1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
|
//===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86 specific subclass of TargetSubtargetInfo.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "subtarget"
#include "X86Subtarget.h"
#include "X86InstrInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#define GET_SUBTARGETINFO_TARGET_DESC
#define GET_SUBTARGETINFO_CTOR
#include "X86GenSubtargetInfo.inc"
using namespace llvm;
#if defined(_MSC_VER)
#include <intrin.h>
#endif
/// ClassifyBlockAddressReference - Classify a blockaddress reference for the
/// current subtarget according to how we should reference it in a non-pcrel
/// context.
unsigned char X86Subtarget::ClassifyBlockAddressReference() const {
if (isPICStyleGOT()) // 32-bit ELF targets.
return X86II::MO_GOTOFF;
if (isPICStyleStubPIC()) // Darwin/32 in PIC mode.
return X86II::MO_PIC_BASE_OFFSET;
// Direct static reference to label.
return X86II::MO_NO_FLAG;
}
/// ClassifyGlobalReference - Classify a global variable reference for the
/// current subtarget according to how we should reference it in a non-pcrel
/// context.
unsigned char X86Subtarget::
ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const {
// DLLImport only exists on windows, it is implemented as a load from a
// DLLIMPORT stub.
if (GV->hasDLLImportStorageClass())
return X86II::MO_DLLIMPORT;
// Determine whether this is a reference to a definition or a declaration.
// Materializable GVs (in JIT lazy compilation mode) do not require an extra
// load from stub.
bool isDecl = GV->hasAvailableExternallyLinkage();
if (GV->isDeclaration() && !GV->isMaterializable())
isDecl = true;
// X86-64 in PIC mode.
if (isPICStyleRIPRel()) {
// Large model never uses stubs.
if (TM.getCodeModel() == CodeModel::Large)
return X86II::MO_NO_FLAG;
if (isTargetDarwin()) {
// If symbol visibility is hidden, the extra load is not needed if
// target is x86-64 or the symbol is definitely defined in the current
// translation unit.
if (GV->hasDefaultVisibility() &&
(isDecl || GV->isWeakForLinker()))
return X86II::MO_GOTPCREL;
} else if (!isTargetWin64()) {
assert(isTargetELF() && "Unknown rip-relative target");
// Extra load is needed for all externally visible.
if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility())
return X86II::MO_GOTPCREL;
}
return X86II::MO_NO_FLAG;
}
if (isPICStyleGOT()) { // 32-bit ELF targets.
// Extra load is needed for all externally visible.
if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
return X86II::MO_GOTOFF;
return X86II::MO_GOT;
}
if (isPICStyleStubPIC()) { // Darwin/32 in PIC mode.
// Determine whether we have a stub reference and/or whether the reference
// is relative to the PIC base or not.
// If this is a strong reference to a definition, it is definitely not
// through a stub.
if (!isDecl && !GV->isWeakForLinker())
return X86II::MO_PIC_BASE_OFFSET;
// Unless we have a symbol with hidden visibility, we have to go through a
// normal $non_lazy_ptr stub because this symbol might be resolved late.
if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
// If symbol visibility is hidden, we have a stub for common symbol
// references and external declarations.
if (isDecl || GV->hasCommonLinkage()) {
// Hidden $non_lazy_ptr reference.
return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE;
}
// Otherwise, no stub.
return X86II::MO_PIC_BASE_OFFSET;
}
if (isPICStyleStubNoDynamic()) { // Darwin/32 in -mdynamic-no-pic mode.
// Determine whether we have a stub reference.
// If this is a strong reference to a definition, it is definitely not
// through a stub.
if (!isDecl && !GV->isWeakForLinker())
return X86II::MO_NO_FLAG;
// Unless we have a symbol with hidden visibility, we have to go through a
// normal $non_lazy_ptr stub because this symbol might be resolved late.
if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
return X86II::MO_DARWIN_NONLAZY;
// Otherwise, no stub.
return X86II::MO_NO_FLAG;
}
// Direct static reference to global.
return X86II::MO_NO_FLAG;
}
/// getBZeroEntry - This function returns the name of a function which has an
/// interface like the non-standard bzero function, if such a function exists on
/// the current subtarget and it is considered prefereable over memset with zero
/// passed as the second argument. Otherwise it returns null.
const char *X86Subtarget::getBZeroEntry() const {
// Darwin 10 has a __bzero entry point for this purpose.
if (getTargetTriple().isMacOSX() &&
!getTargetTriple().isMacOSXVersionLT(10, 6))
return "__bzero";
return 0;
}
bool X86Subtarget::hasSinCos() const {
return getTargetTriple().isMacOSX() &&
!getTargetTriple().isMacOSXVersionLT(10, 9) &&
is64Bit();
}
/// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls
/// to immediate address.
bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const {
// FIXME: I386 PE/COFF supports PC relative calls using IMAGE_REL_I386_REL32
// but WinCOFFObjectWriter::RecordRelocation cannot emit them. Once it does,
// the following check for Win32 should be removed.
if (In64BitMode || isTargetWin32())
return false;
return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
}
static bool OSHasAVXSupport() {
#if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\
|| defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
#if defined(__GNUC__)
// Check xgetbv; this uses a .byte sequence instead of the instruction
// directly because older assemblers do not include support for xgetbv and
// there is no easy way to conditionally compile based on the assembler used.
int rEAX, rEDX;
__asm__ (".byte 0x0f, 0x01, 0xd0" : "=a" (rEAX), "=d" (rEDX) : "c" (0));
#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
unsigned long long rEAX = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
#else
int rEAX = 0; // Ensures we return false
#endif
return (rEAX & 6) == 6;
#else
return false;
#endif
}
void X86Subtarget::AutoDetectSubtargetFeatures() {
unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
unsigned MaxLevel;
union {
unsigned u[3];
char c[12];
} text;
if (X86_MC::GetCpuIDAndInfo(0, &MaxLevel, text.u+0, text.u+2, text.u+1) ||
MaxLevel < 1)
return;
X86_MC::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
if ((EDX >> 15) & 1) { HasCMov = true; ToggleFeature(X86::FeatureCMOV); }
if ((EDX >> 23) & 1) { X86SSELevel = MMX; ToggleFeature(X86::FeatureMMX); }
if ((EDX >> 25) & 1) { X86SSELevel = SSE1; ToggleFeature(X86::FeatureSSE1); }
if ((EDX >> 26) & 1) { X86SSELevel = SSE2; ToggleFeature(X86::FeatureSSE2); }
if (ECX & 0x1) { X86SSELevel = SSE3; ToggleFeature(X86::FeatureSSE3); }
if ((ECX >> 9) & 1) { X86SSELevel = SSSE3; ToggleFeature(X86::FeatureSSSE3);}
if ((ECX >> 19) & 1) { X86SSELevel = SSE41; ToggleFeature(X86::FeatureSSE41);}
if ((ECX >> 20) & 1) { X86SSELevel = SSE42; ToggleFeature(X86::FeatureSSE42);}
if (((ECX >> 27) & 1) && ((ECX >> 28) & 1) && OSHasAVXSupport()) {
X86SSELevel = AVX; ToggleFeature(X86::FeatureAVX);
}
bool IsIntel = memcmp(text.c, "GenuineIntel", 12) == 0;
bool IsAMD = !IsIntel && memcmp(text.c, "AuthenticAMD", 12) == 0;
if ((ECX >> 1) & 0x1) {
HasPCLMUL = true;
ToggleFeature(X86::FeaturePCLMUL);
}
if ((ECX >> 12) & 0x1) {
HasFMA = true;
ToggleFeature(X86::FeatureFMA);
}
if (IsIntel && ((ECX >> 22) & 0x1)) {
HasMOVBE = true;
ToggleFeature(X86::FeatureMOVBE);
}
if ((ECX >> 23) & 0x1) {
HasPOPCNT = true;
ToggleFeature(X86::FeaturePOPCNT);
}
if ((ECX >> 25) & 0x1) {
HasAES = true;
ToggleFeature(X86::FeatureAES);
}
if ((ECX >> 29) & 0x1) {
HasF16C = true;
ToggleFeature(X86::FeatureF16C);
}
if (IsIntel && ((ECX >> 30) & 0x1)) {
HasRDRAND = true;
ToggleFeature(X86::FeatureRDRAND);
}
if ((ECX >> 13) & 0x1) {
HasCmpxchg16b = true;
ToggleFeature(X86::FeatureCMPXCHG16B);
}
if (IsIntel || IsAMD) {
// Determine if bit test memory instructions are slow.
unsigned Family = 0;
unsigned Model = 0;
X86_MC::DetectFamilyModel(EAX, Family, Model);
if (IsAMD || (Family == 6 && Model >= 13)) {
IsBTMemSlow = true;
ToggleFeature(X86::FeatureSlowBTMem);
}
// Determine if SHLD/SHRD instructions have higher latency then the
// equivalent series of shifts/or instructions.
// FIXME: Add Intel's processors that have SHLD instructions with very
// poor latency.
if (IsAMD) {
IsSHLDSlow = true;
ToggleFeature(X86::FeatureSlowSHLD);
}
// If it's an Intel chip since Nehalem and not an Atom chip, unaligned
// memory access is fast. We hard code model numbers here because they
// aren't strictly increasing for Intel chips it seems.
if (IsIntel &&
((Family == 6 && Model == 0x1E) || // Nehalem: Clarksfield, Lynnfield,
// Jasper Froest
(Family == 6 && Model == 0x1A) || // Nehalem: Bloomfield, Nehalem-EP
(Family == 6 && Model == 0x2E) || // Nehalem: Nehalem-EX
(Family == 6 && Model == 0x25) || // Westmere: Arrandale, Clarksdale
(Family == 6 && Model == 0x2C) || // Westmere: Gulftown, Westmere-EP
(Family == 6 && Model == 0x2F) || // Westmere: Westmere-EX
(Family == 6 && Model == 0x2A) || // SandyBridge
(Family == 6 && Model == 0x2D) || // SandyBridge: SandyBridge-E*
(Family == 6 && Model == 0x3A) || // IvyBridge
(Family == 6 && Model == 0x3E) || // IvyBridge EP
(Family == 6 && Model == 0x3C) || // Haswell
(Family == 6 && Model == 0x3F) || // ...
(Family == 6 && Model == 0x45) || // ...
(Family == 6 && Model == 0x46))) { // ...
IsUAMemFast = true;
ToggleFeature(X86::FeatureFastUAMem);
}
// Set processor type. Currently only Atom or Silvermont (SLM) is detected.
if (Family == 6 &&
(Model == 28 || Model == 38 || Model == 39 ||
Model == 53 || Model == 54)) {
X86ProcFamily = IntelAtom;
UseLeaForSP = true;
ToggleFeature(X86::FeatureLeaForSP);
}
else if (Family == 6 &&
(Model == 55 || Model == 74 || Model == 77)) {
X86ProcFamily = IntelSLM;
}
unsigned MaxExtLevel;
X86_MC::GetCpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
if (MaxExtLevel >= 0x80000001) {
X86_MC::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
if ((EDX >> 29) & 0x1) {
HasX86_64 = true;
ToggleFeature(X86::Feature64Bit);
}
if ((ECX >> 5) & 0x1) {
HasLZCNT = true;
ToggleFeature(X86::FeatureLZCNT);
}
if (IsIntel && ((ECX >> 8) & 0x1)) {
HasPRFCHW = true;
ToggleFeature(X86::FeaturePRFCHW);
}
if (IsAMD) {
if ((ECX >> 6) & 0x1) {
HasSSE4A = true;
ToggleFeature(X86::FeatureSSE4A);
}
if ((ECX >> 11) & 0x1) {
HasXOP = true;
ToggleFeature(X86::FeatureXOP);
}
if ((ECX >> 16) & 0x1) {
HasFMA4 = true;
ToggleFeature(X86::FeatureFMA4);
}
}
}
}
if (MaxLevel >= 7) {
if (!X86_MC::GetCpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX)) {
if (IsIntel && (EBX & 0x1)) {
HasFSGSBase = true;
ToggleFeature(X86::FeatureFSGSBase);
}
if ((EBX >> 3) & 0x1) {
HasBMI = true;
ToggleFeature(X86::FeatureBMI);
}
if ((EBX >> 4) & 0x1) {
HasHLE = true;
ToggleFeature(X86::FeatureHLE);
}
if (IsIntel && ((EBX >> 5) & 0x1)) {
X86SSELevel = AVX2;
ToggleFeature(X86::FeatureAVX2);
}
if (IsIntel && ((EBX >> 8) & 0x1)) {
HasBMI2 = true;
ToggleFeature(X86::FeatureBMI2);
}
if (IsIntel && ((EBX >> 11) & 0x1)) {
HasRTM = true;
ToggleFeature(X86::FeatureRTM);
}
if (IsIntel && ((EBX >> 16) & 0x1)) {
X86SSELevel = AVX512F;
ToggleFeature(X86::FeatureAVX512);
}
if (IsIntel && ((EBX >> 18) & 0x1)) {
HasRDSEED = true;
ToggleFeature(X86::FeatureRDSEED);
}
if (IsIntel && ((EBX >> 19) & 0x1)) {
HasADX = true;
ToggleFeature(X86::FeatureADX);
}
if (IsIntel && ((EBX >> 26) & 0x1)) {
HasPFI = true;
ToggleFeature(X86::FeaturePFI);
}
if (IsIntel && ((EBX >> 27) & 0x1)) {
HasERI = true;
ToggleFeature(X86::FeatureERI);
}
if (IsIntel && ((EBX >> 28) & 0x1)) {
HasCDI = true;
ToggleFeature(X86::FeatureCDI);
}
if (IsIntel && ((EBX >> 29) & 0x1)) {
HasSHA = true;
ToggleFeature(X86::FeatureSHA);
}
}
if (IsAMD && ((ECX >> 21) & 0x1)) {
HasTBM = true;
ToggleFeature(X86::FeatureTBM);
}
}
}
void X86Subtarget::resetSubtargetFeatures(const MachineFunction *MF) {
AttributeSet FnAttrs = MF->getFunction()->getAttributes();
Attribute CPUAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex,
"target-cpu");
Attribute FSAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex,
"target-features");
std::string CPU =
!CPUAttr.hasAttribute(Attribute::None) ?CPUAttr.getValueAsString() : "";
std::string FS =
!FSAttr.hasAttribute(Attribute::None) ? FSAttr.getValueAsString() : "";
if (!FS.empty()) {
initializeEnvironment();
resetSubtargetFeatures(CPU, FS);
}
}
void X86Subtarget::resetSubtargetFeatures(StringRef CPU, StringRef FS) {
std::string CPUName = CPU;
if (!FS.empty() || !CPU.empty()) {
if (CPUName.empty()) {
#if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\
|| defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
CPUName = sys::getHostCPUName();
#else
CPUName = "generic";
#endif
}
// Make sure 64-bit features are available in 64-bit mode. (But make sure
// SSE2 can be turned off explicitly.)
std::string FullFS = FS;
if (In64BitMode) {
if (!FullFS.empty())
FullFS = "+64bit,+sse2," + FullFS;
else
FullFS = "+64bit,+sse2";
}
// If feature string is not empty, parse features string.
ParseSubtargetFeatures(CPUName, FullFS);
} else {
if (CPUName.empty()) {
#if defined (__x86_64__) || defined(__i386__)
CPUName = sys::getHostCPUName();
#else
CPUName = "generic";
#endif
}
// Otherwise, use CPUID to auto-detect feature set.
AutoDetectSubtargetFeatures();
// Make sure 64-bit features are available in 64-bit mode.
if (In64BitMode) {
if (!HasX86_64) { HasX86_64 = true; ToggleFeature(X86::Feature64Bit); }
if (!HasCMov) { HasCMov = true; ToggleFeature(X86::FeatureCMOV); }
if (X86SSELevel < SSE2) {
X86SSELevel = SSE2;
ToggleFeature(X86::FeatureSSE1);
ToggleFeature(X86::FeatureSSE2);
}
}
}
// CPUName may have been set by the CPU detection code. Make sure the
// new MCSchedModel is used.
InitCPUSchedModel(CPUName);
if (X86ProcFamily == IntelAtom || X86ProcFamily == IntelSLM)
PostRAScheduler = true;
InstrItins = getInstrItineraryForCPU(CPUName);
// It's important to keep the MCSubtargetInfo feature bits in sync with
// target data structure which is shared with MC code emitter, etc.
if (In64BitMode)
ToggleFeature(X86::Mode64Bit);
else if (In32BitMode)
ToggleFeature(X86::Mode32Bit);
else if (In16BitMode)
ToggleFeature(X86::Mode16Bit);
else
llvm_unreachable("Not 16-bit, 32-bit or 64-bit mode!");
DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
<< ", 3DNowLevel " << X863DNowLevel
<< ", 64bit " << HasX86_64 << "\n");
assert((!In64BitMode || HasX86_64) &&
"64-bit code requested on a subtarget that doesn't support it!");
// Stack alignment is 16 bytes on Darwin, Linux and Solaris (both
// 32 and 64 bit) and for all 64-bit targets.
if (StackAlignOverride)
stackAlignment = StackAlignOverride;
else if (isTargetDarwin() || isTargetLinux() || isTargetSolaris() ||
In64BitMode)
stackAlignment = 16;
}
void X86Subtarget::initializeEnvironment() {
X86SSELevel = NoMMXSSE;
X863DNowLevel = NoThreeDNow;
HasCMov = false;
HasX86_64 = false;
HasPOPCNT = false;
HasSSE4A = false;
HasAES = false;
HasPCLMUL = false;
HasFMA = false;
HasFMA4 = false;
HasXOP = false;
HasTBM = false;
HasMOVBE = false;
HasRDRAND = false;
HasF16C = false;
HasFSGSBase = false;
HasLZCNT = false;
HasBMI = false;
HasBMI2 = false;
HasRTM = false;
HasHLE = false;
HasERI = false;
HasCDI = false;
HasPFI = false;
HasADX = false;
HasSHA = false;
HasPRFCHW = false;
HasRDSEED = false;
IsBTMemSlow = false;
IsSHLDSlow = false;
IsUAMemFast = false;
HasVectorUAMem = false;
HasCmpxchg16b = false;
UseLeaForSP = false;
HasSlowDivide = false;
PostRAScheduler = false;
PadShortFunctions = false;
CallRegIndirect = false;
LEAUsesAG = false;
stackAlignment = 4;
// FIXME: this is a known good value for Yonah. How about others?
MaxInlineSizeThreshold = 128;
}
X86Subtarget::X86Subtarget(const std::string &TT, const std::string &CPU,
const std::string &FS,
unsigned StackAlignOverride)
: X86GenSubtargetInfo(TT, CPU, FS)
, X86ProcFamily(Others)
, PICStyle(PICStyles::None)
, TargetTriple(TT)
, StackAlignOverride(StackAlignOverride)
, In64BitMode(TargetTriple.getArch() == Triple::x86_64)
, In32BitMode(TargetTriple.getArch() == Triple::x86 &&
TargetTriple.getEnvironment() != Triple::CODE16)
, In16BitMode(TargetTriple.getArch() == Triple::x86 &&
TargetTriple.getEnvironment() == Triple::CODE16) {
initializeEnvironment();
resetSubtargetFeatures(CPU, FS);
}
bool X86Subtarget::enablePostRAScheduler(
CodeGenOpt::Level OptLevel,
TargetSubtargetInfo::AntiDepBreakMode& Mode,
RegClassVector& CriticalPathRCs) const {
Mode = TargetSubtargetInfo::ANTIDEP_CRITICAL;
CriticalPathRCs.clear();
return PostRAScheduler && OptLevel >= CodeGenOpt::Default;
}
|