and initialize their values...
assert((ArgVals.size() == F->arg_size() ||
(ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
"Invalid number of values passed to function invocation!");
// Handle non-varargs arguments...
unsigned i = 0;
for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
AI != E; ++AI, ++i)
SetValue(AI, ArgVals[i], StackFrame);
// Handle varargs arguments...
StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
}
void Interpreter::run() {
while (!ECStack.empty()) {
// Interpret a single instruction & increment the "PC".
ExecutionContext &SF = ECStack.back(); // Current stack frame
Instruction &I = *SF.CurInst++; // Increment before execute
// Track the number of dynamic instructions executed.
++NumDynamicInsts;
DEBUG(dbgs() << "About to interpret: " << I);
visit(I); // Dispatch to one of the visit* methods...
#if 0
// This is not safe, as visiting the instruction could lower it and free I.
DEBUG(
if (!isa<CallInst>(I) && !isa<InvokeInst>(I) &&
I.getType() != Type::VoidTy) {
dbgs() << " --> ";
const GenericValue &Val = SF.Values[&I];
switch (I.getType()->getTypeID()) {
default: llvm_unreachable("Invalid GenericValue Type");
case Type::VoidTyID: dbgs() << "void"; break;
case Type::FloatTyID: dbgs() << "float " << Val.FloatVal; break;
case Type::DoubleTyID: dbgs() << "double " << Val.DoubleVal; break;
case Type::PointerTyID: dbgs() << "void* " << intptr_t(Val.PointerVal);
break;
case Type::IntegerTyID:
dbgs() << "i" << Val.IntVal.getBitWidth() << " "
<< Val.IntVal.toStringUnsigned(10)
<< " (0x" << Val.IntVal.toStringUnsigned(16) << ")\n";
break;
}
});
#endif
}
}
|