1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
|
//===-- SIMCCodeEmitter.cpp - SI Code Emitter -------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief The SI code emitter produces machine code that can be executed
/// directly on the GPU device.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "MCTargetDesc/AMDGPUMCCodeEmitter.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
/// \brief Helper type used in encoding
typedef union {
int32_t I;
float F;
} IntFloatUnion;
class SIMCCodeEmitter : public AMDGPUMCCodeEmitter {
SIMCCodeEmitter(const SIMCCodeEmitter &) LLVM_DELETED_FUNCTION;
void operator=(const SIMCCodeEmitter &) LLVM_DELETED_FUNCTION;
const MCInstrInfo &MCII;
const MCRegisterInfo &MRI;
/// \brief Can this operand also contain immediate values?
bool isSrcOperand(const MCInstrDesc &Desc, unsigned OpNo) const;
/// \brief Encode an fp or int literal
uint32_t getLitEncoding(const MCOperand &MO) const;
public:
SIMCCodeEmitter(const MCInstrInfo &mcii, const MCRegisterInfo &mri,
MCContext &ctx)
: MCII(mcii), MRI(mri) { }
~SIMCCodeEmitter() { }
/// \brief Encode the instruction and write it to the OS.
void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const override;
/// \returns the encoding for an MCOperand.
uint64_t getMachineOpValue(const MCInst &MI, const MCOperand &MO,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const override;
};
} // End anonymous namespace
MCCodeEmitter *llvm::createSIMCCodeEmitter(const MCInstrInfo &MCII,
const MCRegisterInfo &MRI,
const MCSubtargetInfo &STI,
MCContext &Ctx) {
return new SIMCCodeEmitter(MCII, MRI, Ctx);
}
bool SIMCCodeEmitter::isSrcOperand(const MCInstrDesc &Desc,
unsigned OpNo) const {
unsigned RegClass = Desc.OpInfo[OpNo].RegClass;
return (AMDGPU::SSrc_32RegClassID == RegClass) ||
(AMDGPU::SSrc_64RegClassID == RegClass) ||
(AMDGPU::VSrc_32RegClassID == RegClass) ||
(AMDGPU::VSrc_64RegClassID == RegClass);
}
uint32_t SIMCCodeEmitter::getLitEncoding(const MCOperand &MO) const {
IntFloatUnion Imm;
if (MO.isImm())
Imm.I = MO.getImm();
else if (MO.isFPImm())
Imm.F = MO.getFPImm();
else
return ~0;
if (Imm.I >= 0 && Imm.I <= 64)
return 128 + Imm.I;
if (Imm.I >= -16 && Imm.I <= -1)
return 192 + abs(Imm.I);
if (Imm.F == 0.5f)
return 240;
if (Imm.F == -0.5f)
return 241;
if (Imm.F == 1.0f)
return 242;
if (Imm.F == -1.0f)
return 243;
if (Imm.F == 2.0f)
return 244;
if (Imm.F == -2.0f)
return 245;
if (Imm.F == 4.0f)
return 246;
if (Imm.F == -4.0f)
return 247;
return 255;
}
void SIMCCodeEmitter::EncodeInstruction(const MCInst &MI, raw_ostream &OS,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
uint64_t Encoding = getBinaryCodeForInstr(MI, Fixups, STI);
const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
unsigned bytes = Desc.getSize();
for (unsigned i = 0; i < bytes; i++) {
OS.write((uint8_t) ((Encoding >> (8 * i)) & 0xff));
}
if (bytes > 4)
return;
// Check for additional literals in SRC0/1/2 (Op 1/2/3)
for (unsigned i = 0, e = MI.getNumOperands(); i < e; ++i) {
// Check if this operand should be encoded as [SV]Src
if (!isSrcOperand(Desc, i))
continue;
// Is this operand a literal immediate?
const MCOperand &Op = MI.getOperand(i);
if (getLitEncoding(Op) != 255)
continue;
// Yes! Encode it
IntFloatUnion Imm;
if (Op.isImm())
Imm.I = Op.getImm();
else
Imm.F = Op.getFPImm();
for (unsigned j = 0; j < 4; j++) {
OS.write((uint8_t) ((Imm.I >> (8 * j)) & 0xff));
}
// Only one literal value allowed
break;
}
}
uint64_t SIMCCodeEmitter::getMachineOpValue(const MCInst &MI,
const MCOperand &MO,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
if (MO.isReg())
return MRI.getEncodingValue(MO.getReg());
if (MO.isExpr()) {
const MCExpr *Expr = MO.getExpr();
MCFixupKind Kind = MCFixupKind(FK_PCRel_4);
Fixups.push_back(MCFixup::Create(0, Expr, Kind, MI.getLoc()));
return 0;
}
// Figure out the operand number, needed for isSrcOperand check
unsigned OpNo = 0;
for (unsigned e = MI.getNumOperands(); OpNo < e; ++OpNo) {
if (&MO == &MI.getOperand(OpNo))
break;
}
const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
if (isSrcOperand(Desc, OpNo)) {
uint32_t Enc = getLitEncoding(MO);
if (Enc != ~0U && (Enc != 255 || Desc.getSize() == 4))
return Enc;
} else if (MO.isImm())
return MO.getImm();
llvm_unreachable("Encoding of this operand type is not supported yet.");
return 0;
}
|