summaryrefslogtreecommitdiffstats
path: root/lib/Target/AArch64/AArch64CollectLOH.cpp
blob: 87b545b186b9b7fc36b4ba9bfd3436f461a407e8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
//===---------- AArch64CollectLOH.cpp - AArch64 collect LOH pass --*- C++ -*-=//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that collect the Linker Optimization Hint (LOH).
// This pass should be run at the very end of the compilation flow, just before
// assembly printer.
// To be useful for the linker, the LOH must be printed into the assembly file.
//
// A LOH describes a sequence of instructions that may be optimized by the
// linker.
// This same sequence cannot be optimized by the compiler because some of
// the information will be known at link time.
// For instance, consider the following sequence:
//     L1: adrp xA, sym@PAGE
//     L2: add xB, xA, sym@PAGEOFF
//     L3: ldr xC, [xB, #imm]
// This sequence can be turned into:
// A literal load if sym@PAGE + sym@PAGEOFF + #imm - address(L3) is < 1MB:
//     L3: ldr xC, sym+#imm
// It may also be turned into either the following more efficient
// code sequences:
// - If sym@PAGEOFF + #imm fits the encoding space of L3.
//     L1: adrp xA, sym@PAGE
//     L3: ldr xC, [xB, sym@PAGEOFF + #imm]
// - If sym@PAGE + sym@PAGEOFF - address(L1) < 1MB:
//     L1: adr xA, sym
//     L3: ldr xC, [xB, #imm]
//
// To be valid a LOH must meet all the requirements needed by all the related
// possible linker transformations.
// For instance, using the running example, the constraints to emit
// ".loh AdrpAddLdr" are:
// - L1, L2, and L3 instructions are of the expected type, i.e.,
//   respectively ADRP, ADD (immediate), and LD.
// - The result of L1 is used only by L2.
// - The register argument (xA) used in the ADD instruction is defined
//   only by L1.
// - The result of L2 is used only by L3.
// - The base address (xB) in L3 is defined only L2.
// - The ADRP in L1 and the ADD in L2 must reference the same symbol using
//   @PAGE/@PAGEOFF with no additional constants
//
// Currently supported LOHs are:
// * So called non-ADRP-related:
//   - .loh AdrpAddLdr L1, L2, L3:
//     L1: adrp xA, sym@PAGE
//     L2: add xB, xA, sym@PAGEOFF
//     L3: ldr xC, [xB, #imm]
//   - .loh AdrpLdrGotLdr L1, L2, L3:
//     L1: adrp xA, sym@GOTPAGE
//     L2: ldr xB, [xA, sym@GOTPAGEOFF]
//     L3: ldr xC, [xB, #imm]
//   - .loh AdrpLdr L1, L3:
//     L1: adrp xA, sym@PAGE
//     L3: ldr xC, [xA, sym@PAGEOFF]
//   - .loh AdrpAddStr L1, L2, L3:
//     L1: adrp xA, sym@PAGE
//     L2: add xB, xA, sym@PAGEOFF
//     L3: str xC, [xB, #imm]
//   - .loh AdrpLdrGotStr L1, L2, L3:
//     L1: adrp xA, sym@GOTPAGE
//     L2: ldr xB, [xA, sym@GOTPAGEOFF]
//     L3: str xC, [xB, #imm]
//   - .loh AdrpAdd L1, L2:
//     L1: adrp xA, sym@PAGE
//     L2: add xB, xA, sym@PAGEOFF
//   For all these LOHs, L1, L2, L3 form a simple chain:
//   L1 result is used only by L2 and L2 result by L3.
//   L3 LOH-related argument is defined only by L2 and L2 LOH-related argument
//   by L1.
// All these LOHs aim at using more efficient load/store patterns by folding
// some instructions used to compute the address directly into the load/store.
//
// * So called ADRP-related:
//  - .loh AdrpAdrp L2, L1:
//    L2: ADRP xA, sym1@PAGE
//    L1: ADRP xA, sym2@PAGE
//    L2 dominates L1 and xA is not redifined between L2 and L1
// This LOH aims at getting rid of redundant ADRP instructions.
//
// The overall design for emitting the LOHs is:
// 1. AArch64CollectLOH (this pass) records the LOHs in the AArch64FunctionInfo.
// 2. AArch64AsmPrinter reads the LOHs from AArch64FunctionInfo and it:
//     1. Associates them a label.
//     2. Emits them in a MCStreamer (EmitLOHDirective).
//         - The MCMachOStreamer records them into the MCAssembler.
//         - The MCAsmStreamer prints them.
//         - Other MCStreamers ignore them.
//     3. Closes the MCStreamer:
//         - The MachObjectWriter gets them from the MCAssembler and writes
//           them in the object file.
//         - Other ObjectWriters ignore them.
//===----------------------------------------------------------------------===//

#include "AArch64.h"
#include "AArch64InstrInfo.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64Subtarget.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
using namespace llvm;

#define DEBUG_TYPE "aarch64-collect-loh"

static cl::opt<bool>
PreCollectRegister("aarch64-collect-loh-pre-collect-register", cl::Hidden,
                   cl::desc("Restrict analysis to registers invovled"
                            " in LOHs"),
                   cl::init(true));

static cl::opt<bool>
BasicBlockScopeOnly("aarch64-collect-loh-bb-only", cl::Hidden,
                    cl::desc("Restrict analysis at basic block scope"),
                    cl::init(true));

STATISTIC(NumADRPSimpleCandidate,
          "Number of simplifiable ADRP dominate by another");
STATISTIC(NumADRPComplexCandidate2,
          "Number of simplifiable ADRP reachable by 2 defs");
STATISTIC(NumADRPComplexCandidate3,
          "Number of simplifiable ADRP reachable by 3 defs");
STATISTIC(NumADRPComplexCandidateOther,
          "Number of simplifiable ADRP reachable by 4 or more defs");
STATISTIC(NumADDToSTRWithImm,
          "Number of simplifiable STR with imm reachable by ADD");
STATISTIC(NumLDRToSTRWithImm,
          "Number of simplifiable STR with imm reachable by LDR");
STATISTIC(NumADDToSTR, "Number of simplifiable STR reachable by ADD");
STATISTIC(NumLDRToSTR, "Number of simplifiable STR reachable by LDR");
STATISTIC(NumADDToLDRWithImm,
          "Number of simplifiable LDR with imm reachable by ADD");
STATISTIC(NumLDRToLDRWithImm,
          "Number of simplifiable LDR with imm reachable by LDR");
STATISTIC(NumADDToLDR, "Number of simplifiable LDR reachable by ADD");
STATISTIC(NumLDRToLDR, "Number of simplifiable LDR reachable by LDR");
STATISTIC(NumADRPToLDR, "Number of simplifiable LDR reachable by ADRP");
STATISTIC(NumCplxLvl1, "Number of complex case of level 1");
STATISTIC(NumTooCplxLvl1, "Number of too complex case of level 1");
STATISTIC(NumCplxLvl2, "Number of complex case of level 2");
STATISTIC(NumTooCplxLvl2, "Number of too complex case of level 2");
STATISTIC(NumADRSimpleCandidate, "Number of simplifiable ADRP + ADD");
STATISTIC(NumADRComplexCandidate, "Number of too complex ADRP + ADD");

namespace llvm {
void initializeAArch64CollectLOHPass(PassRegistry &);
}

namespace {
struct AArch64CollectLOH : public MachineFunctionPass {
  static char ID;
  AArch64CollectLOH() : MachineFunctionPass(ID) {
    initializeAArch64CollectLOHPass(*PassRegistry::getPassRegistry());
  }

  bool runOnMachineFunction(MachineFunction &MF) override;

  const char *getPassName() const override {
    return "AArch64 Collect Linker Optimization Hint (LOH)";
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesAll();
    MachineFunctionPass::getAnalysisUsage(AU);
    AU.addRequired<MachineDominatorTree>();
  }

private:
};

/// A set of MachineInstruction.
typedef SetVector<const MachineInstr *> SetOfMachineInstr;
/// Map a basic block to a set of instructions per register.
/// This is used to represent the exposed uses of a basic block
/// per register.
typedef MapVector<const MachineBasicBlock *,
                  std::unique_ptr<SetOfMachineInstr[]>>
BlockToSetOfInstrsPerColor;
/// Map a basic block to an instruction per register.
/// This is used to represent the live-out definitions of a basic block
/// per register.
typedef MapVector<const MachineBasicBlock *,
                  std::unique_ptr<const MachineInstr *[]>>
BlockToInstrPerColor;
/// Map an instruction to a set of instructions. Used to represent the
/// mapping def to reachable uses or use to definitions.
typedef MapVector<const MachineInstr *, SetOfMachineInstr> InstrToInstrs;
/// Map a basic block to a BitVector.
/// This is used to record the kill registers per basic block.
typedef MapVector<const MachineBasicBlock *, BitVector> BlockToRegSet;

/// Map a register to a dense id.
typedef DenseMap<unsigned, unsigned> MapRegToId;
/// Map a dense id to a register. Used for debug purposes.
typedef SmallVector<unsigned, 32> MapIdToReg;
} // end anonymous namespace.

char AArch64CollectLOH::ID = 0;

INITIALIZE_PASS_BEGIN(AArch64CollectLOH, "aarch64-collect-loh",
                      "AArch64 Collect Linker Optimization Hint (LOH)", false,
                      false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_END(AArch64CollectLOH, "aarch64-collect-loh",
                    "AArch64 Collect Linker Optimization Hint (LOH)", false,
                    false)

/// Given a couple (MBB, reg) get the corresponding set of instruction from
/// the given "sets".
/// If this couple does not reference any set, an empty set is added to "sets"
/// for this couple and returned.
/// \param nbRegs is used internally allocate some memory. It must be consistent
/// with the way sets is used.
static SetOfMachineInstr &getSet(BlockToSetOfInstrsPerColor &sets,
                                 const MachineBasicBlock &MBB, unsigned reg,
                                 unsigned nbRegs) {
  SetOfMachineInstr *result;
  BlockToSetOfInstrsPerColor::iterator it = sets.find(&MBB);
  if (it != sets.end())
    result = it->second.get();
  else
    result = (sets[&MBB] = make_unique<SetOfMachineInstr[]>(nbRegs)).get();

  return result[reg];
}

/// Given a couple (reg, MI) get the corresponding set of instructions from the
/// the given "sets".
/// This is used to get the uses record in sets of a definition identified by
/// MI and reg, i.e., MI defines reg.
/// If the couple does not reference anything, an empty set is added to
/// "sets[reg]".
/// \pre set[reg] is valid.
static SetOfMachineInstr &getUses(InstrToInstrs *sets, unsigned reg,
                                  const MachineInstr &MI) {
  return sets[reg][&MI];
}

/// Same as getUses but does not modify the input map: sets.
/// \return NULL if the couple (reg, MI) is not in sets.
static const SetOfMachineInstr *getUses(const InstrToInstrs *sets, unsigned reg,
                                        const MachineInstr &MI) {
  InstrToInstrs::const_iterator Res = sets[reg].find(&MI);
  if (Res != sets[reg].end())
    return &(Res->second);
  return nullptr;
}

/// Initialize the reaching definition algorithm:
/// For each basic block BB in MF, record:
/// - its kill set.
/// - its reachable uses (uses that are exposed to BB's predecessors).
/// - its the generated definitions.
/// \param DummyOp if not NULL, specifies a Dummy Operation to be added to
/// the list of uses of exposed defintions.
/// \param ADRPMode specifies to only consider ADRP instructions for generated
/// definition. It also consider definitions of ADRP instructions as uses and
/// ignore other uses. The ADRPMode is used to collect the information for LHO
/// that involve ADRP operation only.
static void initReachingDef(MachineFunction &MF,
                            InstrToInstrs *ColorOpToReachedUses,
                            BlockToInstrPerColor &Gen, BlockToRegSet &Kill,
                            BlockToSetOfInstrsPerColor &ReachableUses,
                            const MapRegToId &RegToId,
                            const MachineInstr *DummyOp, bool ADRPMode) {
  const TargetMachine &TM = MF.getTarget();
  const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo();

  unsigned NbReg = RegToId.size();

  for (MachineBasicBlock &MBB : MF) {
    auto &BBGen = Gen[&MBB];
    BBGen = make_unique<const MachineInstr *[]>(NbReg);
    std::fill(BBGen.get(), BBGen.get() + NbReg, nullptr);

    BitVector &BBKillSet = Kill[&MBB];
    BBKillSet.resize(NbReg);
    for (const MachineInstr &MI : MBB) {
      bool IsADRP = MI.getOpcode() == AArch64::ADRP;

      // Process uses first.
      if (IsADRP || !ADRPMode)
        for (const MachineOperand &MO : MI.operands()) {
          // Treat ADRP def as use, as the goal of the analysis is to find
          // ADRP defs reached by other ADRP defs.
          if (!MO.isReg() || (!ADRPMode && !MO.isUse()) ||
              (ADRPMode && (!IsADRP || !MO.isDef())))
            continue;
          unsigned CurReg = MO.getReg();
          MapRegToId::const_iterator ItCurRegId = RegToId.find(CurReg);
          if (ItCurRegId == RegToId.end())
            continue;
          CurReg = ItCurRegId->second;

          // if CurReg has not been defined, this use is reachable.
          if (!BBGen[CurReg] && !BBKillSet.test(CurReg))
            getSet(ReachableUses, MBB, CurReg, NbReg).insert(&MI);
          // current basic block definition for this color, if any, is in Gen.
          if (BBGen[CurReg])
            getUses(ColorOpToReachedUses, CurReg, *BBGen[CurReg]).insert(&MI);
        }

      // Process clobbers.
      for (const MachineOperand &MO : MI.operands()) {
        if (!MO.isRegMask())
          continue;
        // Clobbers kill the related colors.
        const uint32_t *PreservedRegs = MO.getRegMask();

        // Set generated regs.
        for (const auto Entry : RegToId) {
          unsigned Reg = Entry.second;
          // Use the global register ID when querying APIs external to this
          // pass.
          if (MachineOperand::clobbersPhysReg(PreservedRegs, Entry.first)) {
            // Do not register clobbered definition for no ADRP.
            // This definition is not used anyway (otherwise register
            // allocation is wrong).
            BBGen[Reg] = ADRPMode ? &MI : nullptr;
            BBKillSet.set(Reg);
          }
        }
      }

      // Process register defs.
      for (const MachineOperand &MO : MI.operands()) {
        if (!MO.isReg() || !MO.isDef())
          continue;
        unsigned CurReg = MO.getReg();
        MapRegToId::const_iterator ItCurRegId = RegToId.find(CurReg);
        if (ItCurRegId == RegToId.end())
          continue;

        for (MCRegAliasIterator AI(CurReg, TRI, true); AI.isValid(); ++AI) {
          MapRegToId::const_iterator ItRegId = RegToId.find(*AI);
          assert(ItRegId != RegToId.end() &&
                 "Sub-register of an "
                 "involved register, not recorded as involved!");
          BBKillSet.set(ItRegId->second);
          BBGen[ItRegId->second] = &MI;
        }
        BBGen[ItCurRegId->second] = &MI;
      }
    }

    // If we restrict our analysis to basic block scope, conservatively add a
    // dummy
    // use for each generated value.
    if (!ADRPMode && DummyOp && !MBB.succ_empty())
      for (unsigned CurReg = 0; CurReg < NbReg; ++CurReg)
        if (BBGen[CurReg])
          getUses(ColorOpToReachedUses, CurReg, *BBGen[CurReg]).insert(DummyOp);
  }
}

/// Reaching def core algorithm:
/// while an Out has changed
///    for each bb
///       for each color
///           In[bb][color] = U Out[bb.predecessors][color]
///           insert reachableUses[bb][color] in each in[bb][color]
///                 op.reachedUses
///
///           Out[bb] = Gen[bb] U (In[bb] - Kill[bb])
static void reachingDefAlgorithm(MachineFunction &MF,
                                 InstrToInstrs *ColorOpToReachedUses,
                                 BlockToSetOfInstrsPerColor &In,
                                 BlockToSetOfInstrsPerColor &Out,
                                 BlockToInstrPerColor &Gen, BlockToRegSet &Kill,
                                 BlockToSetOfInstrsPerColor &ReachableUses,
                                 unsigned NbReg) {
  bool HasChanged;
  do {
    HasChanged = false;
    for (MachineBasicBlock &MBB : MF) {
      unsigned CurReg;
      for (CurReg = 0; CurReg < NbReg; ++CurReg) {
        SetOfMachineInstr &BBInSet = getSet(In, MBB, CurReg, NbReg);
        SetOfMachineInstr &BBReachableUses =
            getSet(ReachableUses, MBB, CurReg, NbReg);
        SetOfMachineInstr &BBOutSet = getSet(Out, MBB, CurReg, NbReg);
        unsigned Size = BBOutSet.size();
        //   In[bb][color] = U Out[bb.predecessors][color]
        for (MachineBasicBlock *PredMBB : MBB.predecessors()) {
          SetOfMachineInstr &PredOutSet = getSet(Out, *PredMBB, CurReg, NbReg);
          BBInSet.insert(PredOutSet.begin(), PredOutSet.end());
        }
        //   insert reachableUses[bb][color] in each in[bb][color] op.reachedses
        for (const MachineInstr *MI : BBInSet) {
          SetOfMachineInstr &OpReachedUses =
              getUses(ColorOpToReachedUses, CurReg, *MI);
          OpReachedUses.insert(BBReachableUses.begin(), BBReachableUses.end());
        }
        //           Out[bb] = Gen[bb] U (In[bb] - Kill[bb])
        if (!Kill[&MBB].test(CurReg))
          BBOutSet.insert(BBInSet.begin(), BBInSet.end());
        if (Gen[&MBB][CurReg])
          BBOutSet.insert(Gen[&MBB][CurReg]);
        HasChanged |= BBOutSet.size() != Size;
      }
    }
  } while (HasChanged);
}

/// Reaching definition algorithm.
/// \param MF function on which the algorithm will operate.
/// \param[out] ColorOpToReachedUses will contain the result of the reaching
/// def algorithm.
/// \param ADRPMode specify whether the reaching def algorithm should be tuned
/// for ADRP optimization. \see initReachingDef for more details.
/// \param DummyOp if not NULL, the algorithm will work at
/// basic block scope and will set for every exposed definition a use to
/// @p DummyOp.
/// \pre ColorOpToReachedUses is an array of at least number of registers of
/// InstrToInstrs.
static void reachingDef(MachineFunction &MF,
                        InstrToInstrs *ColorOpToReachedUses,
                        const MapRegToId &RegToId, bool ADRPMode = false,
                        const MachineInstr *DummyOp = nullptr) {
  // structures:
  // For each basic block.
  // Out: a set per color of definitions that reach the
  //      out boundary of this block.
  // In: Same as Out but for in boundary.
  // Gen: generated color in this block (one operation per color).
  // Kill: register set of killed color in this block.
  // ReachableUses: a set per color of uses (operation) reachable
  //                for "In" definitions.
  BlockToSetOfInstrsPerColor Out, In, ReachableUses;
  BlockToInstrPerColor Gen;
  BlockToRegSet Kill;

  // Initialize Gen, kill and reachableUses.
  initReachingDef(MF, ColorOpToReachedUses, Gen, Kill, ReachableUses, RegToId,
                  DummyOp, ADRPMode);

  // Algo.
  if (!DummyOp)
    reachingDefAlgorithm(MF, ColorOpToReachedUses, In, Out, Gen, Kill,
                         ReachableUses, RegToId.size());
}

#ifndef NDEBUG
/// print the result of the reaching definition algorithm.
static void printReachingDef(const InstrToInstrs *ColorOpToReachedUses,
                             unsigned NbReg, const TargetRegisterInfo *TRI,
                             const MapIdToReg &IdToReg) {
  unsigned CurReg;
  for (CurReg = 0; CurReg < NbReg; ++CurReg) {
    if (ColorOpToReachedUses[CurReg].empty())
      continue;
    DEBUG(dbgs() << "*** Reg " << PrintReg(IdToReg[CurReg], TRI) << " ***\n");

    for (const auto &DefsIt : ColorOpToReachedUses[CurReg]) {
      DEBUG(dbgs() << "Def:\n");
      DEBUG(DefsIt.first->print(dbgs()));
      DEBUG(dbgs() << "Reachable uses:\n");
      for (const MachineInstr *MI : DefsIt.second) {
        DEBUG(MI->print(dbgs()));
      }
    }
  }
}
#endif // NDEBUG

/// Answer the following question: Can Def be one of the definition
/// involved in a part of a LOH?
static bool canDefBePartOfLOH(const MachineInstr *Def) {
  unsigned Opc = Def->getOpcode();
  // Accept ADRP, ADDLow and LOADGot.
  switch (Opc) {
  default:
    return false;
  case AArch64::ADRP:
    return true;
  case AArch64::ADDXri:
    // Check immediate to see if the immediate is an address.
    switch (Def->getOperand(2).getType()) {
    default:
      return false;
    case MachineOperand::MO_GlobalAddress:
    case MachineOperand::MO_JumpTableIndex:
    case MachineOperand::MO_ConstantPoolIndex:
    case MachineOperand::MO_BlockAddress:
      return true;
    }
  case AArch64::LDRXui:
    // Check immediate to see if the immediate is an address.
    switch (Def->getOperand(2).getType()) {
    default:
      return false;
    case MachineOperand::MO_GlobalAddress:
      return true;
    }
  }
  // Unreachable.
  return false;
}

/// Check whether the given instruction can the end of a LOH chain involving a
/// store.
static bool isCandidateStore(const MachineInstr *Instr) {
  switch (Instr->getOpcode()) {
  default:
    return false;
  case AArch64::STRBui:
  case AArch64::STRHui:
  case AArch64::STRWui:
  case AArch64::STRXui:
  case AArch64::STRSui:
  case AArch64::STRDui:
  case AArch64::STRQui:
    // In case we have str xA, [xA, #imm], this is two different uses
    // of xA and we cannot fold, otherwise the xA stored may be wrong,
    // even if #imm == 0.
    if (Instr->getOperand(0).getReg() != Instr->getOperand(1).getReg())
      return true;
  }
  return false;
}

/// Given the result of a reaching definition algorithm in ColorOpToReachedUses,
/// Build the Use to Defs information and filter out obvious non-LOH candidates.
/// In ADRPMode, non-LOH candidates are "uses" with non-ADRP definitions.
/// In non-ADRPMode, non-LOH candidates are "uses" with several definition,
/// i.e., no simple chain.
/// \param ADRPMode -- \see initReachingDef.
static void reachedUsesToDefs(InstrToInstrs &UseToReachingDefs,
                              const InstrToInstrs *ColorOpToReachedUses,
                              const MapRegToId &RegToId,
                              bool ADRPMode = false) {

  SetOfMachineInstr NotCandidate;
  unsigned NbReg = RegToId.size();
  MapRegToId::const_iterator EndIt = RegToId.end();
  for (unsigned CurReg = 0; CurReg < NbReg; ++CurReg) {
    // If this color is never defined, continue.
    if (ColorOpToReachedUses[CurReg].empty())
      continue;

    for (const auto &DefsIt : ColorOpToReachedUses[CurReg]) {
      for (const MachineInstr *MI : DefsIt.second) {
        const MachineInstr *Def = DefsIt.first;
        MapRegToId::const_iterator It;
        // if all the reaching defs are not adrp, this use will not be
        // simplifiable.
        if ((ADRPMode && Def->getOpcode() != AArch64::ADRP) ||
            (!ADRPMode && !canDefBePartOfLOH(Def)) ||
            (!ADRPMode && isCandidateStore(MI) &&
             // store are LOH candidate iff the end of the chain is used as
             // base.
             ((It = RegToId.find((MI)->getOperand(1).getReg())) == EndIt ||
              It->second != CurReg))) {
          NotCandidate.insert(MI);
          continue;
        }
        // Do not consider self reaching as a simplifiable case for ADRP.
        if (!ADRPMode || MI != DefsIt.first) {
          UseToReachingDefs[MI].insert(DefsIt.first);
          // If UsesIt has several reaching definitions, it is not
          // candidate for simplificaton in non-ADRPMode.
          if (!ADRPMode && UseToReachingDefs[MI].size() > 1)
            NotCandidate.insert(MI);
        }
      }
    }
  }
  for (const MachineInstr *Elem : NotCandidate) {
    DEBUG(dbgs() << "Too many reaching defs: " << *Elem << "\n");
    // It would have been better if we could just remove the entry
    // from the map.  Because of that, we have to filter the garbage
    // (second.empty) in the subsequence analysis.
    UseToReachingDefs[Elem].clear();
  }
}

/// Based on the use to defs information (in ADRPMode), compute the
/// opportunities of LOH ADRP-related.
static void computeADRP(const InstrToInstrs &UseToDefs,
                        AArch64FunctionInfo &AArch64FI,
                        const MachineDominatorTree *MDT) {
  DEBUG(dbgs() << "*** Compute LOH for ADRP\n");
  for (const auto &Entry : UseToDefs) {
    unsigned Size = Entry.second.size();
    if (Size == 0)
      continue;
    if (Size == 1) {
      const MachineInstr *L2 = *Entry.second.begin();
      const MachineInstr *L1 = Entry.first;
      if (!MDT->dominates(L2, L1)) {
        DEBUG(dbgs() << "Dominance check failed:\n" << *L2 << '\n' << *L1
                     << '\n');
        continue;
      }
      DEBUG(dbgs() << "Record AdrpAdrp:\n" << *L2 << '\n' << *L1 << '\n');
      SmallVector<const MachineInstr *, 2> Args;
      Args.push_back(L2);
      Args.push_back(L1);
      AArch64FI.addLOHDirective(MCLOH_AdrpAdrp, Args);
      ++NumADRPSimpleCandidate;
    }
#ifdef DEBUG
    else if (Size == 2)
      ++NumADRPComplexCandidate2;
    else if (Size == 3)
      ++NumADRPComplexCandidate3;
    else
      ++NumADRPComplexCandidateOther;
#endif
    // if Size < 1, the use should have been removed from the candidates
    assert(Size >= 1 && "No reaching defs for that use!");
  }
}

/// Check whether the given instruction can be the end of a LOH chain
/// involving a load.
static bool isCandidateLoad(const MachineInstr *Instr) {
  switch (Instr->getOpcode()) {
  default:
    return false;
  case AArch64::LDRSBWui:
  case AArch64::LDRSBXui:
  case AArch64::LDRSHWui:
  case AArch64::LDRSHXui:
  case AArch64::LDRSWui:
  case AArch64::LDRBui:
  case AArch64::LDRHui:
  case AArch64::LDRWui:
  case AArch64::LDRXui:
  case AArch64::LDRSui:
  case AArch64::LDRDui:
  case AArch64::LDRQui:
    if (Instr->getOperand(2).getTargetFlags() & AArch64II::MO_GOT)
      return false;
    return true;
  }
  // Unreachable.
  return false;
}

/// Check whether the given instruction can load a litteral.
static bool supportLoadFromLiteral(const MachineInstr *Instr) {
  switch (Instr->getOpcode()) {
  default:
    return false;
  case AArch64::LDRSWui:
  case AArch64::LDRWui:
  case AArch64::LDRXui:
  case AArch64::LDRSui:
  case AArch64::LDRDui:
  case AArch64::LDRQui:
    return true;
  }
  // Unreachable.
  return false;
}

/// Check whether the given instruction is a LOH candidate.
/// \param UseToDefs is used to check that Instr is at the end of LOH supported
/// chain.
/// \pre UseToDefs contains only on def per use, i.e., obvious non candidate are
/// already been filtered out.
static bool isCandidate(const MachineInstr *Instr,
                        const InstrToInstrs &UseToDefs,
                        const MachineDominatorTree *MDT) {
  if (!isCandidateLoad(Instr) && !isCandidateStore(Instr))
    return false;

  const MachineInstr *Def = *UseToDefs.find(Instr)->second.begin();
  if (Def->getOpcode() != AArch64::ADRP) {
    // At this point, Def is ADDXri or LDRXui of the right type of
    // symbol, because we filtered out the uses that were not defined
    // by these kind of instructions (+ ADRP).

    // Check if this forms a simple chain: each intermediate node must
    // dominates the next one.
    if (!MDT->dominates(Def, Instr))
      return false;
    // Move one node up in the simple chain.
    if (UseToDefs.find(Def) ==
            UseToDefs.end()
            // The map may contain garbage we have to ignore.
        ||
        UseToDefs.find(Def)->second.empty())
      return false;
    Instr = Def;
    Def = *UseToDefs.find(Def)->second.begin();
  }
  // Check if we reached the top of the simple chain:
  // - top is ADRP.
  // - check the simple chain property: each intermediate node must
  // dominates the next one.
  if (Def->getOpcode() == AArch64::ADRP)
    return MDT->dominates(Def, Instr);
  return false;
}

static bool registerADRCandidate(const MachineInstr &Use,
                                 const InstrToInstrs &UseToDefs,
                                 const InstrToInstrs *DefsPerColorToUses,
                                 AArch64FunctionInfo &AArch64FI,
                                 SetOfMachineInstr *InvolvedInLOHs,
                                 const MapRegToId &RegToId) {
  // Look for opportunities to turn ADRP -> ADD or
  // ADRP -> LDR GOTPAGEOFF into ADR.
  // If ADRP has more than one use. Give up.
  if (Use.getOpcode() != AArch64::ADDXri &&
      (Use.getOpcode() != AArch64::LDRXui ||
       !(Use.getOperand(2).getTargetFlags() & AArch64II::MO_GOT)))
    return false;
  InstrToInstrs::const_iterator It = UseToDefs.find(&Use);
  // The map may contain garbage that we need to ignore.
  if (It == UseToDefs.end() || It->second.empty())
    return false;
  const MachineInstr &Def = **It->second.begin();
  if (Def.getOpcode() != AArch64::ADRP)
    return false;
  // Check the number of users of ADRP.
  const SetOfMachineInstr *Users =
      getUses(DefsPerColorToUses,
              RegToId.find(Def.getOperand(0).getReg())->second, Def);
  if (Users->size() > 1) {
    ++NumADRComplexCandidate;
    return false;
  }
  ++NumADRSimpleCandidate;
  assert((!InvolvedInLOHs || InvolvedInLOHs->insert(&Def)) &&
         "ADRP already involved in LOH.");
  assert((!InvolvedInLOHs || InvolvedInLOHs->insert(&Use)) &&
         "ADD already involved in LOH.");
  DEBUG(dbgs() << "Record AdrpAdd\n" << Def << '\n' << Use << '\n');

  SmallVector<const MachineInstr *, 2> Args;
  Args.push_back(&Def);
  Args.push_back(&Use);

  AArch64FI.addLOHDirective(Use.getOpcode() == AArch64::ADDXri ? MCLOH_AdrpAdd
                                                           : MCLOH_AdrpLdrGot,
                          Args);
  return true;
}

/// Based on the use to defs information (in non-ADRPMode), compute the
/// opportunities of LOH non-ADRP-related
static void computeOthers(const InstrToInstrs &UseToDefs,
                          const InstrToInstrs *DefsPerColorToUses,
                          AArch64FunctionInfo &AArch64FI, const MapRegToId &RegToId,
                          const MachineDominatorTree *MDT) {
  SetOfMachineInstr *InvolvedInLOHs = nullptr;
#ifdef DEBUG
  SetOfMachineInstr InvolvedInLOHsStorage;
  InvolvedInLOHs = &InvolvedInLOHsStorage;
#endif // DEBUG
  DEBUG(dbgs() << "*** Compute LOH for Others\n");
  // ADRP -> ADD/LDR -> LDR/STR pattern.
  // Fall back to ADRP -> ADD pattern if we fail to catch the bigger pattern.

  // FIXME: When the statistics are not important,
  // This initial filtering loop can be merged into the next loop.
  // Currently, we didn't do it to have the same code for both DEBUG and
  // NDEBUG builds. Indeed, the iterator of the second loop would need
  // to be changed.
  SetOfMachineInstr PotentialCandidates;
  SetOfMachineInstr PotentialADROpportunities;
  for (auto &Use : UseToDefs) {
    // If no definition is available, this is a non candidate.
    if (Use.second.empty())
      continue;
    // Keep only instructions that are load or store and at the end of
    // a ADRP -> ADD/LDR/Nothing chain.
    // We already filtered out the no-chain cases.
    if (!isCandidate(Use.first, UseToDefs, MDT)) {
      PotentialADROpportunities.insert(Use.first);
      continue;
    }
    PotentialCandidates.insert(Use.first);
  }

  // Make the following distinctions for statistics as the linker does
  // know how to decode instructions:
  // - ADD/LDR/Nothing make there different patterns.
  // - LDR/STR make two different patterns.
  // Hence, 6 - 1 base patterns.
  // (because ADRP-> Nothing -> STR is not simplifiable)

  // The linker is only able to have a simple semantic, i.e., if pattern A
  // do B.
  // However, we want to see the opportunity we may miss if we were able to
  // catch more complex cases.

  // PotentialCandidates are result of a chain ADRP -> ADD/LDR ->
  // A potential candidate becomes a candidate, if its current immediate
  // operand is zero and all nodes of the chain have respectively only one user
#ifdef DEBUG
  SetOfMachineInstr DefsOfPotentialCandidates;
#endif
  for (const MachineInstr *Candidate : PotentialCandidates) {
    // Get the definition of the candidate i.e., ADD or LDR.
    const MachineInstr *Def = *UseToDefs.find(Candidate)->second.begin();
    // Record the elements of the chain.
    const MachineInstr *L1 = Def;
    const MachineInstr *L2 = nullptr;
    unsigned ImmediateDefOpc = Def->getOpcode();
    if (Def->getOpcode() != AArch64::ADRP) {
      // Check the number of users of this node.
      const SetOfMachineInstr *Users =
          getUses(DefsPerColorToUses,
                  RegToId.find(Def->getOperand(0).getReg())->second, *Def);
      if (Users->size() > 1) {
#ifdef DEBUG
        // if all the uses of this def are in potential candidate, this is
        // a complex candidate of level 2.
        bool IsLevel2 = true;
        for (const MachineInstr *MI : *Users) {
          if (!PotentialCandidates.count(MI)) {
            ++NumTooCplxLvl2;
            IsLevel2 = false;
            break;
          }
        }
        if (IsLevel2)
          ++NumCplxLvl2;
#endif // DEBUG
        PotentialADROpportunities.insert(Def);
        continue;
      }
      L2 = Def;
      Def = *UseToDefs.find(Def)->second.begin();
      L1 = Def;
    } // else the element in the middle of the chain is nothing, thus
      // Def already contains the first element of the chain.

    // Check the number of users of the first node in the chain, i.e., ADRP
    const SetOfMachineInstr *Users =
        getUses(DefsPerColorToUses,
                RegToId.find(Def->getOperand(0).getReg())->second, *Def);
    if (Users->size() > 1) {
#ifdef DEBUG
      // if all the uses of this def are in the defs of the potential candidate,
      // this is a complex candidate of level 1
      if (DefsOfPotentialCandidates.empty()) {
        // lazy init
        DefsOfPotentialCandidates = PotentialCandidates;
        for (const MachineInstr *Candidate : PotentialCandidates) {
          if (!UseToDefs.find(Candidate)->second.empty())
            DefsOfPotentialCandidates.insert(
                *UseToDefs.find(Candidate)->second.begin());
        }
      }
      bool Found = false;
      for (auto &Use : *Users) {
        if (!DefsOfPotentialCandidates.count(Use)) {
          ++NumTooCplxLvl1;
          Found = true;
          break;
        }
      }
      if (!Found)
        ++NumCplxLvl1;
#endif // DEBUG
      continue;
    }

    bool IsL2Add = (ImmediateDefOpc == AArch64::ADDXri);
    // If the chain is three instructions long and ldr is the second element,
    // then this ldr must load form GOT, otherwise this is not a correct chain.
    if (L2 && !IsL2Add && L2->getOperand(2).getTargetFlags() != AArch64II::MO_GOT)
      continue;
    SmallVector<const MachineInstr *, 3> Args;
    MCLOHType Kind;
    if (isCandidateLoad(Candidate)) {
      if (!L2) {
        // At this point, the candidate LOH indicates that the ldr instruction
        // may use a direct access to the symbol. There is not such encoding
        // for loads of byte and half.
        if (!supportLoadFromLiteral(Candidate))
          continue;

        DEBUG(dbgs() << "Record AdrpLdr:\n" << *L1 << '\n' << *Candidate
                     << '\n');
        Kind = MCLOH_AdrpLdr;
        Args.push_back(L1);
        Args.push_back(Candidate);
        assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) &&
               "L1 already involved in LOH.");
        assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) &&
               "Candidate already involved in LOH.");
        ++NumADRPToLDR;
      } else {
        DEBUG(dbgs() << "Record Adrp" << (IsL2Add ? "Add" : "LdrGot")
                     << "Ldr:\n" << *L1 << '\n' << *L2 << '\n' << *Candidate
                     << '\n');

        Kind = IsL2Add ? MCLOH_AdrpAddLdr : MCLOH_AdrpLdrGotLdr;
        Args.push_back(L1);
        Args.push_back(L2);
        Args.push_back(Candidate);

        PotentialADROpportunities.remove(L2);
        assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) &&
               "L1 already involved in LOH.");
        assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L2)) &&
               "L2 already involved in LOH.");
        assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) &&
               "Candidate already involved in LOH.");
#ifdef DEBUG
        // get the immediate of the load
        if (Candidate->getOperand(2).getImm() == 0)
          if (ImmediateDefOpc == AArch64::ADDXri)
            ++NumADDToLDR;
          else
            ++NumLDRToLDR;
        else if (ImmediateDefOpc == AArch64::ADDXri)
          ++NumADDToLDRWithImm;
        else
          ++NumLDRToLDRWithImm;
#endif // DEBUG
      }
    } else {
      if (ImmediateDefOpc == AArch64::ADRP)
        continue;
      else {

        DEBUG(dbgs() << "Record Adrp" << (IsL2Add ? "Add" : "LdrGot")
                     << "Str:\n" << *L1 << '\n' << *L2 << '\n' << *Candidate
                     << '\n');

        Kind = IsL2Add ? MCLOH_AdrpAddStr : MCLOH_AdrpLdrGotStr;
        Args.push_back(L1);
        Args.push_back(L2);
        Args.push_back(Candidate);

        PotentialADROpportunities.remove(L2);
        assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) &&
               "L1 already involved in LOH.");
        assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L2)) &&
               "L2 already involved in LOH.");
        assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) &&
               "Candidate already involved in LOH.");
#ifdef DEBUG
        // get the immediate of the store
        if (Candidate->getOperand(2).getImm() == 0)
          if (ImmediateDefOpc == AArch64::ADDXri)
            ++NumADDToSTR;
          else
            ++NumLDRToSTR;
        else if (ImmediateDefOpc == AArch64::ADDXri)
          ++NumADDToSTRWithImm;
        else
          ++NumLDRToSTRWithImm;
#endif // DEBUG
      }
    }
    AArch64FI.addLOHDirective(Kind, Args);
  }

  // Now, we grabbed all the big patterns, check ADR opportunities.
  for (const MachineInstr *Candidate : PotentialADROpportunities)
    registerADRCandidate(*Candidate, UseToDefs, DefsPerColorToUses, AArch64FI,
                         InvolvedInLOHs, RegToId);
}

/// Look for every register defined by potential LOHs candidates.
/// Map these registers with dense id in @p RegToId and vice-versa in
/// @p IdToReg. @p IdToReg is populated only in DEBUG mode.
static void collectInvolvedReg(MachineFunction &MF, MapRegToId &RegToId,
                               MapIdToReg &IdToReg,
                               const TargetRegisterInfo *TRI) {
  unsigned CurRegId = 0;
  if (!PreCollectRegister) {
    unsigned NbReg = TRI->getNumRegs();
    for (; CurRegId < NbReg; ++CurRegId) {
      RegToId[CurRegId] = CurRegId;
      DEBUG(IdToReg.push_back(CurRegId));
      DEBUG(assert(IdToReg[CurRegId] == CurRegId && "Reg index mismatches"));
    }
    return;
  }

  DEBUG(dbgs() << "** Collect Involved Register\n");
  for (const auto &MBB : MF) {
    for (const MachineInstr &MI : MBB) {
      if (!canDefBePartOfLOH(&MI))
        continue;

      // Process defs
      for (MachineInstr::const_mop_iterator IO = MI.operands_begin(),
                                            IOEnd = MI.operands_end();
           IO != IOEnd; ++IO) {
        if (!IO->isReg() || !IO->isDef())
          continue;
        unsigned CurReg = IO->getReg();
        for (MCRegAliasIterator AI(CurReg, TRI, true); AI.isValid(); ++AI)
          if (RegToId.find(*AI) == RegToId.end()) {
            DEBUG(IdToReg.push_back(*AI);
                  assert(IdToReg[CurRegId] == *AI &&
                         "Reg index mismatches insertion index."));
            RegToId[*AI] = CurRegId++;
            DEBUG(dbgs() << "Register: " << PrintReg(*AI, TRI) << '\n');
          }
      }
    }
  }
}

bool AArch64CollectLOH::runOnMachineFunction(MachineFunction &MF) {
  const TargetMachine &TM = MF.getTarget();
  const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo();
  const MachineDominatorTree *MDT = &getAnalysis<MachineDominatorTree>();

  MapRegToId RegToId;
  MapIdToReg IdToReg;
  AArch64FunctionInfo *AArch64FI = MF.getInfo<AArch64FunctionInfo>();
  assert(AArch64FI && "No MachineFunctionInfo for this function!");

  DEBUG(dbgs() << "Looking for LOH in " << MF.getName() << '\n');

  collectInvolvedReg(MF, RegToId, IdToReg, TRI);
  if (RegToId.empty())
    return false;

  MachineInstr *DummyOp = nullptr;
  if (BasicBlockScopeOnly) {
    const AArch64InstrInfo *TII = static_cast<const AArch64InstrInfo *>(
        TM.getSubtargetImpl()->getInstrInfo());
    // For local analysis, create a dummy operation to record uses that are not
    // local.
    DummyOp = MF.CreateMachineInstr(TII->get(AArch64::COPY), DebugLoc());
  }

  unsigned NbReg = RegToId.size();
  bool Modified = false;

  // Start with ADRP.
  InstrToInstrs *ColorOpToReachedUses = new InstrToInstrs[NbReg];

  // Compute the reaching def in ADRP mode, meaning ADRP definitions
  // are first considered as uses.
  reachingDef(MF, ColorOpToReachedUses, RegToId, true, DummyOp);
  DEBUG(dbgs() << "ADRP reaching defs\n");
  DEBUG(printReachingDef(ColorOpToReachedUses, NbReg, TRI, IdToReg));

  // Translate the definition to uses map into a use to definitions map to ease
  // statistic computation.
  InstrToInstrs ADRPToReachingDefs;
  reachedUsesToDefs(ADRPToReachingDefs, ColorOpToReachedUses, RegToId, true);

  // Compute LOH for ADRP.
  computeADRP(ADRPToReachingDefs, *AArch64FI, MDT);
  delete[] ColorOpToReachedUses;

  // Continue with general ADRP -> ADD/LDR -> LDR/STR pattern.
  ColorOpToReachedUses = new InstrToInstrs[NbReg];

  // first perform a regular reaching def analysis.
  reachingDef(MF, ColorOpToReachedUses, RegToId, false, DummyOp);
  DEBUG(dbgs() << "All reaching defs\n");
  DEBUG(printReachingDef(ColorOpToReachedUses, NbReg, TRI, IdToReg));

  // Turn that into a use to defs to ease statistic computation.
  InstrToInstrs UsesToReachingDefs;
  reachedUsesToDefs(UsesToReachingDefs, ColorOpToReachedUses, RegToId, false);

  // Compute other than AdrpAdrp LOH.
  computeOthers(UsesToReachingDefs, ColorOpToReachedUses, *AArch64FI, RegToId,
                MDT);
  delete[] ColorOpToReachedUses;

  if (BasicBlockScopeOnly)
    MF.DeleteMachineInstr(DummyOp);

  return Modified;
}

/// createAArch64CollectLOHPass - returns an instance of the Statistic for
/// linker optimization pass.
FunctionPass *llvm::createAArch64CollectLOHPass() {
  return new AArch64CollectLOH();
}