summaryrefslogtreecommitdiffstats
path: root/lib/Target/Hexagon/HexagonMachineScheduler.cpp
blob: 36dfaa4233f93babb2bc05d0d0a5f60b81b0f2d9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
//===- HexagonMachineScheduler.cpp - MI Scheduler for Hexagon -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// MachineScheduler schedules machine instructions after phi elimination. It
// preserves LiveIntervals so it can be invoked before register allocation.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "misched"

#include "HexagonMachineScheduler.h"
#include <queue>

using namespace llvm;

/// Platform specific modifications to DAG.
void VLIWMachineScheduler::postprocessDAG() {
  SUnit* LastSequentialCall = NULL;
  // Currently we only catch the situation when compare gets scheduled
  // before preceding call.
  for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
    // Remember the call.
    if (SUnits[su].getInstr()->isCall())
      LastSequentialCall = &(SUnits[su]);
    // Look for a compare that defines a predicate.
    else if (SUnits[su].getInstr()->isCompare() && LastSequentialCall)
      SUnits[su].addPred(SDep(LastSequentialCall, SDep::Barrier));
  }
}

/// Check if scheduling of this SU is possible
/// in the current packet.
/// It is _not_ precise (statefull), it is more like
/// another heuristic. Many corner cases are figured
/// empirically.
bool VLIWResourceModel::isResourceAvailable(SUnit *SU) {
  if (!SU || !SU->getInstr())
    return false;

  // First see if the pipeline could receive this instruction
  // in the current cycle.
  switch (SU->getInstr()->getOpcode()) {
  default:
    if (!ResourcesModel->canReserveResources(SU->getInstr()))
      return false;
  case TargetOpcode::EXTRACT_SUBREG:
  case TargetOpcode::INSERT_SUBREG:
  case TargetOpcode::SUBREG_TO_REG:
  case TargetOpcode::REG_SEQUENCE:
  case TargetOpcode::IMPLICIT_DEF:
  case TargetOpcode::COPY:
  case TargetOpcode::INLINEASM:
    break;
  }

  // Now see if there are no other dependencies to instructions already
  // in the packet.
  for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
    if (Packet[i]->Succs.size() == 0)
      continue;
    for (SUnit::const_succ_iterator I = Packet[i]->Succs.begin(),
         E = Packet[i]->Succs.end(); I != E; ++I) {
      // Since we do not add pseudos to packets, might as well
      // ignore order dependencies.
      if (I->isCtrl())
        continue;

      if (I->getSUnit() == SU)
        return false;
    }
  }
  return true;
}

/// Keep track of available resources.
bool VLIWResourceModel::reserveResources(SUnit *SU) {
  bool startNewCycle = false;
  // Artificially reset state.
  if (!SU) {
    ResourcesModel->clearResources();
    Packet.clear();
    TotalPackets++;
    return false;
  }
  // If this SU does not fit in the packet
  // start a new one.
  if (!isResourceAvailable(SU)) {
    ResourcesModel->clearResources();
    Packet.clear();
    TotalPackets++;
    startNewCycle = true;
  }

  switch (SU->getInstr()->getOpcode()) {
  default:
    ResourcesModel->reserveResources(SU->getInstr());
    break;
  case TargetOpcode::EXTRACT_SUBREG:
  case TargetOpcode::INSERT_SUBREG:
  case TargetOpcode::SUBREG_TO_REG:
  case TargetOpcode::REG_SEQUENCE:
  case TargetOpcode::IMPLICIT_DEF:
  case TargetOpcode::KILL:
  case TargetOpcode::PROLOG_LABEL:
  case TargetOpcode::EH_LABEL:
  case TargetOpcode::COPY:
  case TargetOpcode::INLINEASM:
    break;
  }
  Packet.push_back(SU);

#ifndef NDEBUG
  DEBUG(dbgs() << "Packet[" << TotalPackets << "]:\n");
  for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
    DEBUG(dbgs() << "\t[" << i << "] SU(");
    DEBUG(dbgs() << Packet[i]->NodeNum << ")\t");
    DEBUG(Packet[i]->getInstr()->dump());
  }
#endif

  // If packet is now full, reset the state so in the next cycle
  // we start fresh.
  if (Packet.size() >= SchedModel->getIssueWidth()) {
    ResourcesModel->clearResources();
    Packet.clear();
    TotalPackets++;
    startNewCycle = true;
  }

  return startNewCycle;
}

/// schedule - Called back from MachineScheduler::runOnMachineFunction
/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
/// only includes instructions that have DAG nodes, not scheduling boundaries.
void VLIWMachineScheduler::schedule() {
  DEBUG(dbgs()
        << "********** MI Converging Scheduling VLIW BB#" << BB->getNumber()
        << " " << BB->getName()
        << " in_func " << BB->getParent()->getFunction()->getName()
        << " at loop depth "  << MLI.getLoopDepth(BB)
        << " \n");

  buildDAGWithRegPressure();

  // Postprocess the DAG to add platform specific artificial dependencies.
  postprocessDAG();

  SmallVector<SUnit*, 8> TopRoots, BotRoots;
  findRootsAndBiasEdges(TopRoots, BotRoots);

  // Initialize the strategy before modifying the DAG.
  SchedImpl->initialize(this);

  // To view Height/Depth correctly, they should be accessed at least once.
  DEBUG(unsigned maxH = 0;
        for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
          if (SUnits[su].getHeight() > maxH)
            maxH = SUnits[su].getHeight();
        dbgs() << "Max Height " << maxH << "\n";);
  DEBUG(unsigned maxD = 0;
        for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
          if (SUnits[su].getDepth() > maxD)
            maxD = SUnits[su].getDepth();
        dbgs() << "Max Depth " << maxD << "\n";);
  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
          SUnits[su].dumpAll(this));

  initQueues(TopRoots, BotRoots);

  bool IsTopNode = false;
  while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
    if (!checkSchedLimit())
      break;

    scheduleMI(SU, IsTopNode);

    updateQueues(SU, IsTopNode);
  }
  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");

  placeDebugValues();
}

void ConvergingVLIWScheduler::initialize(ScheduleDAGMI *dag) {
  DAG = static_cast<VLIWMachineScheduler*>(dag);
  SchedModel = DAG->getSchedModel();
  TRI = DAG->TRI;
  Top.init(DAG, SchedModel);
  Bot.init(DAG, SchedModel);

  // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
  // are disabled, then these HazardRecs will be disabled.
  const InstrItineraryData *Itin = DAG->getSchedModel()->getInstrItineraries();
  const TargetMachine &TM = DAG->MF.getTarget();
  Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
  Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);

  Top.ResourceModel = new VLIWResourceModel(TM, DAG->getSchedModel());
  Bot.ResourceModel = new VLIWResourceModel(TM, DAG->getSchedModel());

  assert((!llvm::ForceTopDown || !llvm::ForceBottomUp) &&
         "-misched-topdown incompatible with -misched-bottomup");
}

void ConvergingVLIWScheduler::releaseTopNode(SUnit *SU) {
  if (SU->isScheduled)
    return;

  for (SUnit::succ_iterator I = SU->Preds.begin(), E = SU->Preds.end();
       I != E; ++I) {
    unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
    unsigned MinLatency = I->getMinLatency();
#ifndef NDEBUG
    Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency);
#endif
    if (SU->TopReadyCycle < PredReadyCycle + MinLatency)
      SU->TopReadyCycle = PredReadyCycle + MinLatency;
  }
  Top.releaseNode(SU, SU->TopReadyCycle);
}

void ConvergingVLIWScheduler::releaseBottomNode(SUnit *SU) {
  if (SU->isScheduled)
    return;

  assert(SU->getInstr() && "Scheduled SUnit must have instr");

  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
       I != E; ++I) {
    unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
    unsigned MinLatency = I->getMinLatency();
#ifndef NDEBUG
    Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency);
#endif
    if (SU->BotReadyCycle < SuccReadyCycle + MinLatency)
      SU->BotReadyCycle = SuccReadyCycle + MinLatency;
  }
  Bot.releaseNode(SU, SU->BotReadyCycle);
}

/// Does this SU have a hazard within the current instruction group.
///
/// The scheduler supports two modes of hazard recognition. The first is the
/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
/// supports highly complicated in-order reservation tables
/// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
///
/// The second is a streamlined mechanism that checks for hazards based on
/// simple counters that the scheduler itself maintains. It explicitly checks
/// for instruction dispatch limitations, including the number of micro-ops that
/// can dispatch per cycle.
///
/// TODO: Also check whether the SU must start a new group.
bool ConvergingVLIWScheduler::SchedBoundary::checkHazard(SUnit *SU) {
  if (HazardRec->isEnabled())
    return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;

  unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
  if (IssueCount + uops > SchedModel->getIssueWidth())
    return true;

  return false;
}

void ConvergingVLIWScheduler::SchedBoundary::releaseNode(SUnit *SU,
                                                     unsigned ReadyCycle) {
  if (ReadyCycle < MinReadyCycle)
    MinReadyCycle = ReadyCycle;

  // Check for interlocks first. For the purpose of other heuristics, an
  // instruction that cannot issue appears as if it's not in the ReadyQueue.
  if (ReadyCycle > CurrCycle || checkHazard(SU))

    Pending.push(SU);
  else
    Available.push(SU);
}

/// Move the boundary of scheduled code by one cycle.
void ConvergingVLIWScheduler::SchedBoundary::bumpCycle() {
  unsigned Width = SchedModel->getIssueWidth();
  IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width;

  assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
  unsigned NextCycle = std::max(CurrCycle + 1, MinReadyCycle);

  if (!HazardRec->isEnabled()) {
    // Bypass HazardRec virtual calls.
    CurrCycle = NextCycle;
  } else {
    // Bypass getHazardType calls in case of long latency.
    for (; CurrCycle != NextCycle; ++CurrCycle) {
      if (isTop())
        HazardRec->AdvanceCycle();
      else
        HazardRec->RecedeCycle();
    }
  }
  CheckPending = true;

  DEBUG(dbgs() << "*** " << Available.getName() << " cycle "
        << CurrCycle << '\n');
}

/// Move the boundary of scheduled code by one SUnit.
void ConvergingVLIWScheduler::SchedBoundary::bumpNode(SUnit *SU) {
  bool startNewCycle = false;

  // Update the reservation table.
  if (HazardRec->isEnabled()) {
    if (!isTop() && SU->isCall) {
      // Calls are scheduled with their preceding instructions. For bottom-up
      // scheduling, clear the pipeline state before emitting.
      HazardRec->Reset();
    }
    HazardRec->EmitInstruction(SU);
  }

  // Update DFA model.
  startNewCycle = ResourceModel->reserveResources(SU);

  // Check the instruction group dispatch limit.
  // TODO: Check if this SU must end a dispatch group.
  IssueCount += SchedModel->getNumMicroOps(SU->getInstr());
  if (startNewCycle) {
    DEBUG(dbgs() << "*** Max instrs at cycle " << CurrCycle << '\n');
    bumpCycle();
  }
  else
    DEBUG(dbgs() << "*** IssueCount " << IssueCount
          << " at cycle " << CurrCycle << '\n');
}

/// Release pending ready nodes in to the available queue. This makes them
/// visible to heuristics.
void ConvergingVLIWScheduler::SchedBoundary::releasePending() {
  // If the available queue is empty, it is safe to reset MinReadyCycle.
  if (Available.empty())
    MinReadyCycle = UINT_MAX;

  // Check to see if any of the pending instructions are ready to issue.  If
  // so, add them to the available queue.
  for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
    SUnit *SU = *(Pending.begin()+i);
    unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;

    if (ReadyCycle < MinReadyCycle)
      MinReadyCycle = ReadyCycle;

    if (ReadyCycle > CurrCycle)
      continue;

    if (checkHazard(SU))
      continue;

    Available.push(SU);
    Pending.remove(Pending.begin()+i);
    --i; --e;
  }
  CheckPending = false;
}

/// Remove SU from the ready set for this boundary.
void ConvergingVLIWScheduler::SchedBoundary::removeReady(SUnit *SU) {
  if (Available.isInQueue(SU))
    Available.remove(Available.find(SU));
  else {
    assert(Pending.isInQueue(SU) && "bad ready count");
    Pending.remove(Pending.find(SU));
  }
}

/// If this queue only has one ready candidate, return it. As a side effect,
/// advance the cycle until at least one node is ready. If multiple instructions
/// are ready, return NULL.
SUnit *ConvergingVLIWScheduler::SchedBoundary::pickOnlyChoice() {
  if (CheckPending)
    releasePending();

  for (unsigned i = 0; Available.empty(); ++i) {
    assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) &&
           "permanent hazard"); (void)i;
    ResourceModel->reserveResources(0);
    bumpCycle();
    releasePending();
  }
  if (Available.size() == 1)
    return *Available.begin();
  return NULL;
}

#ifndef NDEBUG
void ConvergingVLIWScheduler::traceCandidate(const char *Label,
                                             const ReadyQueue &Q,
                                             SUnit *SU, PressureElement P) {
  dbgs() << Label << " " << Q.getName() << " ";
  if (P.isValid())
    dbgs() << TRI->getRegPressureSetName(P.PSetID) << ":" << P.UnitIncrease
           << " ";
  else
    dbgs() << "     ";
  SU->dump(DAG);
}
#endif

/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
/// of SU, return it, otherwise return null.
static SUnit *getSingleUnscheduledPred(SUnit *SU) {
  SUnit *OnlyAvailablePred = 0;
  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
       I != E; ++I) {
    SUnit &Pred = *I->getSUnit();
    if (!Pred.isScheduled) {
      // We found an available, but not scheduled, predecessor.  If it's the
      // only one we have found, keep track of it... otherwise give up.
      if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
        return 0;
      OnlyAvailablePred = &Pred;
    }
  }
  return OnlyAvailablePred;
}

/// getSingleUnscheduledSucc - If there is exactly one unscheduled successor
/// of SU, return it, otherwise return null.
static SUnit *getSingleUnscheduledSucc(SUnit *SU) {
  SUnit *OnlyAvailableSucc = 0;
  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
       I != E; ++I) {
    SUnit &Succ = *I->getSUnit();
    if (!Succ.isScheduled) {
      // We found an available, but not scheduled, successor.  If it's the
      // only one we have found, keep track of it... otherwise give up.
      if (OnlyAvailableSucc && OnlyAvailableSucc != &Succ)
        return 0;
      OnlyAvailableSucc = &Succ;
    }
  }
  return OnlyAvailableSucc;
}

// Constants used to denote relative importance of
// heuristic components for cost computation.
static const unsigned PriorityOne = 200;
static const unsigned PriorityTwo = 100;
static const unsigned PriorityThree = 50;
static const unsigned PriorityFour = 20;
static const unsigned ScaleTwo = 10;
static const unsigned FactorOne = 2;

/// Single point to compute overall scheduling cost.
/// TODO: More heuristics will be used soon.
int ConvergingVLIWScheduler::SchedulingCost(ReadyQueue &Q, SUnit *SU,
                                            SchedCandidate &Candidate,
                                            RegPressureDelta &Delta,
                                            bool verbose) {
  // Initial trivial priority.
  int ResCount = 1;

  // Do not waste time on a node that is already scheduled.
  if (!SU || SU->isScheduled)
    return ResCount;

  // Forced priority is high.
  if (SU->isScheduleHigh)
    ResCount += PriorityOne;

  // Critical path first.
  if (Q.getID() == TopQID) {
    ResCount += (SU->getHeight() * ScaleTwo);

    // If resources are available for it, multiply the
    // chance of scheduling.
    if (Top.ResourceModel->isResourceAvailable(SU))
      ResCount <<= FactorOne;
  } else {
    ResCount += (SU->getDepth() * ScaleTwo);

    // If resources are available for it, multiply the
    // chance of scheduling.
    if (Bot.ResourceModel->isResourceAvailable(SU))
      ResCount <<= FactorOne;
  }

  unsigned NumNodesBlocking = 0;
  if (Q.getID() == TopQID) {
    // How many SUs does it block from scheduling?
    // Look at all of the successors of this node.
    // Count the number of nodes that
    // this node is the sole unscheduled node for.
    for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
         I != E; ++I)
      if (getSingleUnscheduledPred(I->getSUnit()) == SU)
        ++NumNodesBlocking;
  } else {
    // How many unscheduled predecessors block this node?
    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
         I != E; ++I)
      if (getSingleUnscheduledSucc(I->getSUnit()) == SU)
        ++NumNodesBlocking;
  }
  ResCount += (NumNodesBlocking * ScaleTwo);

  // Factor in reg pressure as a heuristic.
  ResCount -= (Delta.Excess.UnitIncrease*PriorityThree);
  ResCount -= (Delta.CriticalMax.UnitIncrease*PriorityThree);

  DEBUG(if (verbose) dbgs() << " Total(" << ResCount << ")");

  return ResCount;
}

/// Pick the best candidate from the top queue.
///
/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
/// DAG building. To adjust for the current scheduling location we need to
/// maintain the number of vreg uses remaining to be top-scheduled.
ConvergingVLIWScheduler::CandResult ConvergingVLIWScheduler::
pickNodeFromQueue(ReadyQueue &Q, const RegPressureTracker &RPTracker,
                  SchedCandidate &Candidate) {
  DEBUG(Q.dump());

  // getMaxPressureDelta temporarily modifies the tracker.
  RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);

  // BestSU remains NULL if no top candidates beat the best existing candidate.
  CandResult FoundCandidate = NoCand;
  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
    RegPressureDelta RPDelta;
    TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta,
                                    DAG->getRegionCriticalPSets(),
                                    DAG->getRegPressure().MaxSetPressure);

    int CurrentCost = SchedulingCost(Q, *I, Candidate, RPDelta, false);

    // Initialize the candidate if needed.
    if (!Candidate.SU) {
      Candidate.SU = *I;
      Candidate.RPDelta = RPDelta;
      Candidate.SCost = CurrentCost;
      FoundCandidate = NodeOrder;
      continue;
    }

    // Best cost.
    if (CurrentCost > Candidate.SCost) {
      DEBUG(traceCandidate("CCAND", Q, *I));
      Candidate.SU = *I;
      Candidate.RPDelta = RPDelta;
      Candidate.SCost = CurrentCost;
      FoundCandidate = BestCost;
      continue;
    }

    // Fall through to original instruction order.
    // Only consider node order if Candidate was chosen from this Q.
    if (FoundCandidate == NoCand)
      continue;
  }
  return FoundCandidate;
}

/// Pick the best candidate node from either the top or bottom queue.
SUnit *ConvergingVLIWScheduler::pickNodeBidrectional(bool &IsTopNode) {
  // Schedule as far as possible in the direction of no choice. This is most
  // efficient, but also provides the best heuristics for CriticalPSets.
  if (SUnit *SU = Bot.pickOnlyChoice()) {
    IsTopNode = false;
    return SU;
  }
  if (SUnit *SU = Top.pickOnlyChoice()) {
    IsTopNode = true;
    return SU;
  }
  SchedCandidate BotCand;
  // Prefer bottom scheduling when heuristics are silent.
  CandResult BotResult = pickNodeFromQueue(Bot.Available,
                                           DAG->getBotRPTracker(), BotCand);
  assert(BotResult != NoCand && "failed to find the first candidate");

  // If either Q has a single candidate that provides the least increase in
  // Excess pressure, we can immediately schedule from that Q.
  //
  // RegionCriticalPSets summarizes the pressure within the scheduled region and
  // affects picking from either Q. If scheduling in one direction must
  // increase pressure for one of the excess PSets, then schedule in that
  // direction first to provide more freedom in the other direction.
  if (BotResult == SingleExcess || BotResult == SingleCritical) {
    IsTopNode = false;
    return BotCand.SU;
  }
  // Check if the top Q has a better candidate.
  SchedCandidate TopCand;
  CandResult TopResult = pickNodeFromQueue(Top.Available,
                                           DAG->getTopRPTracker(), TopCand);
  assert(TopResult != NoCand && "failed to find the first candidate");

  if (TopResult == SingleExcess || TopResult == SingleCritical) {
    IsTopNode = true;
    return TopCand.SU;
  }
  // If either Q has a single candidate that minimizes pressure above the
  // original region's pressure pick it.
  if (BotResult == SingleMax) {
    IsTopNode = false;
    return BotCand.SU;
  }
  if (TopResult == SingleMax) {
    IsTopNode = true;
    return TopCand.SU;
  }
  if (TopCand.SCost > BotCand.SCost) {
    IsTopNode = true;
    return TopCand.SU;
  }
  // Otherwise prefer the bottom candidate in node order.
  IsTopNode = false;
  return BotCand.SU;
}

/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
SUnit *ConvergingVLIWScheduler::pickNode(bool &IsTopNode) {
  if (DAG->top() == DAG->bottom()) {
    assert(Top.Available.empty() && Top.Pending.empty() &&
           Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
    return NULL;
  }
  SUnit *SU;
  if (llvm::ForceTopDown) {
    SU = Top.pickOnlyChoice();
    if (!SU) {
      SchedCandidate TopCand;
      CandResult TopResult =
        pickNodeFromQueue(Top.Available, DAG->getTopRPTracker(), TopCand);
      assert(TopResult != NoCand && "failed to find the first candidate");
      (void)TopResult;
      SU = TopCand.SU;
    }
    IsTopNode = true;
  } else if (llvm::ForceBottomUp) {
    SU = Bot.pickOnlyChoice();
    if (!SU) {
      SchedCandidate BotCand;
      CandResult BotResult =
        pickNodeFromQueue(Bot.Available, DAG->getBotRPTracker(), BotCand);
      assert(BotResult != NoCand && "failed to find the first candidate");
      (void)BotResult;
      SU = BotCand.SU;
    }
    IsTopNode = false;
  } else {
    SU = pickNodeBidrectional(IsTopNode);
  }
  if (SU->isTopReady())
    Top.removeReady(SU);
  if (SU->isBottomReady())
    Bot.removeReady(SU);

  DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom")
        << " Scheduling Instruction in cycle "
        << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n';
        SU->dump(DAG));
  return SU;
}

/// Update the scheduler's state after scheduling a node. This is the same node
/// that was just returned by pickNode(). However, VLIWMachineScheduler needs
/// to update it's state based on the current cycle before MachineSchedStrategy
/// does.
void ConvergingVLIWScheduler::schedNode(SUnit *SU, bool IsTopNode) {
  if (IsTopNode) {
    SU->TopReadyCycle = Top.CurrCycle;
    Top.bumpNode(SU);
  } else {
    SU->BotReadyCycle = Bot.CurrCycle;
    Bot.bumpNode(SU);
  }
}