summaryrefslogtreecommitdiffstats
path: root/lib/Target/X86/X86FloatingPoint.cpp
blob: cd32ef5e02fd4ca21c969b4602dee039fc854ee9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the pass which converts floating point instructions from
// virtual registers into register stack instructions.  This pass uses live
// variable information to indicate where the FPn registers are used and their
// lifetimes.
//
// This pass is hampered by the lack of decent CFG manipulation routines for
// machine code.  In particular, this wants to be able to split critical edges
// as necessary, traverse the machine basic block CFG in depth-first order, and
// allow there to be multiple machine basic blocks for each LLVM basicblock
// (needed for critical edge splitting).
//
// In particular, this pass currently barfs on critical edges.  Because of this,
// it requires the instruction selector to insert FP_REG_KILL instructions on
// the exits of any basic block that has critical edges going from it, or which
// branch to a critical basic block.
//
// FIXME: this is not implemented yet.  The stackifier pass only works on local
// basic blocks.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "fp"
#include "X86.h"
#include "X86InstrInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Compiler.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
#include <iostream>
#include <set>
using namespace llvm;

namespace {
  Statistic<> NumFXCH("x86-codegen", "Number of fxch instructions inserted");
  Statistic<> NumFP  ("x86-codegen", "Number of floating point instructions");

  struct VISIBILITY_HIDDEN FPS : public MachineFunctionPass {
    virtual bool runOnMachineFunction(MachineFunction &MF);

    virtual const char *getPassName() const { return "X86 FP Stackifier"; }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequired<LiveVariables>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }
  private:
    LiveVariables     *LV;    // Live variable info for current function...
    MachineBasicBlock *MBB;   // Current basic block
    unsigned Stack[8];        // FP<n> Registers in each stack slot...
    unsigned RegMap[8];       // Track which stack slot contains each register
    unsigned StackTop;        // The current top of the FP stack.

    void dumpStack() const {
      std::cerr << "Stack contents:";
      for (unsigned i = 0; i != StackTop; ++i) {
        std::cerr << " FP" << Stack[i];
        assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
      }
      std::cerr << "\n";
    }
  private:
    // getSlot - Return the stack slot number a particular register number is
    // in...
    unsigned getSlot(unsigned RegNo) const {
      assert(RegNo < 8 && "Regno out of range!");
      return RegMap[RegNo];
    }

    // getStackEntry - Return the X86::FP<n> register in register ST(i)
    unsigned getStackEntry(unsigned STi) const {
      assert(STi < StackTop && "Access past stack top!");
      return Stack[StackTop-1-STi];
    }

    // getSTReg - Return the X86::ST(i) register which contains the specified
    // FP<RegNo> register
    unsigned getSTReg(unsigned RegNo) const {
      return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
    }

    // pushReg - Push the specified FP<n> register onto the stack
    void pushReg(unsigned Reg) {
      assert(Reg < 8 && "Register number out of range!");
      assert(StackTop < 8 && "Stack overflow!");
      Stack[StackTop] = Reg;
      RegMap[Reg] = StackTop++;
    }

    bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
    void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) {
      if (!isAtTop(RegNo)) {
        unsigned Slot = getSlot(RegNo);
        unsigned STReg = getSTReg(RegNo);
        unsigned RegOnTop = getStackEntry(0);

        // Swap the slots the regs are in
        std::swap(RegMap[RegNo], RegMap[RegOnTop]);

        // Swap stack slot contents
        assert(RegMap[RegOnTop] < StackTop);
        std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);

        // Emit an fxch to update the runtime processors version of the state
        BuildMI(*MBB, I, X86::FXCH, 1).addReg(STReg);
        NumFXCH++;
      }
    }

    void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
      unsigned STReg = getSTReg(RegNo);
      pushReg(AsReg);   // New register on top of stack

      BuildMI(*MBB, I, X86::FLDrr, 1).addReg(STReg);
    }

    // popStackAfter - Pop the current value off of the top of the FP stack
    // after the specified instruction.
    void popStackAfter(MachineBasicBlock::iterator &I);

    // freeStackSlotAfter - Free the specified register from the register stack,
    // so that it is no longer in a register.  If the register is currently at
    // the top of the stack, we just pop the current instruction, otherwise we
    // store the current top-of-stack into the specified slot, then pop the top
    // of stack.
    void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);

    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);

    void handleZeroArgFP(MachineBasicBlock::iterator &I);
    void handleOneArgFP(MachineBasicBlock::iterator &I);
    void handleOneArgFPRW(MachineBasicBlock::iterator &I);
    void handleTwoArgFP(MachineBasicBlock::iterator &I);
    void handleCompareFP(MachineBasicBlock::iterator &I);
    void handleCondMovFP(MachineBasicBlock::iterator &I);
    void handleSpecialFP(MachineBasicBlock::iterator &I);
  };
}

FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }

/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
/// register references into FP stack references.
///
bool FPS::runOnMachineFunction(MachineFunction &MF) {
  // We only need to run this pass if there are any FP registers used in this
  // function.  If it is all integer, there is nothing for us to do!
  const bool *PhysRegsUsed = MF.getUsedPhysregs();
  bool FPIsUsed = false;

  assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
  for (unsigned i = 0; i <= 6; ++i)
    if (PhysRegsUsed[X86::FP0+i]) {
      FPIsUsed = true;
      break;
    }

  // Early exit.
  if (!FPIsUsed) return false;

  LV = &getAnalysis<LiveVariables>();
  StackTop = 0;

  // Process the function in depth first order so that we process at least one
  // of the predecessors for every reachable block in the function.
  std::set<MachineBasicBlock*> Processed;
  MachineBasicBlock *Entry = MF.begin();

  bool Changed = false;
  for (df_ext_iterator<MachineBasicBlock*, std::set<MachineBasicBlock*> >
         I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
       I != E; ++I)
    Changed |= processBasicBlock(MF, **I);

  return Changed;
}

/// processBasicBlock - Loop over all of the instructions in the basic block,
/// transforming FP instructions into their stack form.
///
bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
  const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
  bool Changed = false;
  MBB = &BB;

  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
    MachineInstr *MI = I;
    unsigned Flags = TII.get(MI->getOpcode()).TSFlags;
    if ((Flags & X86II::FPTypeMask) == X86II::NotFP)
      continue;  // Efficiently ignore non-fp insts!

    MachineInstr *PrevMI = 0;
    if (I != BB.begin())
        PrevMI = prior(I);

    ++NumFP;  // Keep track of # of pseudo instrs
    DEBUG(std::cerr << "\nFPInst:\t"; MI->print(std::cerr, &(MF.getTarget())));

    // Get dead variables list now because the MI pointer may be deleted as part
    // of processing!
    LiveVariables::killed_iterator IB, IE;
    tie(IB, IE) = LV->dead_range(MI);

    DEBUG(
      const MRegisterInfo *MRI = MF.getTarget().getRegisterInfo();
      LiveVariables::killed_iterator I = LV->killed_begin(MI);
      LiveVariables::killed_iterator E = LV->killed_end(MI);
      if (I != E) {
        std::cerr << "Killed Operands:";
        for (; I != E; ++I)
          std::cerr << " %" << MRI->getName(*I);
        std::cerr << "\n";
      }
    );

    switch (Flags & X86II::FPTypeMask) {
    case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
    case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
    case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
    case X86II::TwoArgFP:   handleTwoArgFP(I); break;
    case X86II::CompareFP:  handleCompareFP(I); break;
    case X86II::CondMovFP:  handleCondMovFP(I); break;
    case X86II::SpecialFP:  handleSpecialFP(I); break;
    default: assert(0 && "Unknown FP Type!");
    }

    // Check to see if any of the values defined by this instruction are dead
    // after definition.  If so, pop them.
    for (; IB != IE; ++IB) {
      unsigned Reg = *IB;
      if (Reg >= X86::FP0 && Reg <= X86::FP6) {
        DEBUG(std::cerr << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
        freeStackSlotAfter(I, Reg-X86::FP0);
      }
    }

    // Print out all of the instructions expanded to if -debug
    DEBUG(
      MachineBasicBlock::iterator PrevI(PrevMI);
      if (I == PrevI) {
        std::cerr << "Just deleted pseudo instruction\n";
      } else {
        MachineBasicBlock::iterator Start = I;
        // Rewind to first instruction newly inserted.
        while (Start != BB.begin() && prior(Start) != PrevI) --Start;
        std::cerr << "Inserted instructions:\n\t";
        Start->print(std::cerr, &MF.getTarget());
        while (++Start != next(I));
      }
      dumpStack();
    );

    Changed = true;
  }

  assert(StackTop == 0 && "Stack not empty at end of basic block?");
  return Changed;
}

//===----------------------------------------------------------------------===//
// Efficient Lookup Table Support
//===----------------------------------------------------------------------===//

namespace {
  struct TableEntry {
    unsigned from;
    unsigned to;
    bool operator<(const TableEntry &TE) const { return from < TE.from; }
    friend bool operator<(const TableEntry &TE, unsigned V) {
      return TE.from < V;
    }
    friend bool operator<(unsigned V, const TableEntry &TE) {
      return V < TE.from;
    }
  };
}

static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
  for (unsigned i = 0; i != NumEntries-1; ++i)
    if (!(Table[i] < Table[i+1])) return false;
  return true;
}

static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
  if (I != Table+N && I->from == Opcode)
    return I->to;
  return -1;
}

#define ARRAY_SIZE(TABLE)  \
   (sizeof(TABLE)/sizeof(TABLE[0]))

#ifdef NDEBUG
#define ASSERT_SORTED(TABLE)
#else
#define ASSERT_SORTED(TABLE)                                              \
  { static bool TABLE##Checked = false;                                   \
    if (!TABLE##Checked) {                                                \
       assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) &&                  \
              "All lookup tables must be sorted for efficient access!");  \
       TABLE##Checked = true;                                             \
    }                                                                     \
  }
#endif

//===----------------------------------------------------------------------===//
// Register File -> Register Stack Mapping Methods
//===----------------------------------------------------------------------===//

// OpcodeTable - Sorted map of register instructions to their stack version.
// The first element is an register file pseudo instruction, the second is the
// concrete X86 instruction which uses the register stack.
//
static const TableEntry OpcodeTable[] = {
  { X86::FpABS     , X86::FABS     },
  { X86::FpADD32m  , X86::FADD32m  },
  { X86::FpADD64m  , X86::FADD64m  },
  { X86::FpCHS     , X86::FCHS     },
  { X86::FpCMOVB   , X86::FCMOVB   },
  { X86::FpCMOVBE  , X86::FCMOVBE  },
  { X86::FpCMOVE   , X86::FCMOVE   },
  { X86::FpCMOVNB  , X86::FCMOVNB  },
  { X86::FpCMOVNBE , X86::FCMOVNBE },
  { X86::FpCMOVNE  , X86::FCMOVNE  },
  { X86::FpCMOVNP  , X86::FCMOVNP  },
  { X86::FpCMOVP   , X86::FCMOVP   },
  { X86::FpCOS     , X86::FCOS     },
  { X86::FpDIV32m  , X86::FDIV32m  },
  { X86::FpDIV64m  , X86::FDIV64m  },
  { X86::FpDIVR32m , X86::FDIVR32m },
  { X86::FpDIVR64m , X86::FDIVR64m },
  { X86::FpIADD16m , X86::FIADD16m },
  { X86::FpIADD32m , X86::FIADD32m },
  { X86::FpIDIV16m , X86::FIDIV16m },
  { X86::FpIDIV32m , X86::FIDIV32m },
  { X86::FpIDIVR16m, X86::FIDIVR16m},
  { X86::FpIDIVR32m, X86::FIDIVR32m},
  { X86::FpILD16m  , X86::FILD16m  },
  { X86::FpILD32m  , X86::FILD32m  },
  { X86::FpILD64m  , X86::FILD64m  },
  { X86::FpIMUL16m , X86::FIMUL16m },
  { X86::FpIMUL32m , X86::FIMUL32m },
  { X86::FpIST16m  , X86::FIST16m  },
  { X86::FpIST32m  , X86::FIST32m  },
  { X86::FpIST64m  , X86::FISTP64m },
  { X86::FpISTT16m , X86::FISTTP16m},
  { X86::FpISTT32m , X86::FISTTP32m},
  { X86::FpISTT64m , X86::FISTTP64m},
  { X86::FpISUB16m , X86::FISUB16m },
  { X86::FpISUB32m , X86::FISUB32m },
  { X86::FpISUBR16m, X86::FISUBR16m},
  { X86::FpISUBR32m, X86::FISUBR32m},
  { X86::FpLD0     , X86::FLD0     },
  { X86::FpLD1     , X86::FLD1     },
  { X86::FpLD32m   , X86::FLD32m   },
  { X86::FpLD64m   , X86::FLD64m   },
  { X86::FpMUL32m  , X86::FMUL32m  },
  { X86::FpMUL64m  , X86::FMUL64m  },
  { X86::FpSIN     , X86::FSIN     },
  { X86::FpSQRT    , X86::FSQRT    },
  { X86::FpST32m   , X86::FST32m   },
  { X86::FpST64m   , X86::FST64m   },
  { X86::FpSUB32m  , X86::FSUB32m  },
  { X86::FpSUB64m  , X86::FSUB64m  },
  { X86::FpSUBR32m , X86::FSUBR32m },
  { X86::FpSUBR64m , X86::FSUBR64m },
  { X86::FpTST     , X86::FTST     },
  { X86::FpUCOMIr  , X86::FUCOMIr  },
  { X86::FpUCOMr   , X86::FUCOMr   },
};

static unsigned getConcreteOpcode(unsigned Opcode) {
  ASSERT_SORTED(OpcodeTable);
  int Opc = Lookup(OpcodeTable, ARRAY_SIZE(OpcodeTable), Opcode);
  assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
  return Opc;
}

//===----------------------------------------------------------------------===//
// Helper Methods
//===----------------------------------------------------------------------===//

// PopTable - Sorted map of instructions to their popping version.  The first
// element is an instruction, the second is the version which pops.
//
static const TableEntry PopTable[] = {
  { X86::FADDrST0 , X86::FADDPrST0  },

  { X86::FDIVRrST0, X86::FDIVRPrST0 },
  { X86::FDIVrST0 , X86::FDIVPrST0  },

  { X86::FIST16m  , X86::FISTP16m   },
  { X86::FIST32m  , X86::FISTP32m   },

  { X86::FMULrST0 , X86::FMULPrST0  },

  { X86::FST32m   , X86::FSTP32m    },
  { X86::FST64m   , X86::FSTP64m    },
  { X86::FSTrr    , X86::FSTPrr     },

  { X86::FSUBRrST0, X86::FSUBRPrST0 },
  { X86::FSUBrST0 , X86::FSUBPrST0  },

  { X86::FUCOMIr  , X86::FUCOMIPr   },

  { X86::FUCOMPr  , X86::FUCOMPPr   },
  { X86::FUCOMr   , X86::FUCOMPr    },
};

/// popStackAfter - Pop the current value off of the top of the FP stack after
/// the specified instruction.  This attempts to be sneaky and combine the pop
/// into the instruction itself if possible.  The iterator is left pointing to
/// the last instruction, be it a new pop instruction inserted, or the old
/// instruction if it was modified in place.
///
void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
  ASSERT_SORTED(PopTable);
  assert(StackTop > 0 && "Cannot pop empty stack!");
  RegMap[Stack[--StackTop]] = ~0;     // Update state

  // Check to see if there is a popping version of this instruction...
  int Opcode = Lookup(PopTable, ARRAY_SIZE(PopTable), I->getOpcode());
  if (Opcode != -1) {
    I->setOpcode(Opcode);
    if (Opcode == X86::FUCOMPPr)
      I->RemoveOperand(0);

  } else {    // Insert an explicit pop
    I = BuildMI(*MBB, ++I, X86::FSTPrr, 1).addReg(X86::ST0);
  }
}

/// freeStackSlotAfter - Free the specified register from the register stack, so
/// that it is no longer in a register.  If the register is currently at the top
/// of the stack, we just pop the current instruction, otherwise we store the
/// current top-of-stack into the specified slot, then pop the top of stack.
void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
  if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
    popStackAfter(I);
    return;
  }

  // Otherwise, store the top of stack into the dead slot, killing the operand
  // without having to add in an explicit xchg then pop.
  //
  unsigned STReg    = getSTReg(FPRegNo);
  unsigned OldSlot  = getSlot(FPRegNo);
  unsigned TopReg   = Stack[StackTop-1];
  Stack[OldSlot]    = TopReg;
  RegMap[TopReg]    = OldSlot;
  RegMap[FPRegNo]   = ~0;
  Stack[--StackTop] = ~0;
  I = BuildMI(*MBB, ++I, X86::FSTPrr, 1).addReg(STReg);
}


static unsigned getFPReg(const MachineOperand &MO) {
  assert(MO.isRegister() && "Expected an FP register!");
  unsigned Reg = MO.getReg();
  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
  return Reg - X86::FP0;
}


//===----------------------------------------------------------------------===//
// Instruction transformation implementation
//===----------------------------------------------------------------------===//

/// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
///
void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
  MachineInstr *MI = I;
  unsigned DestReg = getFPReg(MI->getOperand(0));

  // Change from the pseudo instruction to the concrete instruction.
  MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
  MI->setOpcode(getConcreteOpcode(MI->getOpcode()));
  
  // Result gets pushed on the stack.
  pushReg(DestReg);
}

/// handleOneArgFP - fst <mem>, ST(0)
///
void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
  MachineInstr *MI = I;
  assert((MI->getNumOperands() == 5 || MI->getNumOperands() == 1) &&
         "Can only handle fst* & ftst instructions!");

  // Is this the last use of the source register?
  unsigned Reg = getFPReg(MI->getOperand(MI->getNumOperands()-1));
  bool KillsSrc = LV->KillsRegister(MI, X86::FP0+Reg);

  // FISTP64m is strange because there isn't a non-popping versions.
  // If we have one _and_ we don't want to pop the operand, duplicate the value
  // on the stack instead of moving it.  This ensure that popping the value is
  // always ok.
  // Ditto FISTTP16m, FISTTP32m, FISTTP64m.
  //
  if (!KillsSrc &&
      (MI->getOpcode() == X86::FpIST64m ||
       MI->getOpcode() == X86::FpISTT16m ||
       MI->getOpcode() == X86::FpISTT32m ||
       MI->getOpcode() == X86::FpISTT64m)) {
    duplicateToTop(Reg, 7 /*temp register*/, I);
  } else {
    moveToTop(Reg, I);            // Move to the top of the stack...
  }
  
  // Convert from the pseudo instruction to the concrete instruction.
  MI->RemoveOperand(MI->getNumOperands()-1);    // Remove explicit ST(0) operand
  MI->setOpcode(getConcreteOpcode(MI->getOpcode()));

  if (MI->getOpcode() == X86::FISTP64m ||
      MI->getOpcode() == X86::FISTTP16m ||
      MI->getOpcode() == X86::FISTTP32m ||
      MI->getOpcode() == X86::FISTTP64m) {
    assert(StackTop > 0 && "Stack empty??");
    --StackTop;
  } else if (KillsSrc) { // Last use of operand?
    popStackAfter(I);
  }
}


/// handleOneArgFPRW: Handle instructions that read from the top of stack and
/// replace the value with a newly computed value.  These instructions may have
/// non-fp operands after their FP operands.
///
///  Examples:
///     R1 = fchs R2
///     R1 = fadd R2, [mem]
///
void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
  MachineInstr *MI = I;
  assert(MI->getNumOperands() >= 2 && "FPRW instructions must have 2 ops!!");

  // Is this the last use of the source register?
  unsigned Reg = getFPReg(MI->getOperand(1));
  bool KillsSrc = LV->KillsRegister(MI, X86::FP0+Reg);

  if (KillsSrc) {
    // If this is the last use of the source register, just make sure it's on
    // the top of the stack.
    moveToTop(Reg, I);
    assert(StackTop > 0 && "Stack cannot be empty!");
    --StackTop;
    pushReg(getFPReg(MI->getOperand(0)));
  } else {
    // If this is not the last use of the source register, _copy_ it to the top
    // of the stack.
    duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
  }

  // Change from the pseudo instruction to the concrete instruction.
  MI->RemoveOperand(1);   // Drop the source operand.
  MI->RemoveOperand(0);   // Drop the destination operand.
  MI->setOpcode(getConcreteOpcode(MI->getOpcode()));
}


//===----------------------------------------------------------------------===//
// Define tables of various ways to map pseudo instructions
//

// ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
static const TableEntry ForwardST0Table[] = {
  { X86::FpADD  , X86::FADDST0r },
  { X86::FpDIV  , X86::FDIVST0r },
  { X86::FpMUL  , X86::FMULST0r },
  { X86::FpSUB  , X86::FSUBST0r },
};

// ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
static const TableEntry ReverseST0Table[] = {
  { X86::FpADD  , X86::FADDST0r  },   // commutative
  { X86::FpDIV  , X86::FDIVRST0r },
  { X86::FpMUL  , X86::FMULST0r  },   // commutative
  { X86::FpSUB  , X86::FSUBRST0r },
};

// ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
static const TableEntry ForwardSTiTable[] = {
  { X86::FpADD  , X86::FADDrST0  },   // commutative
  { X86::FpDIV  , X86::FDIVRrST0 },
  { X86::FpMUL  , X86::FMULrST0  },   // commutative
  { X86::FpSUB  , X86::FSUBRrST0 },
};

// ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
static const TableEntry ReverseSTiTable[] = {
  { X86::FpADD  , X86::FADDrST0 },
  { X86::FpDIV  , X86::FDIVrST0 },
  { X86::FpMUL  , X86::FMULrST0 },
  { X86::FpSUB  , X86::FSUBrST0 },
};


/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
/// instructions which need to be simplified and possibly transformed.
///
/// Result: ST(0) = fsub  ST(0), ST(i)
///         ST(i) = fsub  ST(0), ST(i)
///         ST(0) = fsubr ST(0), ST(i)
///         ST(i) = fsubr ST(0), ST(i)
///
void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
  MachineInstr *MI = I;

  unsigned NumOperands = MI->getNumOperands();
  assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
  unsigned Dest = getFPReg(MI->getOperand(0));
  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
  bool KillsOp0 = LV->KillsRegister(MI, X86::FP0+Op0);
  bool KillsOp1 = LV->KillsRegister(MI, X86::FP0+Op1);

  unsigned TOS = getStackEntry(0);

  // One of our operands must be on the top of the stack.  If neither is yet, we
  // need to move one.
  if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
    // We can choose to move either operand to the top of the stack.  If one of
    // the operands is killed by this instruction, we want that one so that we
    // can update right on top of the old version.
    if (KillsOp0) {
      moveToTop(Op0, I);         // Move dead operand to TOS.
      TOS = Op0;
    } else if (KillsOp1) {
      moveToTop(Op1, I);
      TOS = Op1;
    } else {
      // All of the operands are live after this instruction executes, so we
      // cannot update on top of any operand.  Because of this, we must
      // duplicate one of the stack elements to the top.  It doesn't matter
      // which one we pick.
      //
      duplicateToTop(Op0, Dest, I);
      Op0 = TOS = Dest;
      KillsOp0 = true;
    }
  } else if (!KillsOp0 && !KillsOp1) {
    // If we DO have one of our operands at the top of the stack, but we don't
    // have a dead operand, we must duplicate one of the operands to a new slot
    // on the stack.
    duplicateToTop(Op0, Dest, I);
    Op0 = TOS = Dest;
    KillsOp0 = true;
  }

  // Now we know that one of our operands is on the top of the stack, and at
  // least one of our operands is killed by this instruction.
  assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
         "Stack conditions not set up right!");

  // We decide which form to use based on what is on the top of the stack, and
  // which operand is killed by this instruction.
  const TableEntry *InstTable;
  bool isForward = TOS == Op0;
  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
  if (updateST0) {
    if (isForward)
      InstTable = ForwardST0Table;
    else
      InstTable = ReverseST0Table;
  } else {
    if (isForward)
      InstTable = ForwardSTiTable;
    else
      InstTable = ReverseSTiTable;
  }

  int Opcode = Lookup(InstTable, ARRAY_SIZE(ForwardST0Table), MI->getOpcode());
  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");

  // NotTOS - The register which is not on the top of stack...
  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;

  // Replace the old instruction with a new instruction
  MBB->remove(I++);
  I = BuildMI(*MBB, I, Opcode, 1).addReg(getSTReg(NotTOS));

  // If both operands are killed, pop one off of the stack in addition to
  // overwriting the other one.
  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
    assert(!updateST0 && "Should have updated other operand!");
    popStackAfter(I);   // Pop the top of stack
  }

  // Update stack information so that we know the destination register is now on
  // the stack.
  unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
  assert(UpdatedSlot < StackTop && Dest < 7);
  Stack[UpdatedSlot]   = Dest;
  RegMap[Dest]         = UpdatedSlot;
  delete MI;   // Remove the old instruction
}

/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
/// register arguments and no explicit destinations.
///
void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
  MachineInstr *MI = I;

  unsigned NumOperands = MI->getNumOperands();
  assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
  bool KillsOp0 = LV->KillsRegister(MI, X86::FP0+Op0);
  bool KillsOp1 = LV->KillsRegister(MI, X86::FP0+Op1);

  // Make sure the first operand is on the top of stack, the other one can be
  // anywhere.
  moveToTop(Op0, I);

  // Change from the pseudo instruction to the concrete instruction.
  MI->getOperand(0).setReg(getSTReg(Op1));
  MI->RemoveOperand(1);
  MI->setOpcode(getConcreteOpcode(MI->getOpcode()));

  // If any of the operands are killed by this instruction, free them.
  if (KillsOp0) freeStackSlotAfter(I, Op0);
  if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
}

/// handleCondMovFP - Handle two address conditional move instructions.  These
/// instructions move a st(i) register to st(0) iff a condition is true.  These
/// instructions require that the first operand is at the top of the stack, but
/// otherwise don't modify the stack at all.
void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
  MachineInstr *MI = I;

  unsigned Op0 = getFPReg(MI->getOperand(0));
  unsigned Op1 = getFPReg(MI->getOperand(1));

  // The first operand *must* be on the top of the stack.
  moveToTop(Op0, I);

  // Change the second operand to the stack register that the operand is in.
  // Change from the pseudo instruction to the concrete instruction.
  MI->RemoveOperand(0);
  MI->getOperand(0).setReg(getSTReg(Op1));
  MI->setOpcode(getConcreteOpcode(MI->getOpcode()));
  
  
  // If we kill the second operand, make sure to pop it from the stack.
  if (Op0 != Op1 && LV->KillsRegister(MI, X86::FP0+Op1)) {
    // Get this value off of the register stack.
    freeStackSlotAfter(I, Op1);
  }
}


/// handleSpecialFP - Handle special instructions which behave unlike other
/// floating point instructions.  This is primarily intended for use by pseudo
/// instructions.
///
void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
  MachineInstr *MI = I;
  switch (MI->getOpcode()) {
  default: assert(0 && "Unknown SpecialFP instruction!");
  case X86::FpGETRESULT:  // Appears immediately after a call returning FP type!
    assert(StackTop == 0 && "Stack should be empty after a call!");
    pushReg(getFPReg(MI->getOperand(0)));
    break;
  case X86::FpSETRESULT:
    assert(StackTop == 1 && "Stack should have one element on it to return!");
    --StackTop;   // "Forget" we have something on the top of stack!
    break;
  case X86::FpMOV: {
    unsigned SrcReg = getFPReg(MI->getOperand(1));
    unsigned DestReg = getFPReg(MI->getOperand(0));

    if (LV->KillsRegister(MI, X86::FP0+SrcReg)) {
      // If the input operand is killed, we can just change the owner of the
      // incoming stack slot into the result.
      unsigned Slot = getSlot(SrcReg);
      assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
      Stack[Slot] = DestReg;
      RegMap[DestReg] = Slot;

    } else {
      // For FMOV we just duplicate the specified value to a new stack slot.
      // This could be made better, but would require substantial changes.
      duplicateToTop(SrcReg, DestReg, I);
    }
    break;
  }
  }

  I = MBB->erase(I);  // Remove the pseudo instruction
  --I;
}