summaryrefslogtreecommitdiffstats
path: root/lib/Target/R600/SIISelLowering.cpp
blob: 2c9270e00f125c5bf8871f61135d16d7b1c46184 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief Custom DAG lowering for SI
//
//===----------------------------------------------------------------------===//

#include "SIISelLowering.h"
#include "AMDGPU.h"
#include "AMDILIntrinsicInfo.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/IR/Function.h"

const uint64_t RSRC_DATA_FORMAT = 0xf00000000000LL;

using namespace llvm;

SITargetLowering::SITargetLowering(TargetMachine &TM) :
    AMDGPUTargetLowering(TM) {

  addRegisterClass(MVT::i1, &AMDGPU::SReg_64RegClass);
  addRegisterClass(MVT::i64, &AMDGPU::VSrc_64RegClass);

  addRegisterClass(MVT::v32i8, &AMDGPU::SReg_256RegClass);
  addRegisterClass(MVT::v64i8, &AMDGPU::SReg_512RegClass);

  addRegisterClass(MVT::i32, &AMDGPU::VSrc_32RegClass);
  addRegisterClass(MVT::f32, &AMDGPU::VSrc_32RegClass);

  addRegisterClass(MVT::f64, &AMDGPU::VSrc_64RegClass);
  addRegisterClass(MVT::v2i32, &AMDGPU::VSrc_64RegClass);
  addRegisterClass(MVT::v2f32, &AMDGPU::VSrc_64RegClass);

  addRegisterClass(MVT::v4i32, &AMDGPU::VReg_128RegClass);
  addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
  addRegisterClass(MVT::i128, &AMDGPU::SReg_128RegClass);

  addRegisterClass(MVT::v8i32, &AMDGPU::VReg_256RegClass);
  addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);

  addRegisterClass(MVT::v16i32, &AMDGPU::VReg_512RegClass);
  addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);

  computeRegisterProperties();

  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);

  setOperationAction(ISD::ADD, MVT::i64, Legal);
  setOperationAction(ISD::ADD, MVT::i32, Legal);

  setOperationAction(ISD::BITCAST, MVT::i128, Legal);

  // We need to custom lower vector stores from local memory
  setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
  setOperationAction(ISD::LOAD, MVT::v4i32, Custom);

  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);

  setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);

  setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
  setOperationAction(ISD::SETCC, MVT::v4i1, Expand);

  setOperationAction(ISD::SIGN_EXTEND, MVT::i64, Custom);
  setOperationAction(ISD::ZERO_EXTEND, MVT::i64, Custom);

  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v16i8, Custom);
  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);

  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);

  setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Expand);

  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
  setTruncStoreAction(MVT::i64, MVT::i32, Expand);

  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);

  setTargetDAGCombine(ISD::SELECT_CC);

  setTargetDAGCombine(ISD::SETCC);

  setSchedulingPreference(Sched::RegPressure);
}

//===----------------------------------------------------------------------===//
// TargetLowering queries
//===----------------------------------------------------------------------===//

bool SITargetLowering::allowsUnalignedMemoryAccesses(EVT  VT,
                                                     bool *IsFast) const {
  // XXX: This depends on the address space and also we may want to revist
  // the alignment values we specify in the DataLayout.
  return VT.bitsGT(MVT::i32);
}

bool SITargetLowering::shouldSplitVectorElementType(EVT VT) const {
  return VT.bitsLE(MVT::i8);
}

SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT,
                                         SDLoc DL, SDValue Chain,
                                         unsigned Offset) const {
  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
  PointerType *PtrTy = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
                                            AMDGPUAS::CONSTANT_ADDRESS);
  EVT ArgVT = MVT::getIntegerVT(VT.getSizeInBits());
  SDValue BasePtr =  DAG.getCopyFromReg(Chain, DL,
                           MRI.getLiveInVirtReg(AMDGPU::SGPR0_SGPR1), MVT::i64);
  SDValue Ptr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
                                             DAG.getConstant(Offset, MVT::i64));
  return DAG.getLoad(VT, DL, Chain, Ptr,
                            MachinePointerInfo(UndefValue::get(PtrTy)),
                            false, false, false, ArgVT.getSizeInBits() >> 3);

}

SDValue SITargetLowering::LowerFormalArguments(
                                      SDValue Chain,
                                      CallingConv::ID CallConv,
                                      bool isVarArg,
                                      const SmallVectorImpl<ISD::InputArg> &Ins,
                                      SDLoc DL, SelectionDAG &DAG,
                                      SmallVectorImpl<SDValue> &InVals) const {

  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();

  MachineFunction &MF = DAG.getMachineFunction();
  FunctionType *FType = MF.getFunction()->getFunctionType();
  SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();

  assert(CallConv == CallingConv::C);

  SmallVector<ISD::InputArg, 16> Splits;
  uint32_t Skipped = 0;

  for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) {
    const ISD::InputArg &Arg = Ins[i];

    // First check if it's a PS input addr
    if (Info->ShaderType == ShaderType::PIXEL && !Arg.Flags.isInReg() &&
        !Arg.Flags.isByVal()) {

      assert((PSInputNum <= 15) && "Too many PS inputs!");

      if (!Arg.Used) {
        // We can savely skip PS inputs
        Skipped |= 1 << i;
        ++PSInputNum;
        continue;
      }

      Info->PSInputAddr |= 1 << PSInputNum++;
    }

    // Second split vertices into their elements
    if (Info->ShaderType != ShaderType::COMPUTE && Arg.VT.isVector()) {
      ISD::InputArg NewArg = Arg;
      NewArg.Flags.setSplit();
      NewArg.VT = Arg.VT.getVectorElementType();

      // We REALLY want the ORIGINAL number of vertex elements here, e.g. a
      // three or five element vertex only needs three or five registers,
      // NOT four or eigth.
      Type *ParamType = FType->getParamType(Arg.OrigArgIndex);
      unsigned NumElements = ParamType->getVectorNumElements();

      for (unsigned j = 0; j != NumElements; ++j) {
        Splits.push_back(NewArg);
        NewArg.PartOffset += NewArg.VT.getStoreSize();
      }

    } else {
      Splits.push_back(Arg);
    }
  }

  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
                 getTargetMachine(), ArgLocs, *DAG.getContext());

  // At least one interpolation mode must be enabled or else the GPU will hang.
  if (Info->ShaderType == ShaderType::PIXEL && (Info->PSInputAddr & 0x7F) == 0) {
    Info->PSInputAddr |= 1;
    CCInfo.AllocateReg(AMDGPU::VGPR0);
    CCInfo.AllocateReg(AMDGPU::VGPR1);
  }

  // The pointer to the list of arguments is stored in SGPR0, SGPR1
  if (Info->ShaderType == ShaderType::COMPUTE) {
    CCInfo.AllocateReg(AMDGPU::SGPR0);
    CCInfo.AllocateReg(AMDGPU::SGPR1);
    MF.addLiveIn(AMDGPU::SGPR0_SGPR1, &AMDGPU::SReg_64RegClass);
  }

  AnalyzeFormalArguments(CCInfo, Splits);

  for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {

    const ISD::InputArg &Arg = Ins[i];
    if (Skipped & (1 << i)) {
      InVals.push_back(DAG.getUNDEF(Arg.VT));
      continue;
    }

    CCValAssign &VA = ArgLocs[ArgIdx++];
    EVT VT = VA.getLocVT();

    if (VA.isMemLoc()) {
      // The first 36 bytes of the input buffer contains information about
      // thread group and global sizes.
      SDValue Arg = LowerParameter(DAG, VT, DL, DAG.getRoot(),
                                   36 + VA.getLocMemOffset());
      InVals.push_back(Arg);
      continue;
    }
    assert(VA.isRegLoc() && "Parameter must be in a register!");

    unsigned Reg = VA.getLocReg();

    if (VT == MVT::i64) {
      // For now assume it is a pointer
      Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0,
                                     &AMDGPU::SReg_64RegClass);
      Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass);
      InVals.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
      continue;
    }

    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);

    Reg = MF.addLiveIn(Reg, RC);
    SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);

    if (Arg.VT.isVector()) {

      // Build a vector from the registers
      Type *ParamType = FType->getParamType(Arg.OrigArgIndex);
      unsigned NumElements = ParamType->getVectorNumElements();

      SmallVector<SDValue, 4> Regs;
      Regs.push_back(Val);
      for (unsigned j = 1; j != NumElements; ++j) {
        Reg = ArgLocs[ArgIdx++].getLocReg();
        Reg = MF.addLiveIn(Reg, RC);
        Regs.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
      }

      // Fill up the missing vector elements
      NumElements = Arg.VT.getVectorNumElements() - NumElements;
      for (unsigned j = 0; j != NumElements; ++j)
        Regs.push_back(DAG.getUNDEF(VT));

      InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, DL, Arg.VT,
                                   Regs.data(), Regs.size()));
      continue;
    }

    InVals.push_back(Val);
  }
  return Chain;
}

MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter(
    MachineInstr * MI, MachineBasicBlock * BB) const {

  MachineBasicBlock::iterator I = *MI;

  switch (MI->getOpcode()) {
  default:
    return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
  case AMDGPU::BRANCH: return BB;
  case AMDGPU::SI_ADDR64_RSRC: {
    const SIInstrInfo *TII =
      static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
    MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
    unsigned SuperReg = MI->getOperand(0).getReg();
    unsigned SubRegLo = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
    unsigned SubRegHi = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
    unsigned SubRegHiHi = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
    unsigned SubRegHiLo = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
    BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), SubRegLo)
            .addOperand(MI->getOperand(1));
    BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), SubRegHiLo)
            .addImm(0);
    BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), SubRegHiHi)
            .addImm(RSRC_DATA_FORMAT >> 32);
    BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::REG_SEQUENCE), SubRegHi)
            .addReg(SubRegHiLo)
            .addImm(AMDGPU::sub0)
            .addReg(SubRegHiHi)
            .addImm(AMDGPU::sub1);
    BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::REG_SEQUENCE), SuperReg)
            .addReg(SubRegLo)
            .addImm(AMDGPU::sub0_sub1)
            .addReg(SubRegHi)
            .addImm(AMDGPU::sub2_sub3);
    MI->eraseFromParent();
    break;
  }
  case AMDGPU::V_SUB_F64: {
    const SIInstrInfo *TII =
      static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
    BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_ADD_F64),
            MI->getOperand(0).getReg())
            .addReg(MI->getOperand(1).getReg())
            .addReg(MI->getOperand(2).getReg())
            .addImm(0)  /* src2 */
            .addImm(0)  /* ABS */
            .addImm(0)  /* CLAMP */
            .addImm(0)  /* OMOD */
            .addImm(2); /* NEG */
    MI->eraseFromParent();
    break;
  }
  }
  return BB;
}

EVT SITargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
  if (!VT.isVector()) {
    return MVT::i1;
  }
  return MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
}

MVT SITargetLowering::getScalarShiftAmountTy(EVT VT) const {
  return MVT::i32;
}

bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
  VT = VT.getScalarType();

  if (!VT.isSimple())
    return false;

  switch (VT.getSimpleVT().SimpleTy) {
  case MVT::f32:
    return false; /* There is V_MAD_F32 for f32 */
  case MVT::f64:
    return true;
  default:
    break;
  }

  return false;
}

//===----------------------------------------------------------------------===//
// Custom DAG Lowering Operations
//===----------------------------------------------------------------------===//

SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();
  SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
  switch (Op.getOpcode()) {
  default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
  case ISD::BRCOND: return LowerBRCOND(Op, DAG);
  case ISD::LOAD: {
    LoadSDNode *Load = dyn_cast<LoadSDNode>(Op);
    if (Load->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
        Op.getValueType().isVector()) {
      SDValue MergedValues[2] = {
        SplitVectorLoad(Op, DAG),
        Load->getChain()
      };
      return DAG.getMergeValues(MergedValues, 2, SDLoc(Op));
    } else {
      return SDValue();
    }
  }
  case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
  case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, DAG);
  case ISD::ZERO_EXTEND: return LowerZERO_EXTEND(Op, DAG);
  case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG);
  case ISD::INTRINSIC_WO_CHAIN: {
    unsigned IntrinsicID =
                         cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
    EVT VT = Op.getValueType();
    SDLoc DL(Op);
    //XXX: Hardcoded we only use two to store the pointer to the parameters.
    unsigned NumUserSGPRs = 2;
    switch (IntrinsicID) {
    default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
    case Intrinsic::r600_read_ngroups_x:
      return LowerParameter(DAG, VT, DL, DAG.getEntryNode(), 0);
    case Intrinsic::r600_read_ngroups_y:
      return LowerParameter(DAG, VT, DL, DAG.getEntryNode(), 4);
    case Intrinsic::r600_read_ngroups_z:
      return LowerParameter(DAG, VT, DL, DAG.getEntryNode(), 8);
    case Intrinsic::r600_read_global_size_x:
      return LowerParameter(DAG, VT, DL, DAG.getEntryNode(), 12);
    case Intrinsic::r600_read_global_size_y:
      return LowerParameter(DAG, VT, DL, DAG.getEntryNode(), 16);
    case Intrinsic::r600_read_global_size_z:
      return LowerParameter(DAG, VT, DL, DAG.getEntryNode(), 20);
    case Intrinsic::r600_read_local_size_x:
      return LowerParameter(DAG, VT, DL, DAG.getEntryNode(), 24);
    case Intrinsic::r600_read_local_size_y:
      return LowerParameter(DAG, VT, DL, DAG.getEntryNode(), 28);
    case Intrinsic::r600_read_local_size_z:
      return LowerParameter(DAG, VT, DL, DAG.getEntryNode(), 32);
    case Intrinsic::r600_read_tgid_x:
      return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
                     AMDGPU::SReg_32RegClass.getRegister(NumUserSGPRs + 0), VT);
    case Intrinsic::r600_read_tgid_y:
      return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
                     AMDGPU::SReg_32RegClass.getRegister(NumUserSGPRs + 1), VT);
    case Intrinsic::r600_read_tgid_z:
      return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
                     AMDGPU::SReg_32RegClass.getRegister(NumUserSGPRs + 2), VT);
    case Intrinsic::r600_read_tidig_x:
      return CreateLiveInRegister(DAG, &AMDGPU::VReg_32RegClass,
                                  AMDGPU::VGPR0, VT);
    case Intrinsic::r600_read_tidig_y:
      return CreateLiveInRegister(DAG, &AMDGPU::VReg_32RegClass,
                                  AMDGPU::VGPR1, VT);
    case Intrinsic::r600_read_tidig_z:
      return CreateLiveInRegister(DAG, &AMDGPU::VReg_32RegClass,
                                  AMDGPU::VGPR2, VT);
    case AMDGPUIntrinsic::SI_load_const: {
      SDValue Ops [] = {
        ResourceDescriptorToi128(Op.getOperand(1), DAG),
        Op.getOperand(2)
      };

      MachineMemOperand *MMO = MF.getMachineMemOperand(
          MachinePointerInfo(),
          MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant,
          VT.getSizeInBits() / 8, 4);
      return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
                                     Op->getVTList(), Ops, 2, VT, MMO);
    }
    case AMDGPUIntrinsic::SI_sample:
      return LowerSampleIntrinsic(AMDGPUISD::SAMPLE, Op, DAG);
    case AMDGPUIntrinsic::SI_sampleb:
      return LowerSampleIntrinsic(AMDGPUISD::SAMPLEB, Op, DAG);
    case AMDGPUIntrinsic::SI_sampled:
      return LowerSampleIntrinsic(AMDGPUISD::SAMPLED, Op, DAG);
    case AMDGPUIntrinsic::SI_samplel:
      return LowerSampleIntrinsic(AMDGPUISD::SAMPLEL, Op, DAG);
    case AMDGPUIntrinsic::SI_vs_load_input:
      return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT,
                         ResourceDescriptorToi128(Op.getOperand(1), DAG),
                         Op.getOperand(2),
                         Op.getOperand(3));
    }
  }

  case ISD::INTRINSIC_VOID:
    SDValue Chain = Op.getOperand(0);
    unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();

    switch (IntrinsicID) {
      case AMDGPUIntrinsic::SI_tbuffer_store: {
        SDLoc DL(Op);
        SDValue Ops [] = {
          Chain,
          ResourceDescriptorToi128(Op.getOperand(2), DAG),
          Op.getOperand(3),
          Op.getOperand(4),
          Op.getOperand(5),
          Op.getOperand(6),
          Op.getOperand(7),
          Op.getOperand(8),
          Op.getOperand(9),
          Op.getOperand(10),
          Op.getOperand(11),
          Op.getOperand(12),
          Op.getOperand(13),
          Op.getOperand(14)
        };
        EVT VT = Op.getOperand(3).getValueType();

        MachineMemOperand *MMO = MF.getMachineMemOperand(
            MachinePointerInfo(),
            MachineMemOperand::MOStore,
            VT.getSizeInBits() / 8, 4);
        return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL,
                                       Op->getVTList(), Ops,
                                       sizeof(Ops)/sizeof(Ops[0]), VT, MMO);
      }
      default:
        break;
    }
  }
  return SDValue();
}

/// \brief Helper function for LowerBRCOND
static SDNode *findUser(SDValue Value, unsigned Opcode) {

  SDNode *Parent = Value.getNode();
  for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
       I != E; ++I) {

    if (I.getUse().get() != Value)
      continue;

    if (I->getOpcode() == Opcode)
      return *I;
  }
  return 0;
}

/// This transforms the control flow intrinsics to get the branch destination as
/// last parameter, also switches branch target with BR if the need arise
SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
                                      SelectionDAG &DAG) const {

  SDLoc DL(BRCOND);

  SDNode *Intr = BRCOND.getOperand(1).getNode();
  SDValue Target = BRCOND.getOperand(2);
  SDNode *BR = 0;

  if (Intr->getOpcode() == ISD::SETCC) {
    // As long as we negate the condition everything is fine
    SDNode *SetCC = Intr;
    assert(SetCC->getConstantOperandVal(1) == 1);
    assert(cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
           ISD::SETNE);
    Intr = SetCC->getOperand(0).getNode();

  } else {
    // Get the target from BR if we don't negate the condition
    BR = findUser(BRCOND, ISD::BR);
    Target = BR->getOperand(1);
  }

  assert(Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN);

  // Build the result and
  SmallVector<EVT, 4> Res;
  for (unsigned i = 1, e = Intr->getNumValues(); i != e; ++i)
    Res.push_back(Intr->getValueType(i));

  // operands of the new intrinsic call
  SmallVector<SDValue, 4> Ops;
  Ops.push_back(BRCOND.getOperand(0));
  for (unsigned i = 1, e = Intr->getNumOperands(); i != e; ++i)
    Ops.push_back(Intr->getOperand(i));
  Ops.push_back(Target);

  // build the new intrinsic call
  SDNode *Result = DAG.getNode(
    Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL,
    DAG.getVTList(Res.data(), Res.size()), Ops.data(), Ops.size()).getNode();

  if (BR) {
    // Give the branch instruction our target
    SDValue Ops[] = {
      BR->getOperand(0),
      BRCOND.getOperand(2)
    };
    DAG.MorphNodeTo(BR, ISD::BR, BR->getVTList(), Ops, 2);
  }

  SDValue Chain = SDValue(Result, Result->getNumValues() - 1);

  // Copy the intrinsic results to registers
  for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
    SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
    if (!CopyToReg)
      continue;

    Chain = DAG.getCopyToReg(
      Chain, DL,
      CopyToReg->getOperand(1),
      SDValue(Result, i - 1),
      SDValue());

    DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
  }

  // Remove the old intrinsic from the chain
  DAG.ReplaceAllUsesOfValueWith(
    SDValue(Intr, Intr->getNumValues() - 1),
    Intr->getOperand(0));

  return Chain;
}

SDValue SITargetLowering::ResourceDescriptorToi128(SDValue Op,
                                             SelectionDAG &DAG) const {

  if (Op.getValueType() == MVT::i128) {
    return Op;
  }

  assert(Op.getOpcode() == ISD::UNDEF);

  return DAG.getNode(ISD::BUILD_PAIR, SDLoc(Op), MVT::i128,
                     DAG.getConstant(0, MVT::i64),
                     DAG.getConstant(0, MVT::i64));
}

SDValue SITargetLowering::LowerSampleIntrinsic(unsigned Opcode,
                                               const SDValue &Op,
                                               SelectionDAG &DAG) const {
  return DAG.getNode(Opcode, SDLoc(Op), Op.getValueType(), Op.getOperand(1),
                     Op.getOperand(2),
                     ResourceDescriptorToi128(Op.getOperand(3), DAG),
                     Op.getOperand(4));
}

SDValue SITargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
  SDValue LHS = Op.getOperand(0);
  SDValue RHS = Op.getOperand(1);
  SDValue True = Op.getOperand(2);
  SDValue False = Op.getOperand(3);
  SDValue CC = Op.getOperand(4);
  EVT VT = Op.getValueType();
  SDLoc DL(Op);

  // Possible Min/Max pattern
  SDValue MinMax = LowerMinMax(Op, DAG);
  if (MinMax.getNode()) {
    return MinMax;
  }

  SDValue Cond = DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS, CC);
  return DAG.getNode(ISD::SELECT, DL, VT, Cond, True, False);
}

SDValue SITargetLowering::LowerSIGN_EXTEND(SDValue Op,
                                           SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();
  SDLoc DL(Op);

  if (VT != MVT::i64) {
    return SDValue();
  }

  SDValue Hi = DAG.getNode(ISD::SRA, DL, MVT::i32, Op.getOperand(0),
                                                 DAG.getConstant(31, MVT::i32));

  return DAG.getNode(ISD::BUILD_PAIR, DL, VT, Op.getOperand(0), Hi);
}

SDValue SITargetLowering::LowerZERO_EXTEND(SDValue Op,
                                           SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();
  SDLoc DL(Op);

  if (VT != MVT::i64) {
    return SDValue();
  }

  return DAG.getNode(ISD::BUILD_PAIR, DL, VT, Op.getOperand(0),
                                              DAG.getConstant(0, MVT::i32));
}

//===----------------------------------------------------------------------===//
// Custom DAG optimizations
//===----------------------------------------------------------------------===//

SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
                                            DAGCombinerInfo &DCI) const {
  SelectionDAG &DAG = DCI.DAG;
  SDLoc DL(N);
  EVT VT = N->getValueType(0);

  switch (N->getOpcode()) {
    default: break;
    case ISD::SELECT_CC: {
      ConstantSDNode *True, *False;
      // i1 selectcc(l, r, -1, 0, cc) -> i1 setcc(l, r, cc)
      if ((True = dyn_cast<ConstantSDNode>(N->getOperand(2)))
          && (False = dyn_cast<ConstantSDNode>(N->getOperand(3)))
          && True->isAllOnesValue()
          && False->isNullValue()
          && VT == MVT::i1) {
        return DAG.getNode(ISD::SETCC, DL, VT, N->getOperand(0),
                           N->getOperand(1), N->getOperand(4));

      }
      break;
    }
    case ISD::SETCC: {
      SDValue Arg0 = N->getOperand(0);
      SDValue Arg1 = N->getOperand(1);
      SDValue CC = N->getOperand(2);
      ConstantSDNode * C = NULL;
      ISD::CondCode CCOp = dyn_cast<CondCodeSDNode>(CC)->get();

      // i1 setcc (sext(i1), 0, setne) -> i1 setcc(i1, 0, setne)
      if (VT == MVT::i1
          && Arg0.getOpcode() == ISD::SIGN_EXTEND
          && Arg0.getOperand(0).getValueType() == MVT::i1
          && (C = dyn_cast<ConstantSDNode>(Arg1))
          && C->isNullValue()
          && CCOp == ISD::SETNE) {
        return SimplifySetCC(VT, Arg0.getOperand(0),
                             DAG.getConstant(0, MVT::i1), CCOp, true, DCI, DL);
      }
      break;
    }
  }
  return SDValue();
}

/// \brief Test if RegClass is one of the VSrc classes
static bool isVSrc(unsigned RegClass) {
  return AMDGPU::VSrc_32RegClassID == RegClass ||
         AMDGPU::VSrc_64RegClassID == RegClass;
}

/// \brief Test if RegClass is one of the SSrc classes
static bool isSSrc(unsigned RegClass) {
  return AMDGPU::SSrc_32RegClassID == RegClass ||
         AMDGPU::SSrc_64RegClassID == RegClass;
}

/// \brief Analyze the possible immediate value Op
///
/// Returns -1 if it isn't an immediate, 0 if it's and inline immediate
/// and the immediate value if it's a literal immediate
int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const {

  union {
    int32_t I;
    float F;
  } Imm;

  if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) {
    if (Node->getZExtValue() >> 32) {
        return -1;
    }
    Imm.I = Node->getSExtValue();
  } else if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N))
    Imm.F = Node->getValueAPF().convertToFloat();
  else
    return -1; // It isn't an immediate

  if ((Imm.I >= -16 && Imm.I <= 64) ||
      Imm.F == 0.5f || Imm.F == -0.5f ||
      Imm.F == 1.0f || Imm.F == -1.0f ||
      Imm.F == 2.0f || Imm.F == -2.0f ||
      Imm.F == 4.0f || Imm.F == -4.0f)
    return 0; // It's an inline immediate

  return Imm.I; // It's a literal immediate
}

/// \brief Try to fold an immediate directly into an instruction
bool SITargetLowering::foldImm(SDValue &Operand, int32_t &Immediate,
                               bool &ScalarSlotUsed) const {

  MachineSDNode *Mov = dyn_cast<MachineSDNode>(Operand);
  const SIInstrInfo *TII =
    static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
  if (Mov == 0 || !TII->isMov(Mov->getMachineOpcode()))
    return false;

  const SDValue &Op = Mov->getOperand(0);
  int32_t Value = analyzeImmediate(Op.getNode());
  if (Value == -1) {
    // Not an immediate at all
    return false;

  } else if (Value == 0) {
    // Inline immediates can always be fold
    Operand = Op;
    return true;

  } else if (Value == Immediate) {
    // Already fold literal immediate
    Operand = Op;
    return true;

  } else if (!ScalarSlotUsed && !Immediate) {
    // Fold this literal immediate
    ScalarSlotUsed = true;
    Immediate = Value;
    Operand = Op;
    return true;

  }

  return false;
}

const TargetRegisterClass *SITargetLowering::getRegClassForNode(
                                   SelectionDAG &DAG, const SDValue &Op) const {
  const SIInstrInfo *TII =
    static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
  const SIRegisterInfo &TRI = TII->getRegisterInfo();

  if (!Op->isMachineOpcode()) {
    switch(Op->getOpcode()) {
    case ISD::CopyFromReg: {
      MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
      unsigned Reg = cast<RegisterSDNode>(Op->getOperand(1))->getReg();
      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
        return MRI.getRegClass(Reg);
      }
      return TRI.getPhysRegClass(Reg);
    }
    default:  return NULL;
    }
  }
  const MCInstrDesc &Desc = TII->get(Op->getMachineOpcode());
  int OpClassID = Desc.OpInfo[Op.getResNo()].RegClass;
  if (OpClassID != -1) {
    return TRI.getRegClass(OpClassID);
  }
  switch(Op.getMachineOpcode()) {
  case AMDGPU::COPY_TO_REGCLASS:
    // Operand 1 is the register class id for COPY_TO_REGCLASS instructions.
    OpClassID = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();

    // If the COPY_TO_REGCLASS instruction is copying to a VSrc register
    // class, then the register class for the value could be either a
    // VReg or and SReg.  In order to get a more accurate
    if (OpClassID == AMDGPU::VSrc_32RegClassID ||
        OpClassID == AMDGPU::VSrc_64RegClassID) {
      return getRegClassForNode(DAG, Op.getOperand(0));
    }
    return TRI.getRegClass(OpClassID);
  case AMDGPU::EXTRACT_SUBREG: {
    int SubIdx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
    const TargetRegisterClass *SuperClass =
      getRegClassForNode(DAG, Op.getOperand(0));
    return TRI.getSubClassWithSubReg(SuperClass, SubIdx);
  }
  case AMDGPU::REG_SEQUENCE:
    // Operand 0 is the register class id for REG_SEQUENCE instructions.
    return TRI.getRegClass(
      cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue());
  default:
    return getRegClassFor(Op.getSimpleValueType());
  }
}

/// \brief Does "Op" fit into register class "RegClass" ?
bool SITargetLowering::fitsRegClass(SelectionDAG &DAG, const SDValue &Op,
                                    unsigned RegClass) const {
  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
  const TargetRegisterClass *RC = getRegClassForNode(DAG, Op);
  if (!RC) {
    return false;
  }
  return TRI->getRegClass(RegClass)->hasSubClassEq(RC);
}

/// \brief Make sure that we don't exeed the number of allowed scalars
void SITargetLowering::ensureSRegLimit(SelectionDAG &DAG, SDValue &Operand,
                                       unsigned RegClass,
                                       bool &ScalarSlotUsed) const {

  // First map the operands register class to a destination class
  if (RegClass == AMDGPU::VSrc_32RegClassID)
    RegClass = AMDGPU::VReg_32RegClassID;
  else if (RegClass == AMDGPU::VSrc_64RegClassID)
    RegClass = AMDGPU::VReg_64RegClassID;
  else
    return;

  // Nothing todo if they fit naturaly
  if (fitsRegClass(DAG, Operand, RegClass))
    return;

  // If the scalar slot isn't used yet use it now
  if (!ScalarSlotUsed) {
    ScalarSlotUsed = true;
    return;
  }

  // This is a conservative aproach. It is possible that we can't determine the
  // correct register class and copy too often, but better safe than sorry.
  SDValue RC = DAG.getTargetConstant(RegClass, MVT::i32);
  SDNode *Node = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS, SDLoc(),
                                    Operand.getValueType(), Operand, RC);
  Operand = SDValue(Node, 0);
}

/// \returns true if \p Node's operands are different from the SDValue list
/// \p Ops
static bool isNodeChanged(const SDNode *Node, const std::vector<SDValue> &Ops) {
  for (unsigned i = 0, e = Node->getNumOperands(); i < e; ++i) {
    if (Ops[i].getNode() != Node->getOperand(i).getNode()) {
      return true;
    }
  }
  return false;
}

/// \brief Try to fold the Nodes operands into the Node
SDNode *SITargetLowering::foldOperands(MachineSDNode *Node,
                                       SelectionDAG &DAG) const {

  // Original encoding (either e32 or e64)
  int Opcode = Node->getMachineOpcode();
  const SIInstrInfo *TII =
    static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
  const MCInstrDesc *Desc = &TII->get(Opcode);

  unsigned NumDefs = Desc->getNumDefs();
  unsigned NumOps = Desc->getNumOperands();

  // Commuted opcode if available
  int OpcodeRev = Desc->isCommutable() ? TII->commuteOpcode(Opcode) : -1;
  const MCInstrDesc *DescRev = OpcodeRev == -1 ? 0 : &TII->get(OpcodeRev);

  assert(!DescRev || DescRev->getNumDefs() == NumDefs);
  assert(!DescRev || DescRev->getNumOperands() == NumOps);

  // e64 version if available, -1 otherwise
  int OpcodeE64 = AMDGPU::getVOPe64(Opcode);
  const MCInstrDesc *DescE64 = OpcodeE64 == -1 ? 0 : &TII->get(OpcodeE64);

  assert(!DescE64 || DescE64->getNumDefs() == NumDefs);
  assert(!DescE64 || DescE64->getNumOperands() == (NumOps + 4));

  int32_t Immediate = Desc->getSize() == 4 ? 0 : -1;
  bool HaveVSrc = false, HaveSSrc = false;

  // First figure out what we alread have in this instruction
  for (unsigned i = 0, e = Node->getNumOperands(), Op = NumDefs;
       i != e && Op < NumOps; ++i, ++Op) {

    unsigned RegClass = Desc->OpInfo[Op].RegClass;
    if (isVSrc(RegClass))
      HaveVSrc = true;
    else if (isSSrc(RegClass))
      HaveSSrc = true;
    else
      continue;

    int32_t Imm = analyzeImmediate(Node->getOperand(i).getNode());
    if (Imm != -1 && Imm != 0) {
      // Literal immediate
      Immediate = Imm;
    }
  }

  // If we neither have VSrc nor SSrc it makes no sense to continue
  if (!HaveVSrc && !HaveSSrc)
    return Node;

  // No scalar allowed when we have both VSrc and SSrc
  bool ScalarSlotUsed = HaveVSrc && HaveSSrc;

  // Second go over the operands and try to fold them
  std::vector<SDValue> Ops;
  bool Promote2e64 = false;
  for (unsigned i = 0, e = Node->getNumOperands(), Op = NumDefs;
       i != e && Op < NumOps; ++i, ++Op) {

    const SDValue &Operand = Node->getOperand(i);
    Ops.push_back(Operand);

    // Already folded immediate ?
    if (isa<ConstantSDNode>(Operand.getNode()) ||
        isa<ConstantFPSDNode>(Operand.getNode()))
      continue;

    // Is this a VSrc or SSrc operand ?
    unsigned RegClass = Desc->OpInfo[Op].RegClass;
    if (isVSrc(RegClass) || isSSrc(RegClass)) {
      // Try to fold the immediates
      if (!foldImm(Ops[i], Immediate, ScalarSlotUsed)) {
        // Folding didn't worked, make sure we don't hit the SReg limit
        ensureSRegLimit(DAG, Ops[i], RegClass, ScalarSlotUsed);
      }
      continue;
    }

    if (i == 1 && DescRev && fitsRegClass(DAG, Ops[0], RegClass)) {

      unsigned OtherRegClass = Desc->OpInfo[NumDefs].RegClass;
      assert(isVSrc(OtherRegClass) || isSSrc(OtherRegClass));

      // Test if it makes sense to swap operands
      if (foldImm(Ops[1], Immediate, ScalarSlotUsed) ||
          (!fitsRegClass(DAG, Ops[1], RegClass) &&
           fitsRegClass(DAG, Ops[1], OtherRegClass))) {

        // Swap commutable operands
        SDValue Tmp = Ops[1];
        Ops[1] = Ops[0];
        Ops[0] = Tmp;

        Desc = DescRev;
        DescRev = 0;
        continue;
      }
    }

    if (DescE64 && !Immediate) {

      // Test if it makes sense to switch to e64 encoding
      unsigned OtherRegClass = DescE64->OpInfo[Op].RegClass;
      if (!isVSrc(OtherRegClass) && !isSSrc(OtherRegClass))
        continue;

      int32_t TmpImm = -1;
      if (foldImm(Ops[i], TmpImm, ScalarSlotUsed) ||
          (!fitsRegClass(DAG, Ops[i], RegClass) &&
           fitsRegClass(DAG, Ops[1], OtherRegClass))) {

        // Switch to e64 encoding
        Immediate = -1;
        Promote2e64 = true;
        Desc = DescE64;
        DescE64 = 0;
      }
    }
  }

  if (Promote2e64) {
    // Add the modifier flags while promoting
    for (unsigned i = 0; i < 4; ++i)
      Ops.push_back(DAG.getTargetConstant(0, MVT::i32));
  }

  // Add optional chain and glue
  for (unsigned i = NumOps - NumDefs, e = Node->getNumOperands(); i < e; ++i)
    Ops.push_back(Node->getOperand(i));

  // Nodes that have a glue result are not CSE'd by getMachineNode(), so in
  // this case a brand new node is always be created, even if the operands
  // are the same as before.  So, manually check if anything has been changed.
  if (Desc->Opcode == Opcode && !isNodeChanged(Node, Ops)) {
    return Node;
  }

  // Create a complete new instruction
  return DAG.getMachineNode(Desc->Opcode, SDLoc(Node), Node->getVTList(), Ops);
}

/// \brief Helper function for adjustWritemask
static unsigned SubIdx2Lane(unsigned Idx) {
  switch (Idx) {
  default: return 0;
  case AMDGPU::sub0: return 0;
  case AMDGPU::sub1: return 1;
  case AMDGPU::sub2: return 2;
  case AMDGPU::sub3: return 3;
  }
}

/// \brief Adjust the writemask of MIMG instructions
void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
                                       SelectionDAG &DAG) const {
  SDNode *Users[4] = { };
  unsigned Writemask = 0, Lane = 0;

  // Try to figure out the used register components
  for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
       I != E; ++I) {

    // Abort if we can't understand the usage
    if (!I->isMachineOpcode() ||
        I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
      return;

    Lane = SubIdx2Lane(I->getConstantOperandVal(1));

    // Abort if we have more than one user per component
    if (Users[Lane])
      return;

    Users[Lane] = *I;
    Writemask |= 1 << Lane;
  }

  // Abort if all components are used
  if (Writemask == 0xf)
    return;

  // Adjust the writemask in the node
  std::vector<SDValue> Ops;
  Ops.push_back(DAG.getTargetConstant(Writemask, MVT::i32));
  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
    Ops.push_back(Node->getOperand(i));
  Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops.data(), Ops.size());

  // If we only got one lane, replace it with a copy
  if (Writemask == (1U << Lane)) {
    SDValue RC = DAG.getTargetConstant(AMDGPU::VReg_32RegClassID, MVT::i32);
    SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
                                      SDLoc(), Users[Lane]->getValueType(0),
                                      SDValue(Node, 0), RC);
    DAG.ReplaceAllUsesWith(Users[Lane], Copy);
    return;
  }

  // Update the users of the node with the new indices
  for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {

    SDNode *User = Users[i];
    if (!User)
      continue;

    SDValue Op = DAG.getTargetConstant(Idx, MVT::i32);
    DAG.UpdateNodeOperands(User, User->getOperand(0), Op);

    switch (Idx) {
    default: break;
    case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
    case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
    case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
    }
  }
}

/// \brief Fold the instructions after slecting them
SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
                                          SelectionDAG &DAG) const {
  const SIInstrInfo *TII =
      static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
  Node = AdjustRegClass(Node, DAG);

  if (TII->isMIMG(Node->getMachineOpcode()))
    adjustWritemask(Node, DAG);

  return foldOperands(Node, DAG);
}

/// \brief Assign the register class depending on the number of
/// bits set in the writemask
void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
                                                     SDNode *Node) const {
  const SIInstrInfo *TII =
      static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
  if (!TII->isMIMG(MI->getOpcode()))
    return;

  unsigned VReg = MI->getOperand(0).getReg();
  unsigned Writemask = MI->getOperand(1).getImm();
  unsigned BitsSet = 0;
  for (unsigned i = 0; i < 4; ++i)
    BitsSet += Writemask & (1 << i) ? 1 : 0;

  const TargetRegisterClass *RC;
  switch (BitsSet) {
  default: return;
  case 1:  RC = &AMDGPU::VReg_32RegClass; break;
  case 2:  RC = &AMDGPU::VReg_64RegClass; break;
  case 3:  RC = &AMDGPU::VReg_96RegClass; break;
  }

  unsigned NewOpcode = TII->getMaskedMIMGOp(MI->getOpcode(), BitsSet);
  MI->setDesc(TII->get(NewOpcode));
  MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
  MRI.setRegClass(VReg, RC);
}

MachineSDNode *SITargetLowering::AdjustRegClass(MachineSDNode *N,
                                                SelectionDAG &DAG) const {

  SDLoc DL(N);
  unsigned NewOpcode = N->getMachineOpcode();

  switch (N->getMachineOpcode()) {
  default: return N;
  case AMDGPU::S_LOAD_DWORD_IMM:
    NewOpcode = AMDGPU::BUFFER_LOAD_DWORD_ADDR64;
    // Fall-through
  case AMDGPU::S_LOAD_DWORDX2_SGPR:
    if (NewOpcode == N->getMachineOpcode()) {
      NewOpcode = AMDGPU::BUFFER_LOAD_DWORDX2_ADDR64;
    }
    // Fall-through
  case AMDGPU::S_LOAD_DWORDX4_IMM:
  case AMDGPU::S_LOAD_DWORDX4_SGPR: {
    if (NewOpcode == N->getMachineOpcode()) {
      NewOpcode = AMDGPU::BUFFER_LOAD_DWORDX4_ADDR64;
    }
    if (fitsRegClass(DAG, N->getOperand(0), AMDGPU::SReg_64RegClassID)) {
      return N;
    }
    ConstantSDNode *Offset = cast<ConstantSDNode>(N->getOperand(1));
    SDValue Ops[] = {
      SDValue(DAG.getMachineNode(AMDGPU::SI_ADDR64_RSRC, DL, MVT::i128,
                                 DAG.getConstant(0, MVT::i64)), 0),
      N->getOperand(0),
      DAG.getConstant(Offset->getSExtValue() << 2, MVT::i32)
    };
    return DAG.getMachineNode(NewOpcode, DL, N->getVTList(), Ops);
  }
  }
}

SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
                                               const TargetRegisterClass *RC,
                                               unsigned Reg, EVT VT) const {
  SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT);

  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()),
                            cast<RegisterSDNode>(VReg)->getReg(), VT);
}