summaryrefslogtreecommitdiffstats
path: root/lib/Transforms/IPO/RaiseAllocations.cpp
blob: 8d2a9cbdd5a4cbb2621ef260ba362997b90154c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
//===- RaiseAllocations.cpp - Convert @malloc & @free calls to insts ------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the RaiseAllocations pass which convert malloc and free
// calls to malloc and free instructions.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "raiseallocs"
#include "llvm/Transforms/IPO.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Compiler.h"
#include "llvm/ADT/Statistic.h"
#include <algorithm>
using namespace llvm;

STATISTIC(NumRaised, "Number of allocations raised");

namespace {
  // RaiseAllocations - Turn @malloc and @free calls into the appropriate
  // instruction.
  //
  class VISIBILITY_HIDDEN RaiseAllocations : public ModulePass {
    Function *MallocFunc;   // Functions in the module we are processing
    Function *FreeFunc;     // Initialized by doPassInitializationVirt
  public:
    static char ID; // Pass identification, replacement for typeid
    RaiseAllocations() 
      : ModulePass(&ID), MallocFunc(0), FreeFunc(0) {}

    // doPassInitialization - For the raise allocations pass, this finds a
    // declaration for malloc and free if they exist.
    //
    void doInitialization(Module &M);

    // run - This method does the actual work of converting instructions over.
    //
    bool runOnModule(Module &M);
  };
}  // end anonymous namespace

char RaiseAllocations::ID = 0;
static RegisterPass<RaiseAllocations>
X("raiseallocs", "Raise allocations from calls to instructions");

// createRaiseAllocationsPass - The interface to this file...
ModulePass *llvm::createRaiseAllocationsPass() {
  return new RaiseAllocations();
}


// If the module has a symbol table, they might be referring to the malloc and
// free functions.  If this is the case, grab the method pointers that the
// module is using.
//
// Lookup @malloc and @free in the symbol table, for later use.  If they don't
// exist, or are not external, we do not worry about converting calls to that
// function into the appropriate instruction.
//
void RaiseAllocations::doInitialization(Module &M) {
  Context = &M.getContext();

  // Get Malloc and free prototypes if they exist!
  MallocFunc = M.getFunction("malloc");
  if (MallocFunc) {
    const FunctionType* TyWeHave = MallocFunc->getFunctionType();

    // Get the expected prototype for malloc
    const FunctionType *Malloc1Type = 
      Context->getFunctionType(Context->getPointerTypeUnqual(Type::Int8Ty),
                      std::vector<const Type*>(1, Type::Int64Ty), false);

    // Chck to see if we got the expected malloc
    if (TyWeHave != Malloc1Type) {
      // Check to see if the prototype is wrong, giving us i8*(i32) * malloc
      // This handles the common declaration of: 'void *malloc(unsigned);'
      const FunctionType *Malloc2Type = 
        Context->getFunctionType(Context->getPointerTypeUnqual(Type::Int8Ty),
                          std::vector<const Type*>(1, Type::Int32Ty), false);
      if (TyWeHave != Malloc2Type) {
        // Check to see if the prototype is missing, giving us 
        // i8*(...) * malloc
        // This handles the common declaration of: 'void *malloc();'
        const FunctionType *Malloc3Type = 
          Context->getFunctionType(Context->getPointerTypeUnqual(Type::Int8Ty), 
                                    true);
        if (TyWeHave != Malloc3Type)
          // Give up
          MallocFunc = 0;
      }
    }
  }

  FreeFunc = M.getFunction("free");
  if (FreeFunc) {
    const FunctionType* TyWeHave = FreeFunc->getFunctionType();
    
    // Get the expected prototype for void free(i8*)
    const FunctionType *Free1Type = Context->getFunctionType(Type::VoidTy,
      std::vector<const Type*>(1, Context->getPointerTypeUnqual(Type::Int8Ty)), 
                               false);

    if (TyWeHave != Free1Type) {
      // Check to see if the prototype was forgotten, giving us 
      // void (...) * free
      // This handles the common forward declaration of: 'void free();'
      const FunctionType* Free2Type = Context->getFunctionType(Type::VoidTy, 
                                                               true);

      if (TyWeHave != Free2Type) {
        // One last try, check to see if we can find free as 
        // int (...)* free.  This handles the case where NOTHING was declared.
        const FunctionType* Free3Type = Context->getFunctionType(Type::Int32Ty,
                                                                 true);
        
        if (TyWeHave != Free3Type) {
          // Give up.
          FreeFunc = 0;
        }
      }
    }
  }

  // Don't mess with locally defined versions of these functions...
  if (MallocFunc && !MallocFunc->isDeclaration()) MallocFunc = 0;
  if (FreeFunc && !FreeFunc->isDeclaration())     FreeFunc = 0;
}

// run - Transform calls into instructions...
//
bool RaiseAllocations::runOnModule(Module &M) {
  // Find the malloc/free prototypes...
  doInitialization(M);

  bool Changed = false;

  // First, process all of the malloc calls...
  if (MallocFunc) {
    std::vector<User*> Users(MallocFunc->use_begin(), MallocFunc->use_end());
    std::vector<Value*> EqPointers;   // Values equal to MallocFunc
    while (!Users.empty()) {
      User *U = Users.back();
      Users.pop_back();

      if (Instruction *I = dyn_cast<Instruction>(U)) {
        CallSite CS = CallSite::get(I);
        if (CS.getInstruction() && !CS.arg_empty() &&
            (CS.getCalledFunction() == MallocFunc ||
             std::find(EqPointers.begin(), EqPointers.end(),
                       CS.getCalledValue()) != EqPointers.end())) {

          Value *Source = *CS.arg_begin();

          // If no prototype was provided for malloc, we may need to cast the
          // source size.
          if (Source->getType() != Type::Int32Ty)
            Source = 
              CastInst::CreateIntegerCast(Source, Type::Int32Ty, false/*ZExt*/,
                                          "MallocAmtCast", I);

          MallocInst *MI = new MallocInst(Type::Int8Ty, Source, "", I);
          MI->takeName(I);
          I->replaceAllUsesWith(MI);

          // If the old instruction was an invoke, add an unconditional branch
          // before the invoke, which will become the new terminator.
          if (InvokeInst *II = dyn_cast<InvokeInst>(I))
            BranchInst::Create(II->getNormalDest(), I);

          // Delete the old call site
          I->eraseFromParent();
          Changed = true;
          ++NumRaised;
        }
      } else if (GlobalValue *GV = dyn_cast<GlobalValue>(U)) {
        Users.insert(Users.end(), GV->use_begin(), GV->use_end());
        EqPointers.push_back(GV);
      } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
        if (CE->isCast()) {
          Users.insert(Users.end(), CE->use_begin(), CE->use_end());
          EqPointers.push_back(CE);
        }
      }
    }
  }

  // Next, process all free calls...
  if (FreeFunc) {
    std::vector<User*> Users(FreeFunc->use_begin(), FreeFunc->use_end());
    std::vector<Value*> EqPointers;   // Values equal to FreeFunc

    while (!Users.empty()) {
      User *U = Users.back();
      Users.pop_back();

      if (Instruction *I = dyn_cast<Instruction>(U)) {
        if (isa<InvokeInst>(I))
          continue;
        CallSite CS = CallSite::get(I);
        if (CS.getInstruction() && !CS.arg_empty() &&
            (CS.getCalledFunction() == FreeFunc ||
             std::find(EqPointers.begin(), EqPointers.end(),
                       CS.getCalledValue()) != EqPointers.end())) {

          // If no prototype was provided for free, we may need to cast the
          // source pointer.  This should be really uncommon, but it's necessary
          // just in case we are dealing with weird code like this:
          //   free((long)ptr);
          //
          Value *Source = *CS.arg_begin();
          if (!isa<PointerType>(Source->getType()))
            Source = new IntToPtrInst(Source,           
                                   Context->getPointerTypeUnqual(Type::Int8Ty), 
                                      "FreePtrCast", I);
          new FreeInst(Source, I);

          // If the old instruction was an invoke, add an unconditional branch
          // before the invoke, which will become the new terminator.
          if (InvokeInst *II = dyn_cast<InvokeInst>(I))
            BranchInst::Create(II->getNormalDest(), I);

          // Delete the old call site
          if (I->getType() != Type::VoidTy)
            I->replaceAllUsesWith(Context->getUndef(I->getType()));
          I->eraseFromParent();
          Changed = true;
          ++NumRaised;
        }
      } else if (GlobalValue *GV = dyn_cast<GlobalValue>(U)) {
        Users.insert(Users.end(), GV->use_begin(), GV->use_end());
        EqPointers.push_back(GV);
      } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
        if (CE->isCast()) {
          Users.insert(Users.end(), CE->use_begin(), CE->use_end());
          EqPointers.push_back(CE);
        }
      }
    }
  }

  return Changed;
}