1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
|
//===----- R600Packetizer.cpp - VLIW packetizer ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass implements instructions packetization for R600. It unsets isLast
/// bit of instructions inside a bundle and substitutes src register with
/// PreviousVector when applicable.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/Debug.h"
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "R600InstrInfo.h"
#include "llvm/CodeGen/DFAPacketizer.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "packets"
namespace {
class R600Packetizer : public MachineFunctionPass {
public:
static char ID;
R600Packetizer(const TargetMachine &TM) : MachineFunctionPass(ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineLoopInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
const char *getPassName() const override {
return "R600 Packetizer";
}
bool runOnMachineFunction(MachineFunction &Fn) override;
};
char R600Packetizer::ID = 0;
class R600PacketizerList : public VLIWPacketizerList {
private:
const R600InstrInfo *TII;
const R600RegisterInfo &TRI;
bool VLIW5;
bool ConsideredInstUsesAlreadyWrittenVectorElement;
unsigned getSlot(const MachineInstr *MI) const {
return TRI.getHWRegChan(MI->getOperand(0).getReg());
}
/// \returns register to PV chan mapping for bundle/single instructions that
/// immediately precedes I.
DenseMap<unsigned, unsigned> getPreviousVector(MachineBasicBlock::iterator I)
const {
DenseMap<unsigned, unsigned> Result;
I--;
if (!TII->isALUInstr(I->getOpcode()) && !I->isBundle())
return Result;
MachineBasicBlock::instr_iterator BI = I.getInstrIterator();
if (I->isBundle())
BI++;
int LastDstChan = -1;
do {
bool isTrans = false;
int BISlot = getSlot(BI);
if (LastDstChan >= BISlot)
isTrans = true;
LastDstChan = BISlot;
if (TII->isPredicated(BI))
continue;
int OperandIdx = TII->getOperandIdx(BI->getOpcode(), AMDGPU::OpName::write);
if (OperandIdx > -1 && BI->getOperand(OperandIdx).getImm() == 0)
continue;
int DstIdx = TII->getOperandIdx(BI->getOpcode(), AMDGPU::OpName::dst);
if (DstIdx == -1) {
continue;
}
unsigned Dst = BI->getOperand(DstIdx).getReg();
if (isTrans || TII->isTransOnly(BI)) {
Result[Dst] = AMDGPU::PS;
continue;
}
if (BI->getOpcode() == AMDGPU::DOT4_r600 ||
BI->getOpcode() == AMDGPU::DOT4_eg) {
Result[Dst] = AMDGPU::PV_X;
continue;
}
if (Dst == AMDGPU::OQAP) {
continue;
}
unsigned PVReg = 0;
switch (TRI.getHWRegChan(Dst)) {
case 0:
PVReg = AMDGPU::PV_X;
break;
case 1:
PVReg = AMDGPU::PV_Y;
break;
case 2:
PVReg = AMDGPU::PV_Z;
break;
case 3:
PVReg = AMDGPU::PV_W;
break;
default:
llvm_unreachable("Invalid Chan");
}
Result[Dst] = PVReg;
} while ((++BI)->isBundledWithPred());
return Result;
}
void substitutePV(MachineInstr *MI, const DenseMap<unsigned, unsigned> &PVs)
const {
unsigned Ops[] = {
AMDGPU::OpName::src0,
AMDGPU::OpName::src1,
AMDGPU::OpName::src2
};
for (unsigned i = 0; i < 3; i++) {
int OperandIdx = TII->getOperandIdx(MI->getOpcode(), Ops[i]);
if (OperandIdx < 0)
continue;
unsigned Src = MI->getOperand(OperandIdx).getReg();
const DenseMap<unsigned, unsigned>::const_iterator It = PVs.find(Src);
if (It != PVs.end())
MI->getOperand(OperandIdx).setReg(It->second);
}
}
public:
// Ctor.
R600PacketizerList(MachineFunction &MF, MachineLoopInfo &MLI,
MachineDominatorTree &MDT)
: VLIWPacketizerList(MF, MLI, MDT, true),
TII (static_cast<const R600InstrInfo *>(MF.getTarget().getInstrInfo())),
TRI(TII->getRegisterInfo()) {
VLIW5 = !MF.getTarget().getSubtarget<AMDGPUSubtarget>().hasCaymanISA();
}
// initPacketizerState - initialize some internal flags.
void initPacketizerState() override {
ConsideredInstUsesAlreadyWrittenVectorElement = false;
}
// ignorePseudoInstruction - Ignore bundling of pseudo instructions.
bool ignorePseudoInstruction(MachineInstr *MI,
MachineBasicBlock *MBB) override {
return false;
}
// isSoloInstruction - return true if instruction MI can not be packetized
// with any other instruction, which means that MI itself is a packet.
bool isSoloInstruction(MachineInstr *MI) override {
if (TII->isVector(*MI))
return true;
if (!TII->isALUInstr(MI->getOpcode()))
return true;
if (MI->getOpcode() == AMDGPU::GROUP_BARRIER)
return true;
// XXX: This can be removed once the packetizer properly handles all the
// LDS instruction group restrictions.
if (TII->isLDSInstr(MI->getOpcode()))
return true;
return false;
}
// isLegalToPacketizeTogether - Is it legal to packetize SUI and SUJ
// together.
bool isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) override {
MachineInstr *MII = SUI->getInstr(), *MIJ = SUJ->getInstr();
if (getSlot(MII) == getSlot(MIJ))
ConsideredInstUsesAlreadyWrittenVectorElement = true;
// Does MII and MIJ share the same pred_sel ?
int OpI = TII->getOperandIdx(MII->getOpcode(), AMDGPU::OpName::pred_sel),
OpJ = TII->getOperandIdx(MIJ->getOpcode(), AMDGPU::OpName::pred_sel);
unsigned PredI = (OpI > -1)?MII->getOperand(OpI).getReg():0,
PredJ = (OpJ > -1)?MIJ->getOperand(OpJ).getReg():0;
if (PredI != PredJ)
return false;
if (SUJ->isSucc(SUI)) {
for (unsigned i = 0, e = SUJ->Succs.size(); i < e; ++i) {
const SDep &Dep = SUJ->Succs[i];
if (Dep.getSUnit() != SUI)
continue;
if (Dep.getKind() == SDep::Anti)
continue;
if (Dep.getKind() == SDep::Output)
if (MII->getOperand(0).getReg() != MIJ->getOperand(0).getReg())
continue;
return false;
}
}
bool ARDef = TII->definesAddressRegister(MII) ||
TII->definesAddressRegister(MIJ);
bool ARUse = TII->usesAddressRegister(MII) ||
TII->usesAddressRegister(MIJ);
if (ARDef && ARUse)
return false;
return true;
}
// isLegalToPruneDependencies - Is it legal to prune dependece between SUI
// and SUJ.
bool isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) override {
return false;
}
void setIsLastBit(MachineInstr *MI, unsigned Bit) const {
unsigned LastOp = TII->getOperandIdx(MI->getOpcode(), AMDGPU::OpName::last);
MI->getOperand(LastOp).setImm(Bit);
}
bool isBundlableWithCurrentPMI(MachineInstr *MI,
const DenseMap<unsigned, unsigned> &PV,
std::vector<R600InstrInfo::BankSwizzle> &BS,
bool &isTransSlot) {
isTransSlot = TII->isTransOnly(MI);
assert (!isTransSlot || VLIW5);
// Is the dst reg sequence legal ?
if (!isTransSlot && !CurrentPacketMIs.empty()) {
if (getSlot(MI) <= getSlot(CurrentPacketMIs.back())) {
if (ConsideredInstUsesAlreadyWrittenVectorElement &&
!TII->isVectorOnly(MI) && VLIW5) {
isTransSlot = true;
DEBUG(dbgs() << "Considering as Trans Inst :"; MI->dump(););
}
else
return false;
}
}
// Are the Constants limitations met ?
CurrentPacketMIs.push_back(MI);
if (!TII->fitsConstReadLimitations(CurrentPacketMIs)) {
DEBUG(
dbgs() << "Couldn't pack :\n";
MI->dump();
dbgs() << "with the following packets :\n";
for (unsigned i = 0, e = CurrentPacketMIs.size() - 1; i < e; i++) {
CurrentPacketMIs[i]->dump();
dbgs() << "\n";
}
dbgs() << "because of Consts read limitations\n";
);
CurrentPacketMIs.pop_back();
return false;
}
// Is there a BankSwizzle set that meet Read Port limitations ?
if (!TII->fitsReadPortLimitations(CurrentPacketMIs,
PV, BS, isTransSlot)) {
DEBUG(
dbgs() << "Couldn't pack :\n";
MI->dump();
dbgs() << "with the following packets :\n";
for (unsigned i = 0, e = CurrentPacketMIs.size() - 1; i < e; i++) {
CurrentPacketMIs[i]->dump();
dbgs() << "\n";
}
dbgs() << "because of Read port limitations\n";
);
CurrentPacketMIs.pop_back();
return false;
}
// We cannot read LDS source registrs from the Trans slot.
if (isTransSlot && TII->readsLDSSrcReg(MI))
return false;
CurrentPacketMIs.pop_back();
return true;
}
MachineBasicBlock::iterator addToPacket(MachineInstr *MI) override {
MachineBasicBlock::iterator FirstInBundle =
CurrentPacketMIs.empty() ? MI : CurrentPacketMIs.front();
const DenseMap<unsigned, unsigned> &PV =
getPreviousVector(FirstInBundle);
std::vector<R600InstrInfo::BankSwizzle> BS;
bool isTransSlot;
if (isBundlableWithCurrentPMI(MI, PV, BS, isTransSlot)) {
for (unsigned i = 0, e = CurrentPacketMIs.size(); i < e; i++) {
MachineInstr *MI = CurrentPacketMIs[i];
unsigned Op = TII->getOperandIdx(MI->getOpcode(),
AMDGPU::OpName::bank_swizzle);
MI->getOperand(Op).setImm(BS[i]);
}
unsigned Op = TII->getOperandIdx(MI->getOpcode(),
AMDGPU::OpName::bank_swizzle);
MI->getOperand(Op).setImm(BS.back());
if (!CurrentPacketMIs.empty())
setIsLastBit(CurrentPacketMIs.back(), 0);
substitutePV(MI, PV);
MachineBasicBlock::iterator It = VLIWPacketizerList::addToPacket(MI);
if (isTransSlot) {
endPacket(std::next(It)->getParent(), std::next(It));
}
return It;
}
endPacket(MI->getParent(), MI);
if (TII->isTransOnly(MI))
return MI;
return VLIWPacketizerList::addToPacket(MI);
}
};
bool R600Packetizer::runOnMachineFunction(MachineFunction &Fn) {
const TargetInstrInfo *TII = Fn.getTarget().getInstrInfo();
MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
// Instantiate the packetizer.
R600PacketizerList Packetizer(Fn, MLI, MDT);
// DFA state table should not be empty.
assert(Packetizer.getResourceTracker() && "Empty DFA table!");
//
// Loop over all basic blocks and remove KILL pseudo-instructions
// These instructions confuse the dependence analysis. Consider:
// D0 = ... (Insn 0)
// R0 = KILL R0, D0 (Insn 1)
// R0 = ... (Insn 2)
// Here, Insn 1 will result in the dependence graph not emitting an output
// dependence between Insn 0 and Insn 2. This can lead to incorrect
// packetization
//
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB) {
MachineBasicBlock::iterator End = MBB->end();
MachineBasicBlock::iterator MI = MBB->begin();
while (MI != End) {
if (MI->isKill() || MI->getOpcode() == AMDGPU::IMPLICIT_DEF ||
(MI->getOpcode() == AMDGPU::CF_ALU && !MI->getOperand(8).getImm())) {
MachineBasicBlock::iterator DeleteMI = MI;
++MI;
MBB->erase(DeleteMI);
End = MBB->end();
continue;
}
++MI;
}
}
// Loop over all of the basic blocks.
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB) {
// Find scheduling regions and schedule / packetize each region.
unsigned RemainingCount = MBB->size();
for(MachineBasicBlock::iterator RegionEnd = MBB->end();
RegionEnd != MBB->begin();) {
// The next region starts above the previous region. Look backward in the
// instruction stream until we find the nearest boundary.
MachineBasicBlock::iterator I = RegionEnd;
for(;I != MBB->begin(); --I, --RemainingCount) {
if (TII->isSchedulingBoundary(std::prev(I), MBB, Fn))
break;
}
I = MBB->begin();
// Skip empty scheduling regions.
if (I == RegionEnd) {
RegionEnd = std::prev(RegionEnd);
--RemainingCount;
continue;
}
// Skip regions with one instruction.
if (I == std::prev(RegionEnd)) {
RegionEnd = std::prev(RegionEnd);
continue;
}
Packetizer.PacketizeMIs(MBB, I, RegionEnd);
RegionEnd = I;
}
}
return true;
}
} // end anonymous namespace
llvm::FunctionPass *llvm::createR600Packetizer(TargetMachine &tm) {
return new R600Packetizer(tm);
}
|