summaryrefslogtreecommitdiffstats
path: root/lib/ExecutionEngine/JIT/JITEmitter.cpp
blob: acbbfa145521b21455d2983a9ce4be0c4a525cc0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a MachineCodeEmitter object that is used by the JIT to
// write machine code to memory and remember where relocatable values are.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "jit"
#include "JIT.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/ValueMap.h"
#include "llvm/CodeGen/JITCodeEmitter.h"
#include "llvm/CodeGen/MachineCodeInfo.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRelocation.h"
#include "llvm/DebugInfo.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/ExecutionEngine/JITEventListener.h"
#include "llvm/ExecutionEngine/JITMemoryManager.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Disassembler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Memory.h"
#include "llvm/Support/MutexGuard.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetJITInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#ifndef NDEBUG
#include <iomanip>
#endif
using namespace llvm;

STATISTIC(NumBytes, "Number of bytes of machine code compiled");
STATISTIC(NumRelos, "Number of relocations applied");
STATISTIC(NumRetries, "Number of retries with more memory");


// A declaration may stop being a declaration once it's fully read from bitcode.
// This function returns true if F is fully read and is still a declaration.
static bool isNonGhostDeclaration(const Function *F) {
  return F->isDeclaration() && !F->isMaterializable();
}

//===----------------------------------------------------------------------===//
// JIT lazy compilation code.
//
namespace {
  class JITEmitter;
  class JITResolverState;

  template<typename ValueTy>
  struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> {
    typedef JITResolverState *ExtraData;
    static void onRAUW(JITResolverState *, Value *Old, Value *New) {
      llvm_unreachable("The JIT doesn't know how to handle a"
                       " RAUW on a value it has emitted.");
    }
  };

  struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> {
    typedef JITResolverState *ExtraData;
    static void onDelete(JITResolverState *JRS, Function *F);
  };

  class JITResolverState {
  public:
    typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> >
      FunctionToLazyStubMapTy;
    typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy;
    typedef ValueMap<Function *, SmallPtrSet<void*, 1>,
                     CallSiteValueMapConfig> FunctionToCallSitesMapTy;
    typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
  private:
    /// FunctionToLazyStubMap - Keep track of the lazy stub created for a
    /// particular function so that we can reuse them if necessary.
    FunctionToLazyStubMapTy FunctionToLazyStubMap;

    /// CallSiteToFunctionMap - Keep track of the function that each lazy call
    /// site corresponds to, and vice versa.
    CallSiteToFunctionMapTy CallSiteToFunctionMap;
    FunctionToCallSitesMapTy FunctionToCallSitesMap;

    /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a
    /// particular GlobalVariable so that we can reuse them if necessary.
    GlobalToIndirectSymMapTy GlobalToIndirectSymMap;

#ifndef NDEBUG
    /// Instance of the JIT this ResolverState serves.
    JIT *TheJIT;
#endif

  public:
    JITResolverState(JIT *jit) : FunctionToLazyStubMap(this),
                                 FunctionToCallSitesMap(this) {
#ifndef NDEBUG
      TheJIT = jit;
#endif
    }

    FunctionToLazyStubMapTy& getFunctionToLazyStubMap(
      const MutexGuard& locked) {
      assert(locked.holds(TheJIT->lock));
      return FunctionToLazyStubMap;
    }

    GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& lck) {
      assert(lck.holds(TheJIT->lock));
      return GlobalToIndirectSymMap;
    }

    std::pair<void *, Function *> LookupFunctionFromCallSite(
        const MutexGuard &locked, void *CallSite) const {
      assert(locked.holds(TheJIT->lock));

      // The address given to us for the stub may not be exactly right, it
      // might be a little bit after the stub.  As such, use upper_bound to
      // find it.
      CallSiteToFunctionMapTy::const_iterator I =
        CallSiteToFunctionMap.upper_bound(CallSite);
      assert(I != CallSiteToFunctionMap.begin() &&
             "This is not a known call site!");
      --I;
      return *I;
    }

    void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) {
      assert(locked.holds(TheJIT->lock));

      bool Inserted = CallSiteToFunctionMap.insert(
          std::make_pair(CallSite, F)).second;
      (void)Inserted;
      assert(Inserted && "Pair was already in CallSiteToFunctionMap");
      FunctionToCallSitesMap[F].insert(CallSite);
    }

    void EraseAllCallSitesForPrelocked(Function *F);

    // Erases _all_ call sites regardless of their function.  This is used to
    // unregister the stub addresses from the StubToResolverMap in
    // ~JITResolver().
    void EraseAllCallSitesPrelocked();
  };

  /// JITResolver - Keep track of, and resolve, call sites for functions that
  /// have not yet been compiled.
  class JITResolver {
    typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy;
    typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy;
    typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy;

    /// LazyResolverFn - The target lazy resolver function that we actually
    /// rewrite instructions to use.
    TargetJITInfo::LazyResolverFn LazyResolverFn;

    JITResolverState state;

    /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap
    /// for external functions.  TODO: Of course, external functions don't need
    /// a lazy stub.  It's actually here to make it more likely that far calls
    /// succeed, but no single stub can guarantee that.  I'll remove this in a
    /// subsequent checkin when I actually fix far calls.
    std::map<void*, void*> ExternalFnToStubMap;

    /// revGOTMap - map addresses to indexes in the GOT
    std::map<void*, unsigned> revGOTMap;
    unsigned nextGOTIndex;

    JITEmitter &JE;

    /// Instance of JIT corresponding to this Resolver.
    JIT *TheJIT;

  public:
    explicit JITResolver(JIT &jit, JITEmitter &je)
      : state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) {
      LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
    }

    ~JITResolver();

    /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's
    /// lazy-compilation stub if it has already been created.
    void *getLazyFunctionStubIfAvailable(Function *F);

    /// getLazyFunctionStub - This returns a pointer to a function's
    /// lazy-compilation stub, creating one on demand as needed.
    void *getLazyFunctionStub(Function *F);

    /// getExternalFunctionStub - Return a stub for the function at the
    /// specified address, created lazily on demand.
    void *getExternalFunctionStub(void *FnAddr);

    /// getGlobalValueIndirectSym - Return an indirect symbol containing the
    /// specified GV address.
    void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress);

    /// getGOTIndexForAddress - Return a new or existing index in the GOT for
    /// an address.  This function only manages slots, it does not manage the
    /// contents of the slots or the memory associated with the GOT.
    unsigned getGOTIndexForAddr(void *addr);

    /// JITCompilerFn - This function is called to resolve a stub to a compiled
    /// address.  If the LLVM Function corresponding to the stub has not yet
    /// been compiled, this function compiles it first.
    static void *JITCompilerFn(void *Stub);
  };

  class StubToResolverMapTy {
    /// Map a stub address to a specific instance of a JITResolver so that
    /// lazily-compiled functions can find the right resolver to use.
    ///
    /// Guarded by Lock.
    std::map<void*, JITResolver*> Map;

    /// Guards Map from concurrent accesses.
    mutable sys::Mutex Lock;

  public:
    /// Registers a Stub to be resolved by Resolver.
    void RegisterStubResolver(void *Stub, JITResolver *Resolver) {
      MutexGuard guard(Lock);
      Map.insert(std::make_pair(Stub, Resolver));
    }
    /// Unregisters the Stub when it's invalidated.
    void UnregisterStubResolver(void *Stub) {
      MutexGuard guard(Lock);
      Map.erase(Stub);
    }
    /// Returns the JITResolver instance that owns the Stub.
    JITResolver *getResolverFromStub(void *Stub) const {
      MutexGuard guard(Lock);
      // The address given to us for the stub may not be exactly right, it might
      // be a little bit after the stub.  As such, use upper_bound to find it.
      // This is the same trick as in LookupFunctionFromCallSite from
      // JITResolverState.
      std::map<void*, JITResolver*>::const_iterator I = Map.upper_bound(Stub);
      assert(I != Map.begin() && "This is not a known stub!");
      --I;
      return I->second;
    }
    /// True if any stubs refer to the given resolver. Only used in an assert().
    /// O(N)
    bool ResolverHasStubs(JITResolver* Resolver) const {
      MutexGuard guard(Lock);
      for (std::map<void*, JITResolver*>::const_iterator I = Map.begin(),
             E = Map.end(); I != E; ++I) {
        if (I->second == Resolver)
          return true;
      }
      return false;
    }
  };
  /// This needs to be static so that a lazy call stub can access it with no
  /// context except the address of the stub.
  ManagedStatic<StubToResolverMapTy> StubToResolverMap;

  /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
  /// used to output functions to memory for execution.
  class JITEmitter : public JITCodeEmitter {
    JITMemoryManager *MemMgr;

    // When outputting a function stub in the context of some other function, we
    // save BufferBegin/BufferEnd/CurBufferPtr here.
    uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;

    // When reattempting to JIT a function after running out of space, we store
    // the estimated size of the function we're trying to JIT here, so we can
    // ask the memory manager for at least this much space.  When we
    // successfully emit the function, we reset this back to zero.
    uintptr_t SizeEstimate;

    /// Relocations - These are the relocations that the function needs, as
    /// emitted.
    std::vector<MachineRelocation> Relocations;

    /// MBBLocations - This vector is a mapping from MBB ID's to their address.
    /// It is filled in by the StartMachineBasicBlock callback and queried by
    /// the getMachineBasicBlockAddress callback.
    std::vector<uintptr_t> MBBLocations;

    /// ConstantPool - The constant pool for the current function.
    ///
    MachineConstantPool *ConstantPool;

    /// ConstantPoolBase - A pointer to the first entry in the constant pool.
    ///
    void *ConstantPoolBase;

    /// ConstPoolAddresses - Addresses of individual constant pool entries.
    ///
    SmallVector<uintptr_t, 8> ConstPoolAddresses;

    /// JumpTable - The jump tables for the current function.
    ///
    MachineJumpTableInfo *JumpTable;

    /// JumpTableBase - A pointer to the first entry in the jump table.
    ///
    void *JumpTableBase;

    /// Resolver - This contains info about the currently resolved functions.
    JITResolver Resolver;

    /// LabelLocations - This vector is a mapping from Label ID's to their
    /// address.
    DenseMap<MCSymbol*, uintptr_t> LabelLocations;

    /// MMI - Machine module info for exception informations
    MachineModuleInfo* MMI;

    // CurFn - The llvm function being emitted.  Only valid during
    // finishFunction().
    const Function *CurFn;

    /// Information about emitted code, which is passed to the
    /// JITEventListeners.  This is reset in startFunction and used in
    /// finishFunction.
    JITEvent_EmittedFunctionDetails EmissionDetails;

    struct EmittedCode {
      void *FunctionBody;  // Beginning of the function's allocation.
      void *Code;  // The address the function's code actually starts at.
      void *ExceptionTable;
      EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {}
    };
    struct EmittedFunctionConfig : public ValueMapConfig<const Function*> {
      typedef JITEmitter *ExtraData;
      static void onDelete(JITEmitter *, const Function*);
      static void onRAUW(JITEmitter *, const Function*, const Function*);
    };
    ValueMap<const Function *, EmittedCode,
             EmittedFunctionConfig> EmittedFunctions;

    DebugLoc PrevDL;

    /// Instance of the JIT
    JIT *TheJIT;

  public:
    JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM)
      : SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0),
        EmittedFunctions(this), TheJIT(&jit) {
      MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
      if (jit.getJITInfo().needsGOT()) {
        MemMgr->AllocateGOT();
        DEBUG(dbgs() << "JIT is managing a GOT\n");
      }

    }
    ~JITEmitter() {
      delete MemMgr;
    }

    JITResolver &getJITResolver() { return Resolver; }

    virtual void startFunction(MachineFunction &F);
    virtual bool finishFunction(MachineFunction &F);

    void emitConstantPool(MachineConstantPool *MCP);
    void initJumpTableInfo(MachineJumpTableInfo *MJTI);
    void emitJumpTableInfo(MachineJumpTableInfo *MJTI);

    void startGVStub(const GlobalValue* GV,
                     unsigned StubSize, unsigned Alignment = 1);
    void startGVStub(void *Buffer, unsigned StubSize);
    void finishGVStub();
    virtual void *allocIndirectGV(const GlobalValue *GV,
                                  const uint8_t *Buffer, size_t Size,
                                  unsigned Alignment);

    /// allocateSpace - Reserves space in the current block if any, or
    /// allocate a new one of the given size.
    virtual void *allocateSpace(uintptr_t Size, unsigned Alignment);

    /// allocateGlobal - Allocate memory for a global.  Unlike allocateSpace,
    /// this method does not allocate memory in the current output buffer,
    /// because a global may live longer than the current function.
    virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment);

    virtual void addRelocation(const MachineRelocation &MR) {
      Relocations.push_back(MR);
    }

    virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
      if (MBBLocations.size() <= (unsigned)MBB->getNumber())
        MBBLocations.resize((MBB->getNumber()+1)*2);
      MBBLocations[MBB->getNumber()] = getCurrentPCValue();
      if (MBB->hasAddressTaken())
        TheJIT->addPointerToBasicBlock(MBB->getBasicBlock(),
                                       (void*)getCurrentPCValue());
      DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at ["
                   << (void*) getCurrentPCValue() << "]\n");
    }

    virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const;
    virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const;

    virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const{
      assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
             MBBLocations[MBB->getNumber()] && "MBB not emitted!");
      return MBBLocations[MBB->getNumber()];
    }

    /// retryWithMoreMemory - Log a retry and deallocate all memory for the
    /// given function.  Increase the minimum allocation size so that we get
    /// more memory next time.
    void retryWithMoreMemory(MachineFunction &F);

    /// deallocateMemForFunction - Deallocate all memory for the specified
    /// function body.
    void deallocateMemForFunction(const Function *F);

    virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn);

    virtual void emitLabel(MCSymbol *Label) {
      LabelLocations[Label] = getCurrentPCValue();
    }

    virtual DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() {
      return &LabelLocations;
    }

    virtual uintptr_t getLabelAddress(MCSymbol *Label) const {
      assert(LabelLocations.count(Label) && "Label not emitted!");
      return LabelLocations.find(Label)->second;
    }

    virtual void setModuleInfo(MachineModuleInfo* Info) {
      MMI = Info;
    }

  private:
    void *getPointerToGlobal(GlobalValue *GV, void *Reference,
                             bool MayNeedFarStub);
    void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference);
  };
}

void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) {
  JRS->EraseAllCallSitesForPrelocked(F);
}

void JITResolverState::EraseAllCallSitesForPrelocked(Function *F) {
  FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F);
  if (F2C == FunctionToCallSitesMap.end())
    return;
  StubToResolverMapTy &S2RMap = *StubToResolverMap;
  for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(),
         E = F2C->second.end(); I != E; ++I) {
    S2RMap.UnregisterStubResolver(*I);
    bool Erased = CallSiteToFunctionMap.erase(*I);
    (void)Erased;
    assert(Erased && "Missing call site->function mapping");
  }
  FunctionToCallSitesMap.erase(F2C);
}

void JITResolverState::EraseAllCallSitesPrelocked() {
  StubToResolverMapTy &S2RMap = *StubToResolverMap;
  for (CallSiteToFunctionMapTy::const_iterator
         I = CallSiteToFunctionMap.begin(),
         E = CallSiteToFunctionMap.end(); I != E; ++I) {
    S2RMap.UnregisterStubResolver(I->first);
  }
  CallSiteToFunctionMap.clear();
  FunctionToCallSitesMap.clear();
}

JITResolver::~JITResolver() {
  // No need to lock because we're in the destructor, and state isn't shared.
  state.EraseAllCallSitesPrelocked();
  assert(!StubToResolverMap->ResolverHasStubs(this) &&
         "Resolver destroyed with stubs still alive.");
}

/// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub
/// if it has already been created.
void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) {
  MutexGuard locked(TheJIT->lock);

  // If we already have a stub for this function, recycle it.
  return state.getFunctionToLazyStubMap(locked).lookup(F);
}

/// getFunctionStub - This returns a pointer to a function stub, creating
/// one on demand as needed.
void *JITResolver::getLazyFunctionStub(Function *F) {
  MutexGuard locked(TheJIT->lock);

  // If we already have a lazy stub for this function, recycle it.
  void *&Stub = state.getFunctionToLazyStubMap(locked)[F];
  if (Stub) return Stub;

  // Call the lazy resolver function if we are JIT'ing lazily.  Otherwise we
  // must resolve the symbol now.
  void *Actual = TheJIT->isCompilingLazily()
    ? (void *)(intptr_t)LazyResolverFn : (void *)0;

  // If this is an external declaration, attempt to resolve the address now
  // to place in the stub.
  if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) {
    Actual = TheJIT->getPointerToFunction(F);

    // If we resolved the symbol to a null address (eg. a weak external)
    // don't emit a stub. Return a null pointer to the application.
    if (!Actual) return 0;
  }

  TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
  JE.startGVStub(F, SL.Size, SL.Alignment);
  // Codegen a new stub, calling the lazy resolver or the actual address of the
  // external function, if it was resolved.
  Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE);
  JE.finishGVStub();

  if (Actual != (void*)(intptr_t)LazyResolverFn) {
    // If we are getting the stub for an external function, we really want the
    // address of the stub in the GlobalAddressMap for the JIT, not the address
    // of the external function.
    TheJIT->updateGlobalMapping(F, Stub);
  }

  DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '"
        << F->getName() << "'\n");

  if (TheJIT->isCompilingLazily()) {
    // Register this JITResolver as the one corresponding to this call site so
    // JITCompilerFn will be able to find it.
    StubToResolverMap->RegisterStubResolver(Stub, this);

    // Finally, keep track of the stub-to-Function mapping so that the
    // JITCompilerFn knows which function to compile!
    state.AddCallSite(locked, Stub, F);
  } else if (!Actual) {
    // If we are JIT'ing non-lazily but need to call a function that does not
    // exist yet, add it to the JIT's work list so that we can fill in the
    // stub address later.
    assert(!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage() &&
           "'Actual' should have been set above.");
    TheJIT->addPendingFunction(F);
  }

  return Stub;
}

/// getGlobalValueIndirectSym - Return a lazy pointer containing the specified
/// GV address.
void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
  MutexGuard locked(TheJIT->lock);

  // If we already have a stub for this global variable, recycle it.
  void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV];
  if (IndirectSym) return IndirectSym;

  // Otherwise, codegen a new indirect symbol.
  IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
                                                                JE);

  DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym
        << "] for GV '" << GV->getName() << "'\n");

  return IndirectSym;
}

/// getExternalFunctionStub - Return a stub for the function at the
/// specified address, created lazily on demand.
void *JITResolver::getExternalFunctionStub(void *FnAddr) {
  // If we already have a stub for this function, recycle it.
  void *&Stub = ExternalFnToStubMap[FnAddr];
  if (Stub) return Stub;

  TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
  JE.startGVStub(0, SL.Size, SL.Alignment);
  Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE);
  JE.finishGVStub();

  DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub
               << "] for external function at '" << FnAddr << "'\n");
  return Stub;
}

unsigned JITResolver::getGOTIndexForAddr(void* addr) {
  unsigned idx = revGOTMap[addr];
  if (!idx) {
    idx = ++nextGOTIndex;
    revGOTMap[addr] = idx;
    DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr ["
                 << addr << "]\n");
  }
  return idx;
}

/// JITCompilerFn - This function is called when a lazy compilation stub has
/// been entered.  It looks up which function this stub corresponds to, compiles
/// it if necessary, then returns the resultant function pointer.
void *JITResolver::JITCompilerFn(void *Stub) {
  JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub);
  assert(JR && "Unable to find the corresponding JITResolver to the call site");

  Function* F = 0;
  void* ActualPtr = 0;

  {
    // Only lock for getting the Function. The call getPointerToFunction made
    // in this function might trigger function materializing, which requires
    // JIT lock to be unlocked.
    MutexGuard locked(JR->TheJIT->lock);

    // The address given to us for the stub may not be exactly right, it might
    // be a little bit after the stub.  As such, use upper_bound to find it.
    std::pair<void*, Function*> I =
      JR->state.LookupFunctionFromCallSite(locked, Stub);
    F = I.second;
    ActualPtr = I.first;
  }

  // If we have already code generated the function, just return the address.
  void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F);

  if (!Result) {
    // Otherwise we don't have it, do lazy compilation now.

    // If lazy compilation is disabled, emit a useful error message and abort.
    if (!JR->TheJIT->isCompilingLazily()) {
      report_fatal_error("LLVM JIT requested to do lazy compilation of"
                         " function '"
                        + F->getName() + "' when lazy compiles are disabled!");
    }

    DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName()
          << "' In stub ptr = " << Stub << " actual ptr = "
          << ActualPtr << "\n");
    (void)ActualPtr;

    Result = JR->TheJIT->getPointerToFunction(F);
  }

  // Reacquire the lock to update the GOT map.
  MutexGuard locked(JR->TheJIT->lock);

  // We might like to remove the call site from the CallSiteToFunction map, but
  // we can't do that! Multiple threads could be stuck, waiting to acquire the
  // lock above. As soon as the 1st function finishes compiling the function,
  // the next one will be released, and needs to be able to find the function it
  // needs to call.

  // FIXME: We could rewrite all references to this stub if we knew them.

  // What we will do is set the compiled function address to map to the
  // same GOT entry as the stub so that later clients may update the GOT
  // if they see it still using the stub address.
  // Note: this is done so the Resolver doesn't have to manage GOT memory
  // Do this without allocating map space if the target isn't using a GOT
  if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end())
    JR->revGOTMap[Result] = JR->revGOTMap[Stub];

  return Result;
}

//===----------------------------------------------------------------------===//
// JITEmitter code.
//
void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
                                     bool MayNeedFarStub) {
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
    return TheJIT->getOrEmitGlobalVariable(GV);

  if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
    return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false));

  // If we have already compiled the function, return a pointer to its body.
  Function *F = cast<Function>(V);

  void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F);
  if (FnStub) {
    // Return the function stub if it's already created.  We do this first so
    // that we're returning the same address for the function as any previous
    // call.  TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be
    // close enough to call.
    return FnStub;
  }

  // If we know the target can handle arbitrary-distance calls, try to
  // return a direct pointer.
  if (!MayNeedFarStub) {
    // If we have code, go ahead and return that.
    void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
    if (ResultPtr) return ResultPtr;

    // If this is an external function pointer, we can force the JIT to
    // 'compile' it, which really just adds it to the map.
    if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage())
      return TheJIT->getPointerToFunction(F);
  }

  // Otherwise, we may need a to emit a stub, and, conservatively, we always do
  // so.  Note that it's possible to return null from getLazyFunctionStub in the
  // case of a weak extern that fails to resolve.
  return Resolver.getLazyFunctionStub(F);
}

void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) {
  // Make sure GV is emitted first, and create a stub containing the fully
  // resolved address.
  void *GVAddress = getPointerToGlobal(V, Reference, false);
  void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress);
  return StubAddr;
}

void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) {
  if (DL.isUnknown()) return;
  if (!BeforePrintingInsn) return;

  const LLVMContext &Context = EmissionDetails.MF->getFunction()->getContext();

  if (DL.getScope(Context) != 0 && PrevDL != DL) {
    JITEvent_EmittedFunctionDetails::LineStart NextLine;
    NextLine.Address = getCurrentPCValue();
    NextLine.Loc = DL;
    EmissionDetails.LineStarts.push_back(NextLine);
  }

  PrevDL = DL;
}

static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
                                           const DataLayout *TD) {
  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
  if (Constants.empty()) return 0;

  unsigned Size = 0;
  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
    MachineConstantPoolEntry CPE = Constants[i];
    unsigned AlignMask = CPE.getAlignment() - 1;
    Size = (Size + AlignMask) & ~AlignMask;
    Type *Ty = CPE.getType();
    Size += TD->getTypeAllocSize(Ty);
  }
  return Size;
}

void JITEmitter::startFunction(MachineFunction &F) {
  DEBUG(dbgs() << "JIT: Starting CodeGen of Function "
        << F.getName() << "\n");

  uintptr_t ActualSize = 0;
  // Set the memory writable, if it's not already
  MemMgr->setMemoryWritable();

  if (SizeEstimate > 0) {
    // SizeEstimate will be non-zero on reallocation attempts.
    ActualSize = SizeEstimate;
  }

  BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
                                                         ActualSize);
  BufferEnd = BufferBegin+ActualSize;
  EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin;

  // Ensure the constant pool/jump table info is at least 4-byte aligned.
  emitAlignment(16);

  emitConstantPool(F.getConstantPool());
  if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
    initJumpTableInfo(MJTI);

  // About to start emitting the machine code for the function.
  emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
  TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
  EmittedFunctions[F.getFunction()].Code = CurBufferPtr;

  MBBLocations.clear();

  EmissionDetails.MF = &F;
  EmissionDetails.LineStarts.clear();
}

bool JITEmitter::finishFunction(MachineFunction &F) {
  if (CurBufferPtr == BufferEnd) {
    // We must call endFunctionBody before retrying, because
    // deallocateMemForFunction requires it.
    MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
    retryWithMoreMemory(F);
    return true;
  }

  if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
    emitJumpTableInfo(MJTI);

  // FnStart is the start of the text, not the start of the constant pool and
  // other per-function data.
  uint8_t *FnStart =
    (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());

  // FnEnd is the end of the function's machine code.
  uint8_t *FnEnd = CurBufferPtr;

  if (!Relocations.empty()) {
    CurFn = F.getFunction();
    NumRelos += Relocations.size();

    // Resolve the relocations to concrete pointers.
    for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
      MachineRelocation &MR = Relocations[i];
      void *ResultPtr = 0;
      if (!MR.letTargetResolve()) {
        if (MR.isExternalSymbol()) {
          ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
                                                        false);
          DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
                       << ResultPtr << "]\n");

          // If the target REALLY wants a stub for this function, emit it now.
          if (MR.mayNeedFarStub()) {
            ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
          }
        } else if (MR.isGlobalValue()) {
          ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
                                         BufferBegin+MR.getMachineCodeOffset(),
                                         MR.mayNeedFarStub());
        } else if (MR.isIndirectSymbol()) {
          ResultPtr = getPointerToGVIndirectSym(
              MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset());
        } else if (MR.isBasicBlock()) {
          ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
        } else if (MR.isConstantPoolIndex()) {
          ResultPtr =
            (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
        } else {
          assert(MR.isJumpTableIndex());
          ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
        }

        MR.setResultPointer(ResultPtr);
      }

      // if we are managing the GOT and the relocation wants an index,
      // give it one
      if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
        unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
        MR.setGOTIndex(idx);
        if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
          DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr
                       << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
                       << "\n");
          ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
        }
      }
    }

    CurFn = 0;
    TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
                                  Relocations.size(), MemMgr->getGOTBase());
  }

  // Update the GOT entry for F to point to the new code.
  if (MemMgr->isManagingGOT()) {
    unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
    if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
      DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin
                   << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
                   << "\n");
      ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
    }
  }

  // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for
  // global variables that were referenced in the relocations.
  MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);

  if (CurBufferPtr == BufferEnd) {
    retryWithMoreMemory(F);
    return true;
  } else {
    // Now that we've succeeded in emitting the function, reset the
    // SizeEstimate back down to zero.
    SizeEstimate = 0;
  }

  BufferBegin = CurBufferPtr = 0;
  NumBytes += FnEnd-FnStart;

  // Invalidate the icache if necessary.
  sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);

  TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
                                EmissionDetails);

  // Reset the previous debug location.
  PrevDL = DebugLoc();

  DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart
        << "] Function: " << F.getName()
        << ": " << (FnEnd-FnStart) << " bytes of text, "
        << Relocations.size() << " relocations\n");

  Relocations.clear();
  ConstPoolAddresses.clear();

  // Mark code region readable and executable if it's not so already.
  MemMgr->setMemoryExecutable();

  DEBUG({
      if (sys::hasDisassembler()) {
        dbgs() << "JIT: Disassembled code:\n";
        dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart,
                                         (uintptr_t)FnStart);
      } else {
        dbgs() << "JIT: Binary code:\n";
        uint8_t* q = FnStart;
        for (int i = 0; q < FnEnd; q += 4, ++i) {
          if (i == 4)
            i = 0;
          if (i == 0)
            dbgs() << "JIT: " << (long)(q - FnStart) << ": ";
          bool Done = false;
          for (int j = 3; j >= 0; --j) {
            if (q + j >= FnEnd)
              Done = true;
            else
              dbgs() << (unsigned short)q[j];
          }
          if (Done)
            break;
          dbgs() << ' ';
          if (i == 3)
            dbgs() << '\n';
        }
        dbgs()<< '\n';
      }
    });

  if (MMI)
    MMI->EndFunction();

  return false;
}

void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
  DEBUG(dbgs() << "JIT: Ran out of space for native code.  Reattempting.\n");
  Relocations.clear();  // Clear the old relocations or we'll reapply them.
  ConstPoolAddresses.clear();
  ++NumRetries;
  deallocateMemForFunction(F.getFunction());
  // Try again with at least twice as much free space.
  SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin));

  for (MachineFunction::iterator MBB = F.begin(), E = F.end(); MBB != E; ++MBB){
    if (MBB->hasAddressTaken())
      TheJIT->clearPointerToBasicBlock(MBB->getBasicBlock());
  }
}

/// deallocateMemForFunction - Deallocate all memory for the specified
/// function body.  Also drop any references the function has to stubs.
/// May be called while the Function is being destroyed inside ~Value().
void JITEmitter::deallocateMemForFunction(const Function *F) {
  ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator
    Emitted = EmittedFunctions.find(F);
  if (Emitted != EmittedFunctions.end()) {
    MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody);
    TheJIT->NotifyFreeingMachineCode(Emitted->second.Code);

    EmittedFunctions.erase(Emitted);
  }
}


void *JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
  if (BufferBegin)
    return JITCodeEmitter::allocateSpace(Size, Alignment);

  // create a new memory block if there is no active one.
  // care must be taken so that BufferBegin is invalidated when a
  // block is trimmed
  BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
  BufferEnd = BufferBegin+Size;
  return CurBufferPtr;
}

void *JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) {
  // Delegate this call through the memory manager.
  return MemMgr->allocateGlobal(Size, Alignment);
}

void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
  if (TheJIT->getJITInfo().hasCustomConstantPool())
    return;

  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
  if (Constants.empty()) return;

  unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getDataLayout());
  unsigned Align = MCP->getConstantPoolAlignment();
  ConstantPoolBase = allocateSpace(Size, Align);
  ConstantPool = MCP;

  if (ConstantPoolBase == 0) return;  // Buffer overflow.

  DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase
               << "] (size: " << Size << ", alignment: " << Align << ")\n");

  // Initialize the memory for all of the constant pool entries.
  unsigned Offset = 0;
  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
    MachineConstantPoolEntry CPE = Constants[i];
    unsigned AlignMask = CPE.getAlignment() - 1;
    Offset = (Offset + AlignMask) & ~AlignMask;

    uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset;
    ConstPoolAddresses.push_back(CAddr);
    if (CPE.isMachineConstantPoolEntry()) {
      // FIXME: add support to lower machine constant pool values into bytes!
      report_fatal_error("Initialize memory with machine specific constant pool"
                        "entry has not been implemented!");
    }
    TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
    DEBUG(dbgs() << "JIT:   CP" << i << " at [0x";
          dbgs().write_hex(CAddr) << "]\n");

    Type *Ty = CPE.Val.ConstVal->getType();
    Offset += TheJIT->getDataLayout()->getTypeAllocSize(Ty);
  }
}

void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
  if (TheJIT->getJITInfo().hasCustomJumpTables())
    return;
  if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline)
    return;

  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
  if (JT.empty()) return;

  unsigned NumEntries = 0;
  for (unsigned i = 0, e = JT.size(); i != e; ++i)
    NumEntries += JT[i].MBBs.size();

  unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getDataLayout());

  // Just allocate space for all the jump tables now.  We will fix up the actual
  // MBB entries in the tables after we emit the code for each block, since then
  // we will know the final locations of the MBBs in memory.
  JumpTable = MJTI;
  JumpTableBase = allocateSpace(NumEntries * EntrySize,
                             MJTI->getEntryAlignment(*TheJIT->getDataLayout()));
}

void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
  if (TheJIT->getJITInfo().hasCustomJumpTables())
    return;

  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
  if (JT.empty() || JumpTableBase == 0) return;


  switch (MJTI->getEntryKind()) {
  case MachineJumpTableInfo::EK_Inline:
    return;
  case MachineJumpTableInfo::EK_BlockAddress: {
    // EK_BlockAddress - Each entry is a plain address of block, e.g.:
    //     .word LBB123
    assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == sizeof(void*) &&
           "Cross JIT'ing?");

    // For each jump table, map each target in the jump table to the address of
    // an emitted MachineBasicBlock.
    intptr_t *SlotPtr = (intptr_t*)JumpTableBase;

    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
      // Store the address of the basic block for this jump table slot in the
      // memory we allocated for the jump table in 'initJumpTableInfo'
      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
        *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
    }
    break;
  }

  case MachineJumpTableInfo::EK_Custom32:
  case MachineJumpTableInfo::EK_GPRel32BlockAddress:
  case MachineJumpTableInfo::EK_LabelDifference32: {
    assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == 4&&"Cross JIT'ing?");
    // For each jump table, place the offset from the beginning of the table
    // to the target address.
    int *SlotPtr = (int*)JumpTableBase;

    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
      // Store the offset of the basic block for this jump table slot in the
      // memory we allocated for the jump table in 'initJumpTableInfo'
      uintptr_t Base = (uintptr_t)SlotPtr;
      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
        uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
        /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook.
        *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
      }
    }
    break;
  }
  case MachineJumpTableInfo::EK_GPRel64BlockAddress:
    llvm_unreachable(
           "JT Info emission not implemented for GPRel64BlockAddress yet.");
  }
}

void JITEmitter::startGVStub(const GlobalValue* GV,
                             unsigned StubSize, unsigned Alignment) {
  SavedBufferBegin = BufferBegin;
  SavedBufferEnd = BufferEnd;
  SavedCurBufferPtr = CurBufferPtr;

  BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment);
  BufferEnd = BufferBegin+StubSize+1;
}

void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) {
  SavedBufferBegin = BufferBegin;
  SavedBufferEnd = BufferEnd;
  SavedCurBufferPtr = CurBufferPtr;

  BufferBegin = CurBufferPtr = (uint8_t *)Buffer;
  BufferEnd = BufferBegin+StubSize+1;
}

void JITEmitter::finishGVStub() {
  assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space.");
  NumBytes += getCurrentPCOffset();
  BufferBegin = SavedBufferBegin;
  BufferEnd = SavedBufferEnd;
  CurBufferPtr = SavedCurBufferPtr;
}

void *JITEmitter::allocIndirectGV(const GlobalValue *GV,
                                  const uint8_t *Buffer, size_t Size,
                                  unsigned Alignment) {
  uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment);
  memcpy(IndGV, Buffer, Size);
  return IndGV;
}

// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
// in the constant pool that was last emitted with the 'emitConstantPool'
// method.
//
uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
  assert(ConstantNum < ConstantPool->getConstants().size() &&
         "Invalid ConstantPoolIndex!");
  return ConstPoolAddresses[ConstantNum];
}

// getJumpTableEntryAddress - Return the address of the JumpTable with index
// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
//
uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
  const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
  assert(Index < JT.size() && "Invalid jump table index!");

  unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getDataLayout());

  unsigned Offset = 0;
  for (unsigned i = 0; i < Index; ++i)
    Offset += JT[i].MBBs.size();

   Offset *= EntrySize;

  return (uintptr_t)((char *)JumpTableBase + Offset);
}

void JITEmitter::EmittedFunctionConfig::onDelete(
  JITEmitter *Emitter, const Function *F) {
  Emitter->deallocateMemForFunction(F);
}
void JITEmitter::EmittedFunctionConfig::onRAUW(
  JITEmitter *, const Function*, const Function*) {
  llvm_unreachable("The JIT doesn't know how to handle a"
                   " RAUW on a value it has emitted.");
}


//===----------------------------------------------------------------------===//
//  Public interface to this file
//===----------------------------------------------------------------------===//

JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM,
                                   TargetMachine &tm) {
  return new JITEmitter(jit, JMM, tm);
}

// getPointerToFunctionOrStub - If the specified function has been
// code-gen'd, return a pointer to the function.  If not, compile it, or use
// a stub to implement lazy compilation if available.
//
void *JIT::getPointerToFunctionOrStub(Function *F) {
  // If we have already code generated the function, just return the address.
  if (void *Addr = getPointerToGlobalIfAvailable(F))
    return Addr;

  // Get a stub if the target supports it.
  JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter());
  return JE->getJITResolver().getLazyFunctionStub(F);
}

void JIT::updateFunctionStub(Function *F) {
  // Get the empty stub we generated earlier.
  JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter());
  void *Stub = JE->getJITResolver().getLazyFunctionStub(F);
  void *Addr = getPointerToGlobalIfAvailable(F);
  assert(Addr != Stub && "Function must have non-stub address to be updated.");

  // Tell the target jit info to rewrite the stub at the specified address,
  // rather than creating a new one.
  TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout();
  JE->startGVStub(Stub, layout.Size);
  getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter());
  JE->finishGVStub();
}

/// freeMachineCodeForFunction - release machine code memory for given Function.
///
void JIT::freeMachineCodeForFunction(Function *F) {
  // Delete translation for this from the ExecutionEngine, so it will get
  // retranslated next time it is used.
  updateGlobalMapping(F, 0);

  // Free the actual memory for the function body and related stuff.
  static_cast<JITEmitter*>(JCE)->deallocateMemForFunction(F);
}