1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
|
//===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Reid Spencer and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a module pass that applies a variety of small
// optimizations for calls to specific well-known function calls (e.g. runtime
// library functions). For example, a call to the function "exit(3)" that
// occurs within the main() function can be transformed into a simple "return 3"
// instruction. Any optimization that takes this form (replace call to library
// function with simpler code that provides the same result) belongs in this
// file.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "simplify-libcalls"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/ADT/hash_map"
#include "llvm/ADT/Statistic.h"
#include "llvm/Config/config.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/IPO.h"
using namespace llvm;
/// This statistic keeps track of the total number of library calls that have
/// been simplified regardless of which call it is.
STATISTIC(SimplifiedLibCalls, "Number of library calls simplified");
namespace {
// Forward declarations
class LibCallOptimization;
class SimplifyLibCalls;
/// This list is populated by the constructor for LibCallOptimization class.
/// Therefore all subclasses are registered here at static initialization time
/// and this list is what the SimplifyLibCalls pass uses to apply the individual
/// optimizations to the call sites.
/// @brief The list of optimizations deriving from LibCallOptimization
static LibCallOptimization *OptList = 0;
/// This class is the abstract base class for the set of optimizations that
/// corresponds to one library call. The SimplifyLibCalls pass will call the
/// ValidateCalledFunction method to ask the optimization if a given Function
/// is the kind that the optimization can handle. If the subclass returns true,
/// then SImplifyLibCalls will also call the OptimizeCall method to perform,
/// or attempt to perform, the optimization(s) for the library call. Otherwise,
/// OptimizeCall won't be called. Subclasses are responsible for providing the
/// name of the library call (strlen, strcpy, etc.) to the LibCallOptimization
/// constructor. This is used to efficiently select which call instructions to
/// optimize. The criteria for a "lib call" is "anything with well known
/// semantics", typically a library function that is defined by an international
/// standard. Because the semantics are well known, the optimizations can
/// generally short-circuit actually calling the function if there's a simpler
/// way (e.g. strlen(X) can be reduced to a constant if X is a constant global).
/// @brief Base class for library call optimizations
class VISIBILITY_HIDDEN LibCallOptimization {
LibCallOptimization **Prev, *Next;
const char *FunctionName; ///< Name of the library call we optimize
#ifndef NDEBUG
Statistic occurrences; ///< debug statistic (-debug-only=simplify-libcalls)
#endif
public:
/// The \p fname argument must be the name of the library function being
/// optimized by the subclass.
/// @brief Constructor that registers the optimization.
LibCallOptimization(const char *FName, const char *Description)
: FunctionName(FName) {
#ifndef NDEBUG
occurrences.construct("simplify-libcalls", Description);
#endif
// Register this optimizer in the list of optimizations.
Next = OptList;
OptList = this;
Prev = &OptList;
if (Next) Next->Prev = &Next;
}
/// getNext - All libcall optimizations are chained together into a list,
/// return the next one in the list.
LibCallOptimization *getNext() { return Next; }
/// @brief Deregister from the optlist
virtual ~LibCallOptimization() {
*Prev = Next;
if (Next) Next->Prev = Prev;
}
/// The implementation of this function in subclasses should determine if
/// \p F is suitable for the optimization. This method is called by
/// SimplifyLibCalls::runOnModule to short circuit visiting all the call
/// sites of such a function if that function is not suitable in the first
/// place. If the called function is suitabe, this method should return true;
/// false, otherwise. This function should also perform any lazy
/// initialization that the LibCallOptimization needs to do, if its to return
/// true. This avoids doing initialization until the optimizer is actually
/// going to be called upon to do some optimization.
/// @brief Determine if the function is suitable for optimization
virtual bool ValidateCalledFunction(
const Function* F, ///< The function that is the target of call sites
SimplifyLibCalls& SLC ///< The pass object invoking us
) = 0;
/// The implementations of this function in subclasses is the heart of the
/// SimplifyLibCalls algorithm. Sublcasses of this class implement
/// OptimizeCall to determine if (a) the conditions are right for optimizing
/// the call and (b) to perform the optimization. If an action is taken
/// against ci, the subclass is responsible for returning true and ensuring
/// that ci is erased from its parent.
/// @brief Optimize a call, if possible.
virtual bool OptimizeCall(
CallInst* ci, ///< The call instruction that should be optimized.
SimplifyLibCalls& SLC ///< The pass object invoking us
) = 0;
/// @brief Get the name of the library call being optimized
const char *getFunctionName() const { return FunctionName; }
bool ReplaceCallWith(CallInst *CI, Value *V) {
if (!CI->use_empty())
CI->replaceAllUsesWith(V);
CI->eraseFromParent();
return true;
}
/// @brief Called by SimplifyLibCalls to update the occurrences statistic.
void succeeded() {
#ifndef NDEBUG
DEBUG(++occurrences);
#endif
}
};
/// This class is an LLVM Pass that applies each of the LibCallOptimization
/// instances to all the call sites in a module, relatively efficiently. The
/// purpose of this pass is to provide optimizations for calls to well-known
/// functions with well-known semantics, such as those in the c library. The
/// class provides the basic infrastructure for handling runOnModule. Whenever
/// this pass finds a function call, it asks the appropriate optimizer to
/// validate the call (ValidateLibraryCall). If it is validated, then
/// the OptimizeCall method is also called.
/// @brief A ModulePass for optimizing well-known function calls.
class VISIBILITY_HIDDEN SimplifyLibCalls : public ModulePass {
public:
static char ID; // Pass identifcation, replacement for typeid
SimplifyLibCalls() : ModulePass((intptr_t)&ID) {}
/// We need some target data for accurate signature details that are
/// target dependent. So we require target data in our AnalysisUsage.
/// @brief Require TargetData from AnalysisUsage.
virtual void getAnalysisUsage(AnalysisUsage& Info) const {
// Ask that the TargetData analysis be performed before us so we can use
// the target data.
Info.addRequired<TargetData>();
}
/// For this pass, process all of the function calls in the module, calling
/// ValidateLibraryCall and OptimizeCall as appropriate.
/// @brief Run all the lib call optimizations on a Module.
virtual bool runOnModule(Module &M) {
reset(M);
bool result = false;
hash_map<std::string, LibCallOptimization*> OptznMap;
for (LibCallOptimization *Optzn = OptList; Optzn; Optzn = Optzn->getNext())
OptznMap[Optzn->getFunctionName()] = Optzn;
// The call optimizations can be recursive. That is, the optimization might
// generate a call to another function which can also be optimized. This way
// we make the LibCallOptimization instances very specific to the case they
// handle. It also means we need to keep running over the function calls in
// the module until we don't get any more optimizations possible.
bool found_optimization = false;
do {
found_optimization = false;
for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) {
// All the "well-known" functions are external and have external linkage
// because they live in a runtime library somewhere and were (probably)
// not compiled by LLVM. So, we only act on external functions that
// have external or dllimport linkage and non-empty uses.
if (!FI->isDeclaration() ||
!(FI->hasExternalLinkage() || FI->hasDLLImportLinkage()) ||
FI->use_empty())
continue;
// Get the optimization class that pertains to this function
hash_map<std::string, LibCallOptimization*>::iterator OMI =
OptznMap.find(FI->getName());
if (OMI == OptznMap.end()) continue;
LibCallOptimization *CO = OMI->second;
// Make sure the called function is suitable for the optimization
if (!CO->ValidateCalledFunction(FI, *this))
continue;
// Loop over each of the uses of the function
for (Value::use_iterator UI = FI->use_begin(), UE = FI->use_end();
UI != UE ; ) {
// If the use of the function is a call instruction
if (CallInst* CI = dyn_cast<CallInst>(*UI++)) {
// Do the optimization on the LibCallOptimization.
if (CO->OptimizeCall(CI, *this)) {
++SimplifiedLibCalls;
found_optimization = result = true;
CO->succeeded();
}
}
}
}
} while (found_optimization);
return result;
}
/// @brief Return the *current* module we're working on.
Module* getModule() const { return M; }
/// @brief Return the *current* target data for the module we're working on.
TargetData* getTargetData() const { return TD; }
/// @brief Return the size_t type -- syntactic shortcut
const Type* getIntPtrType() const { return TD->getIntPtrType(); }
/// @brief Return a Function* for the putchar libcall
Constant *get_putchar() {
if (!putchar_func)
putchar_func =
M->getOrInsertFunction("putchar", Type::Int32Ty, Type::Int32Ty, NULL);
return putchar_func;
}
/// @brief Return a Function* for the puts libcall
Constant *get_puts() {
if (!puts_func)
puts_func = M->getOrInsertFunction("puts", Type::Int32Ty,
PointerType::get(Type::Int8Ty),
NULL);
return puts_func;
}
/// @brief Return a Function* for the fputc libcall
Constant *get_fputc(const Type* FILEptr_type) {
if (!fputc_func)
fputc_func = M->getOrInsertFunction("fputc", Type::Int32Ty, Type::Int32Ty,
FILEptr_type, NULL);
return fputc_func;
}
/// @brief Return a Function* for the fputs libcall
Constant *get_fputs(const Type* FILEptr_type) {
if (!fputs_func)
fputs_func = M->getOrInsertFunction("fputs", Type::Int32Ty,
PointerType::get(Type::Int8Ty),
FILEptr_type, NULL);
return fputs_func;
}
/// @brief Return a Function* for the fwrite libcall
Constant *get_fwrite(const Type* FILEptr_type) {
if (!fwrite_func)
fwrite_func = M->getOrInsertFunction("fwrite", TD->getIntPtrType(),
PointerType::get(Type::Int8Ty),
TD->getIntPtrType(),
TD->getIntPtrType(),
FILEptr_type, NULL);
return fwrite_func;
}
/// @brief Return a Function* for the sqrt libcall
Constant *get_sqrt() {
if (!sqrt_func)
sqrt_func = M->getOrInsertFunction("sqrt", Type::DoubleTy,
Type::DoubleTy, NULL);
return sqrt_func;
}
/// @brief Return a Function* for the strcpy libcall
Constant *get_strcpy() {
if (!strcpy_func)
strcpy_func = M->getOrInsertFunction("strcpy",
PointerType::get(Type::Int8Ty),
PointerType::get(Type::Int8Ty),
PointerType::get(Type::Int8Ty),
NULL);
return strcpy_func;
}
/// @brief Return a Function* for the strlen libcall
Constant *get_strlen() {
if (!strlen_func)
strlen_func = M->getOrInsertFunction("strlen", TD->getIntPtrType(),
PointerType::get(Type::Int8Ty),
NULL);
return strlen_func;
}
/// @brief Return a Function* for the memchr libcall
Constant *get_memchr() {
if (!memchr_func)
memchr_func = M->getOrInsertFunction("memchr",
PointerType::get(Type::Int8Ty),
PointerType::get(Type::Int8Ty),
Type::Int32Ty, TD->getIntPtrType(),
NULL);
return memchr_func;
}
/// @brief Return a Function* for the memcpy libcall
Constant *get_memcpy() {
if (!memcpy_func) {
const Type *SBP = PointerType::get(Type::Int8Ty);
const char *N = TD->getIntPtrType() == Type::Int32Ty ?
"llvm.memcpy.i32" : "llvm.memcpy.i64";
memcpy_func = M->getOrInsertFunction(N, Type::VoidTy, SBP, SBP,
TD->getIntPtrType(), Type::Int32Ty,
NULL);
}
return memcpy_func;
}
Constant *getUnaryFloatFunction(const char *Name, Constant *&Cache) {
if (!Cache)
Cache = M->getOrInsertFunction(Name, Type::FloatTy, Type::FloatTy, NULL);
return Cache;
}
Constant *get_floorf() { return getUnaryFloatFunction("floorf", floorf_func);}
Constant *get_ceilf() { return getUnaryFloatFunction( "ceilf", ceilf_func);}
Constant *get_roundf() { return getUnaryFloatFunction("roundf", roundf_func);}
Constant *get_rintf() { return getUnaryFloatFunction( "rintf", rintf_func);}
Constant *get_nearbyintf() { return getUnaryFloatFunction("nearbyintf",
nearbyintf_func); }
private:
/// @brief Reset our cached data for a new Module
void reset(Module& mod) {
M = &mod;
TD = &getAnalysis<TargetData>();
putchar_func = 0;
puts_func = 0;
fputc_func = 0;
fputs_func = 0;
fwrite_func = 0;
memcpy_func = 0;
memchr_func = 0;
sqrt_func = 0;
strcpy_func = 0;
strlen_func = 0;
floorf_func = 0;
ceilf_func = 0;
roundf_func = 0;
rintf_func = 0;
nearbyintf_func = 0;
}
private:
/// Caches for function pointers.
Constant *putchar_func, *puts_func;
Constant *fputc_func, *fputs_func, *fwrite_func;
Constant *memcpy_func, *memchr_func;
Constant *sqrt_func;
Constant *strcpy_func, *strlen_func;
Constant *floorf_func, *ceilf_func, *roundf_func;
Constant *rintf_func, *nearbyintf_func;
Module *M; ///< Cached Module
TargetData *TD; ///< Cached TargetData
};
char SimplifyLibCalls::ID = 0;
// Register the pass
RegisterPass<SimplifyLibCalls>
X("simplify-libcalls", "Simplify well-known library calls");
} // anonymous namespace
// The only public symbol in this file which just instantiates the pass object
ModulePass *llvm::createSimplifyLibCallsPass() {
return new SimplifyLibCalls();
}
// Classes below here, in the anonymous namespace, are all subclasses of the
// LibCallOptimization class, each implementing all optimizations possible for a
// single well-known library call. Each has a static singleton instance that
// auto registers it into the "optlist" global above.
namespace {
// Forward declare utility functions.
static bool GetConstantStringInfo(Value *V, std::string &Str);
static Value *CastToCStr(Value *V, Instruction *IP);
/// This LibCallOptimization will find instances of a call to "exit" that occurs
/// within the "main" function and change it to a simple "ret" instruction with
/// the same value passed to the exit function. When this is done, it splits the
/// basic block at the exit(3) call and deletes the call instruction.
/// @brief Replace calls to exit in main with a simple return
struct VISIBILITY_HIDDEN ExitInMainOptimization : public LibCallOptimization {
ExitInMainOptimization() : LibCallOptimization("exit",
"Number of 'exit' calls simplified") {}
// Make sure the called function looks like exit (int argument, int return
// type, external linkage, not varargs).
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
return F->arg_size() >= 1 && F->arg_begin()->getType()->isInteger();
}
virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) {
// To be careful, we check that the call to exit is coming from "main", that
// main has external linkage, and the return type of main and the argument
// to exit have the same type.
Function *from = ci->getParent()->getParent();
if (from->hasExternalLinkage())
if (from->getReturnType() == ci->getOperand(1)->getType())
if (from->getName() == "main") {
// Okay, time to actually do the optimization. First, get the basic
// block of the call instruction
BasicBlock* bb = ci->getParent();
// Create a return instruction that we'll replace the call with.
// Note that the argument of the return is the argument of the call
// instruction.
new ReturnInst(ci->getOperand(1), ci);
// Split the block at the call instruction which places it in a new
// basic block.
bb->splitBasicBlock(ci);
// The block split caused a branch instruction to be inserted into
// the end of the original block, right after the return instruction
// that we put there. That's not a valid block, so delete the branch
// instruction.
bb->getInstList().pop_back();
// Now we can finally get rid of the call instruction which now lives
// in the new basic block.
ci->eraseFromParent();
// Optimization succeeded, return true.
return true;
}
// We didn't pass the criteria for this optimization so return false
return false;
}
} ExitInMainOptimizer;
/// This LibCallOptimization will simplify a call to the strcat library
/// function. The simplification is possible only if the string being
/// concatenated is a constant array or a constant expression that results in
/// a constant string. In this case we can replace it with strlen + llvm.memcpy
/// of the constant string. Both of these calls are further reduced, if possible
/// on subsequent passes.
/// @brief Simplify the strcat library function.
struct VISIBILITY_HIDDEN StrCatOptimization : public LibCallOptimization {
public:
/// @brief Default constructor
StrCatOptimization() : LibCallOptimization("strcat",
"Number of 'strcat' calls simplified") {}
public:
/// @brief Make sure that the "strcat" function has the right prototype
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
const FunctionType *FT = F->getFunctionType();
return FT->getNumParams() == 2 &&
FT->getReturnType() == PointerType::get(Type::Int8Ty) &&
FT->getParamType(0) == FT->getReturnType() &&
FT->getParamType(1) == FT->getReturnType();
}
/// @brief Optimize the strcat library function
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
// Extract some information from the instruction
Value *Dst = CI->getOperand(1);
Value *Src = CI->getOperand(2);
// Extract the initializer (while making numerous checks) from the
// source operand of the call to strcat.
std::string SrcStr;
if (!GetConstantStringInfo(Src, SrcStr))
return false;
// Handle the simple, do-nothing case
if (SrcStr.empty())
return ReplaceCallWith(CI, Dst);
// We need to find the end of the destination string. That's where the
// memory is to be moved to. We just generate a call to strlen.
CallInst *DstLen = new CallInst(SLC.get_strlen(), Dst,
Dst->getName()+".len", CI);
// Now that we have the destination's length, we must index into the
// destination's pointer to get the actual memcpy destination (end of
// the string .. we're concatenating).
Dst = new GetElementPtrInst(Dst, DstLen, Dst->getName()+".indexed", CI);
// We have enough information to now generate the memcpy call to
// do the concatenation for us.
Value *Vals[] = {
Dst, Src,
ConstantInt::get(SLC.getIntPtrType(), SrcStr.size()+1), // copy nul byte.
ConstantInt::get(Type::Int32Ty, 1) // alignment
};
new CallInst(SLC.get_memcpy(), Vals, 4, "", CI);
return ReplaceCallWith(CI, Dst);
}
} StrCatOptimizer;
/// This LibCallOptimization will simplify a call to the strchr library
/// function. It optimizes out cases where the arguments are both constant
/// and the result can be determined statically.
/// @brief Simplify the strcmp library function.
struct VISIBILITY_HIDDEN StrChrOptimization : public LibCallOptimization {
public:
StrChrOptimization() : LibCallOptimization("strchr",
"Number of 'strchr' calls simplified") {}
/// @brief Make sure that the "strchr" function has the right prototype
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
const FunctionType *FT = F->getFunctionType();
return FT->getNumParams() == 2 &&
FT->getReturnType() == PointerType::get(Type::Int8Ty) &&
FT->getParamType(0) == FT->getReturnType() &&
isa<IntegerType>(FT->getParamType(1));
}
/// @brief Perform the strchr optimizations
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
// Check that the first argument to strchr is a constant array of sbyte.
std::string Str;
if (!GetConstantStringInfo(CI->getOperand(1), Str))
return false;
// If the second operand is not constant, just lower this to memchr since we
// know the length of the input string.
ConstantInt *CSI = dyn_cast<ConstantInt>(CI->getOperand(2));
if (!CSI) {
Value *Args[3] = {
CI->getOperand(1),
CI->getOperand(2),
ConstantInt::get(SLC.getIntPtrType(), Str.size()+1)
};
return ReplaceCallWith(CI, new CallInst(SLC.get_memchr(), Args, 3,
CI->getName(), CI));
}
// strchr can find the nul character.
Str += '\0';
// Get the character we're looking for
char CharValue = CSI->getSExtValue();
// Compute the offset
uint64_t i = 0;
while (1) {
if (i == Str.size()) // Didn't find the char. strchr returns null.
return ReplaceCallWith(CI, Constant::getNullValue(CI->getType()));
// Did we find our match?
if (Str[i] == CharValue)
break;
++i;
}
// strchr(s+n,c) -> gep(s+n+i,c)
// (if c is a constant integer and s is a constant string)
Value *Idx = ConstantInt::get(Type::Int64Ty, i);
Value *GEP = new GetElementPtrInst(CI->getOperand(1), Idx,
CI->getOperand(1)->getName() +
".strchr", CI);
return ReplaceCallWith(CI, GEP);
}
} StrChrOptimizer;
/// This LibCallOptimization will simplify a call to the strcmp library
/// function. It optimizes out cases where one or both arguments are constant
/// and the result can be determined statically.
/// @brief Simplify the strcmp library function.
struct VISIBILITY_HIDDEN StrCmpOptimization : public LibCallOptimization {
public:
StrCmpOptimization() : LibCallOptimization("strcmp",
"Number of 'strcmp' calls simplified") {}
/// @brief Make sure that the "strcmp" function has the right prototype
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
const FunctionType *FT = F->getFunctionType();
return FT->getReturnType() == Type::Int32Ty && FT->getNumParams() == 2 &&
FT->getParamType(0) == FT->getParamType(1) &&
FT->getParamType(0) == PointerType::get(Type::Int8Ty);
}
/// @brief Perform the strcmp optimization
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
// First, check to see if src and destination are the same. If they are,
// then the optimization is to replace the CallInst with a constant 0
// because the call is a no-op.
Value *Str1P = CI->getOperand(1);
Value *Str2P = CI->getOperand(2);
if (Str1P == Str2P) // strcmp(x,x) -> 0
return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0));
std::string Str1;
if (!GetConstantStringInfo(Str1P, Str1))
return false;
if (Str1.empty()) {
// strcmp("", x) -> *x
Value *V = new LoadInst(Str2P, CI->getName()+".load", CI);
V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI);
return ReplaceCallWith(CI, V);
}
std::string Str2;
if (!GetConstantStringInfo(Str2P, Str2))
return false;
if (Str2.empty()) {
// strcmp(x,"") -> *x
Value *V = new LoadInst(Str1P, CI->getName()+".load", CI);
V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI);
return ReplaceCallWith(CI, V);
}
// strcmp(x, y) -> cnst (if both x and y are constant strings)
int R = strcmp(Str1.c_str(), Str2.c_str());
return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), R));
}
} StrCmpOptimizer;
/// This LibCallOptimization will simplify a call to the strncmp library
/// function. It optimizes out cases where one or both arguments are constant
/// and the result can be determined statically.
/// @brief Simplify the strncmp library function.
struct VISIBILITY_HIDDEN StrNCmpOptimization : public LibCallOptimization {
public:
StrNCmpOptimization() : LibCallOptimization("strncmp",
"Number of 'strncmp' calls simplified") {}
/// @brief Make sure that the "strncmp" function has the right prototype
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
const FunctionType *FT = F->getFunctionType();
return FT->getReturnType() == Type::Int32Ty && FT->getNumParams() == 3 &&
FT->getParamType(0) == FT->getParamType(1) &&
FT->getParamType(0) == PointerType::get(Type::Int8Ty) &&
isa<IntegerType>(FT->getParamType(2));
return false;
}
/// @brief Perform the strncmp optimization
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
// First, check to see if src and destination are the same. If they are,
// then the optimization is to replace the CallInst with a constant 0
// because the call is a no-op.
Value *Str1P = CI->getOperand(1);
Value *Str2P = CI->getOperand(2);
if (Str1P == Str2P) // strncmp(x,x, n) -> 0
return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0));
// Check the length argument, if it is Constant zero then the strings are
// considered equal.
uint64_t Length;
if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getOperand(3)))
Length = LengthArg->getZExtValue();
else
return false;
if (Length == 0) // strncmp(x,y,0) -> 0
return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0));
std::string Str1;
if (!GetConstantStringInfo(Str1P, Str1))
return false;
if (Str1.empty()) {
// strncmp("", x, n) -> *x
Value *V = new LoadInst(Str2P, CI->getName()+".load", CI);
V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI);
return ReplaceCallWith(CI, V);
}
std::string Str2;
if (!GetConstantStringInfo(Str2P, Str2))
return false;
if (Str2.empty()) {
// strncmp(x, "", n) -> *x
Value *V = new LoadInst(Str1P, CI->getName()+".load", CI);
V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI);
return ReplaceCallWith(CI, V);
}
// strncmp(x, y, n) -> cnst (if both x and y are constant strings)
int R = strncmp(Str1.c_str(), Str2.c_str(), Length);
return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), R));
}
} StrNCmpOptimizer;
/// This LibCallOptimization will simplify a call to the strcpy library
/// function. Two optimizations are possible:
/// (1) If src and dest are the same and not volatile, just return dest
/// (2) If the src is a constant then we can convert to llvm.memmove
/// @brief Simplify the strcpy library function.
struct VISIBILITY_HIDDEN StrCpyOptimization : public LibCallOptimization {
public:
StrCpyOptimization() : LibCallOptimization("strcpy",
"Number of 'strcpy' calls simplified") {}
/// @brief Make sure that the "strcpy" function has the right prototype
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
const FunctionType *FT = F->getFunctionType();
return FT->getNumParams() == 2 &&
FT->getParamType(0) == FT->getParamType(1) &&
FT->getReturnType() == FT->getParamType(0) &&
FT->getParamType(0) == PointerType::get(Type::Int8Ty);
}
/// @brief Perform the strcpy optimization
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
// First, check to see if src and destination are the same. If they are,
// then the optimization is to replace the CallInst with the destination
// because the call is a no-op. Note that this corresponds to the
// degenerate strcpy(X,X) case which should have "undefined" results
// according to the C specification. However, it occurs sometimes and
// we optimize it as a no-op.
Value *Dst = CI->getOperand(1);
Value *Src = CI->getOperand(2);
if (Dst == Src) {
// strcpy(x, x) -> x
return ReplaceCallWith(CI, Dst);
}
// Get the length of the constant string referenced by the Src operand.
std::string SrcStr;
if (!GetConstantStringInfo(Src, SrcStr))
return false;
// If the constant string's length is zero we can optimize this by just
// doing a store of 0 at the first byte of the destination
if (SrcStr.size() == 0) {
new StoreInst(ConstantInt::get(Type::Int8Ty, 0), Dst, CI);
return ReplaceCallWith(CI, Dst);
}
// We have enough information to now generate the memcpy call to
// do the concatenation for us.
Value *MemcpyOps[] = {
Dst, Src, // Pass length including nul byte.
ConstantInt::get(SLC.getIntPtrType(), SrcStr.size()+1),
ConstantInt::get(Type::Int32Ty, 1) // alignment
};
new CallInst(SLC.get_memcpy(), MemcpyOps, 4, "", CI);
return ReplaceCallWith(CI, Dst);
}
} StrCpyOptimizer;
/// This LibCallOptimization will simplify a call to the strlen library
/// function by replacing it with a constant value if the string provided to
/// it is a constant array.
/// @brief Simplify the strlen library function.
struct VISIBILITY_HIDDEN StrLenOptimization : public LibCallOptimization {
StrLenOptimization() : LibCallOptimization("strlen",
"Number of 'strlen' calls simplified") {}
/// @brief Make sure that the "strlen" function has the right prototype
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
const FunctionType *FT = F->getFunctionType();
return FT->getNumParams() == 1 &&
FT->getParamType(0) == PointerType::get(Type::Int8Ty) &&
isa<IntegerType>(FT->getReturnType());
}
/// @brief Perform the strlen optimization
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
// Make sure we're dealing with an sbyte* here.
Value *Src = CI->getOperand(1);
// Does the call to strlen have exactly one use?
if (CI->hasOneUse()) {
// Is that single use a icmp operator?
if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CI->use_back()))
// Is it compared against a constant integer?
if (ConstantInt *Cst = dyn_cast<ConstantInt>(Cmp->getOperand(1))) {
// If its compared against length 0 with == or !=
if (Cst->getZExtValue() == 0 && Cmp->isEquality()) {
// strlen(x) != 0 -> *x != 0
// strlen(x) == 0 -> *x == 0
Value *V = new LoadInst(Src, Src->getName()+".first", CI);
V = new ICmpInst(Cmp->getPredicate(), V,
ConstantInt::get(Type::Int8Ty, 0),
Cmp->getName()+".strlen", CI);
Cmp->replaceAllUsesWith(V);
Cmp->eraseFromParent();
return ReplaceCallWith(CI, 0); // no uses.
}
}
}
// Get the length of the constant string operand
std::string Str;
if (!GetConstantStringInfo(Src, Str))
return false;
// strlen("xyz") -> 3 (for example)
return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), Str.size()));
}
} StrLenOptimizer;
/// IsOnlyUsedInEqualsComparison - Return true if it only matters that the value
/// is equal or not-equal to zero.
static bool IsOnlyUsedInEqualsZeroComparison(Instruction *I) {
for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
UI != E; ++UI) {
if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
if (IC->isEquality())
if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
if (C->isNullValue())
continue;
// Unknown instruction.
return false;
}
return true;
}
/// This memcmpOptimization will simplify a call to the memcmp library
/// function.
struct VISIBILITY_HIDDEN memcmpOptimization : public LibCallOptimization {
/// @brief Default Constructor
memcmpOptimization()
: LibCallOptimization("memcmp", "Number of 'memcmp' calls simplified") {}
/// @brief Make sure that the "memcmp" function has the right prototype
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &TD) {
Function::const_arg_iterator AI = F->arg_begin();
if (F->arg_size() != 3 || !isa<PointerType>(AI->getType())) return false;
if (!isa<PointerType>((++AI)->getType())) return false;
if (!(++AI)->getType()->isInteger()) return false;
if (!F->getReturnType()->isInteger()) return false;
return true;
}
/// Because of alignment and instruction information that we don't have, we
/// leave the bulk of this to the code generators.
///
/// Note that we could do much more if we could force alignment on otherwise
/// small aligned allocas, or if we could indicate that loads have a small
/// alignment.
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &TD) {
Value *LHS = CI->getOperand(1), *RHS = CI->getOperand(2);
// If the two operands are the same, return zero.
if (LHS == RHS) {
// memcmp(s,s,x) -> 0
return ReplaceCallWith(CI, Constant::getNullValue(CI->getType()));
}
// Make sure we have a constant length.
ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getOperand(3));
if (!LenC) return false;
uint64_t Len = LenC->getZExtValue();
// If the length is zero, this returns 0.
switch (Len) {
case 0:
// memcmp(s1,s2,0) -> 0
return ReplaceCallWith(CI, Constant::getNullValue(CI->getType()));
case 1: {
// memcmp(S1,S2,1) -> *(ubyte*)S1 - *(ubyte*)S2
const Type *UCharPtr = PointerType::get(Type::Int8Ty);
CastInst *Op1Cast = CastInst::create(
Instruction::BitCast, LHS, UCharPtr, LHS->getName(), CI);
CastInst *Op2Cast = CastInst::create(
Instruction::BitCast, RHS, UCharPtr, RHS->getName(), CI);
Value *S1V = new LoadInst(Op1Cast, LHS->getName()+".val", CI);
Value *S2V = new LoadInst(Op2Cast, RHS->getName()+".val", CI);
Value *RV = BinaryOperator::createSub(S1V, S2V, CI->getName()+".diff",CI);
if (RV->getType() != CI->getType())
RV = CastInst::createIntegerCast(RV, CI->getType(), false,
RV->getName(), CI);
return ReplaceCallWith(CI, RV);
}
case 2:
if (IsOnlyUsedInEqualsZeroComparison(CI)) {
// TODO: IF both are aligned, use a short load/compare.
// memcmp(S1,S2,2) -> S1[0]-S2[0] | S1[1]-S2[1] iff only ==/!= 0 matters
const Type *UCharPtr = PointerType::get(Type::Int8Ty);
CastInst *Op1Cast = CastInst::create(
Instruction::BitCast, LHS, UCharPtr, LHS->getName(), CI);
CastInst *Op2Cast = CastInst::create(
Instruction::BitCast, RHS, UCharPtr, RHS->getName(), CI);
Value *S1V1 = new LoadInst(Op1Cast, LHS->getName()+".val1", CI);
Value *S2V1 = new LoadInst(Op2Cast, RHS->getName()+".val1", CI);
Value *D1 = BinaryOperator::createSub(S1V1, S2V1,
CI->getName()+".d1", CI);
Constant *One = ConstantInt::get(Type::Int32Ty, 1);
Value *G1 = new GetElementPtrInst(Op1Cast, One, "next1v", CI);
Value *G2 = new GetElementPtrInst(Op2Cast, One, "next2v", CI);
Value *S1V2 = new LoadInst(G1, LHS->getName()+".val2", CI);
Value *S2V2 = new LoadInst(G2, RHS->getName()+".val2", CI);
Value *D2 = BinaryOperator::createSub(S1V2, S2V2,
CI->getName()+".d1", CI);
Value *Or = BinaryOperator::createOr(D1, D2, CI->getName()+".res", CI);
if (Or->getType() != CI->getType())
Or = CastInst::createIntegerCast(Or, CI->getType(), false /*ZExt*/,
Or->getName(), CI);
return ReplaceCallWith(CI, Or);
}
break;
default:
break;
}
return false;
}
} memcmpOptimizer;
/// This LibCallOptimization will simplify a call to the memcpy library
/// function by expanding it out to a single store of size 0, 1, 2, 4, or 8
/// bytes depending on the length of the string and the alignment. Additional
/// optimizations are possible in code generation (sequence of immediate store)
/// @brief Simplify the memcpy library function.
struct VISIBILITY_HIDDEN LLVMMemCpyMoveOptzn : public LibCallOptimization {
LLVMMemCpyMoveOptzn(const char* fname, const char* desc)
: LibCallOptimization(fname, desc) {}
/// @brief Make sure that the "memcpy" function has the right prototype
virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& TD) {
// Just make sure this has 4 arguments per LLVM spec.
return (f->arg_size() == 4);
}
/// Because of alignment and instruction information that we don't have, we
/// leave the bulk of this to the code generators. The optimization here just
/// deals with a few degenerate cases where the length of the string and the
/// alignment match the sizes of our intrinsic types so we can do a load and
/// store instead of the memcpy call.
/// @brief Perform the memcpy optimization.
virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& TD) {
// Make sure we have constant int values to work with
ConstantInt* LEN = dyn_cast<ConstantInt>(ci->getOperand(3));
if (!LEN)
return false;
ConstantInt* ALIGN = dyn_cast<ConstantInt>(ci->getOperand(4));
if (!ALIGN)
return false;
// If the length is larger than the alignment, we can't optimize
uint64_t len = LEN->getZExtValue();
uint64_t alignment = ALIGN->getZExtValue();
if (alignment == 0)
alignment = 1; // Alignment 0 is identity for alignment 1
if (len > alignment)
return false;
// Get the type we will cast to, based on size of the string
Value* dest = ci->getOperand(1);
Value* src = ci->getOperand(2);
const Type* castType = 0;
switch (len) {
case 0:
// memcpy(d,s,0,a) -> d
return ReplaceCallWith(ci, 0);
case 1: castType = Type::Int8Ty; break;
case 2: castType = Type::Int16Ty; break;
case 4: castType = Type::Int32Ty; break;
case 8: castType = Type::Int64Ty; break;
default:
return false;
}
// Cast source and dest to the right sized primitive and then load/store
CastInst* SrcCast = CastInst::create(Instruction::BitCast,
src, PointerType::get(castType), src->getName()+".cast", ci);
CastInst* DestCast = CastInst::create(Instruction::BitCast,
dest, PointerType::get(castType),dest->getName()+".cast", ci);
LoadInst* LI = new LoadInst(SrcCast,SrcCast->getName()+".val",ci);
new StoreInst(LI, DestCast, ci);
return ReplaceCallWith(ci, 0);
}
};
/// This LibCallOptimization will simplify a call to the memcpy/memmove library
/// functions.
LLVMMemCpyMoveOptzn LLVMMemCpyOptimizer32("llvm.memcpy.i32",
"Number of 'llvm.memcpy' calls simplified");
LLVMMemCpyMoveOptzn LLVMMemCpyOptimizer64("llvm.memcpy.i64",
"Number of 'llvm.memcpy' calls simplified");
LLVMMemCpyMoveOptzn LLVMMemMoveOptimizer32("llvm.memmove.i32",
"Number of 'llvm.memmove' calls simplified");
LLVMMemCpyMoveOptzn LLVMMemMoveOptimizer64("llvm.memmove.i64",
"Number of 'llvm.memmove' calls simplified");
/// This LibCallOptimization will simplify a call to the memset library
/// function by expanding it out to a single store of size 0, 1, 2, 4, or 8
/// bytes depending on the length argument.
struct VISIBILITY_HIDDEN LLVMMemSetOptimization : public LibCallOptimization {
/// @brief Default Constructor
LLVMMemSetOptimization(const char *Name) : LibCallOptimization(Name,
"Number of 'llvm.memset' calls simplified") {}
/// @brief Make sure that the "memset" function has the right prototype
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &TD) {
// Just make sure this has 3 arguments per LLVM spec.
return F->arg_size() == 4;
}
/// Because of alignment and instruction information that we don't have, we
/// leave the bulk of this to the code generators. The optimization here just
/// deals with a few degenerate cases where the length parameter is constant
/// and the alignment matches the sizes of our intrinsic types so we can do
/// store instead of the memcpy call. Other calls are transformed into the
/// llvm.memset intrinsic.
/// @brief Perform the memset optimization.
virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &TD) {
// Make sure we have constant int values to work with
ConstantInt* LEN = dyn_cast<ConstantInt>(ci->getOperand(3));
if (!LEN)
return false;
ConstantInt* ALIGN = dyn_cast<ConstantInt>(ci->getOperand(4));
if (!ALIGN)
return false;
// Extract the length and alignment
uint64_t len = LEN->getZExtValue();
uint64_t alignment = ALIGN->getZExtValue();
// Alignment 0 is identity for alignment 1
if (alignment == 0)
alignment = 1;
// If the length is zero, this is a no-op
if (len == 0) {
// memset(d,c,0,a) -> noop
return ReplaceCallWith(ci, 0);
}
// If the length is larger than the alignment, we can't optimize
if (len > alignment)
return false;
// Make sure we have a constant ubyte to work with so we can extract
// the value to be filled.
ConstantInt* FILL = dyn_cast<ConstantInt>(ci->getOperand(2));
if (!FILL)
return false;
if (FILL->getType() != Type::Int8Ty)
return false;
// memset(s,c,n) -> store s, c (for n=1,2,4,8)
// Extract the fill character
uint64_t fill_char = FILL->getZExtValue();
uint64_t fill_value = fill_char;
// Get the type we will cast to, based on size of memory area to fill, and
// and the value we will store there.
Value* dest = ci->getOperand(1);
const Type* castType = 0;
switch (len) {
case 1:
castType = Type::Int8Ty;
break;
case 2:
castType = Type::Int16Ty;
fill_value |= fill_char << 8;
break;
case 4:
castType = Type::Int32Ty;
fill_value |= fill_char << 8 | fill_char << 16 | fill_char << 24;
break;
case 8:
castType = Type::Int64Ty;
fill_value |= fill_char << 8 | fill_char << 16 | fill_char << 24;
fill_value |= fill_char << 32 | fill_char << 40 | fill_char << 48;
fill_value |= fill_char << 56;
break;
default:
return false;
}
// Cast dest to the right sized primitive and then load/store
CastInst* DestCast = new BitCastInst(dest, PointerType::get(castType),
dest->getName()+".cast", ci);
new StoreInst(ConstantInt::get(castType,fill_value),DestCast, ci);
return ReplaceCallWith(ci, 0);
}
};
LLVMMemSetOptimization MemSet32Optimizer("llvm.memset.i32");
LLVMMemSetOptimization MemSet64Optimizer("llvm.memset.i64");
/// This LibCallOptimization will simplify calls to the "pow" library
/// function. It looks for cases where the result of pow is well known and
/// substitutes the appropriate value.
/// @brief Simplify the pow library function.
struct VISIBILITY_HIDDEN PowOptimization : public LibCallOptimization {
public:
/// @brief Default Constructor
PowOptimization() : LibCallOptimization("pow",
"Number of 'pow' calls simplified") {}
/// @brief Make sure that the "pow" function has the right prototype
virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC){
// Just make sure this has 2 arguments
return (f->arg_size() == 2);
}
/// @brief Perform the pow optimization.
virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &SLC) {
const Type *Ty = cast<Function>(ci->getOperand(0))->getReturnType();
Value* base = ci->getOperand(1);
Value* expn = ci->getOperand(2);
if (ConstantFP *Op1 = dyn_cast<ConstantFP>(base)) {
double Op1V = Op1->getValue();
if (Op1V == 1.0) // pow(1.0,x) -> 1.0
return ReplaceCallWith(ci, ConstantFP::get(Ty, 1.0));
} else if (ConstantFP* Op2 = dyn_cast<ConstantFP>(expn)) {
double Op2V = Op2->getValue();
if (Op2V == 0.0) {
// pow(x,0.0) -> 1.0
return ReplaceCallWith(ci, ConstantFP::get(Ty,1.0));
} else if (Op2V == 0.5) {
// pow(x,0.5) -> sqrt(x)
CallInst* sqrt_inst = new CallInst(SLC.get_sqrt(), base,
ci->getName()+".pow",ci);
return ReplaceCallWith(ci, sqrt_inst);
} else if (Op2V == 1.0) {
// pow(x,1.0) -> x
return ReplaceCallWith(ci, base);
} else if (Op2V == -1.0) {
// pow(x,-1.0) -> 1.0/x
Value *div_inst =
BinaryOperator::createFDiv(ConstantFP::get(Ty, 1.0), base,
ci->getName()+".pow", ci);
return ReplaceCallWith(ci, div_inst);
}
}
return false; // opt failed
}
} PowOptimizer;
/// This LibCallOptimization will simplify calls to the "printf" library
/// function. It looks for cases where the result of printf is not used and the
/// operation can be reduced to something simpler.
/// @brief Simplify the printf library function.
struct VISIBILITY_HIDDEN PrintfOptimization : public LibCallOptimization {
public:
/// @brief Default Constructor
PrintfOptimization() : LibCallOptimization("printf",
"Number of 'printf' calls simplified") {}
/// @brief Make sure that the "printf" function has the right prototype
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
// Just make sure this has at least 1 argument and returns an integer or
// void type.
const FunctionType *FT = F->getFunctionType();
return FT->getNumParams() >= 1 &&
(isa<IntegerType>(FT->getReturnType()) ||
FT->getReturnType() == Type::VoidTy);
}
/// @brief Perform the printf optimization.
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
// All the optimizations depend on the length of the first argument and the
// fact that it is a constant string array. Check that now
std::string FormatStr;
if (!GetConstantStringInfo(CI->getOperand(1), FormatStr))
return false;
// If this is a simple constant string with no format specifiers that ends
// with a \n, turn it into a puts call.
if (FormatStr.empty()) {
// Tolerate printf's declared void.
if (CI->use_empty()) return ReplaceCallWith(CI, 0);
return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0));
}
if (FormatStr.size() == 1) {
// Turn this into a putchar call, even if it is a %.
Value *V = ConstantInt::get(Type::Int32Ty, FormatStr[0]);
new CallInst(SLC.get_putchar(), V, "", CI);
if (CI->use_empty()) return ReplaceCallWith(CI, 0);
return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 1));
}
// Check to see if the format str is something like "foo\n", in which case
// we convert it to a puts call. We don't allow it to contain any format
// characters.
if (FormatStr[FormatStr.size()-1] == '\n' &&
FormatStr.find('%') == std::string::npos) {
// Create a string literal with no \n on it. We expect the constant merge
// pass to be run after this pass, to merge duplicate strings.
FormatStr.erase(FormatStr.end()-1);
Constant *Init = ConstantArray::get(FormatStr, true);
Constant *GV = new GlobalVariable(Init->getType(), true,
GlobalVariable::InternalLinkage,
Init, "str",
CI->getParent()->getParent()->getParent());
// Cast GV to be a pointer to char.
GV = ConstantExpr::getBitCast(GV, PointerType::get(Type::Int8Ty));
new CallInst(SLC.get_puts(), GV, "", CI);
if (CI->use_empty()) return ReplaceCallWith(CI, 0);
return ReplaceCallWith(CI,
ConstantInt::get(CI->getType(), FormatStr.size()));
}
// Only support %c or "%s\n" for now.
if (FormatStr.size() < 2 || FormatStr[0] != '%')
return false;
// Get the second character and switch on its value
switch (FormatStr[1]) {
default: return false;
case 's':
if (FormatStr != "%s\n" || CI->getNumOperands() < 3 ||
// TODO: could insert strlen call to compute string length.
!CI->use_empty())
return false;
// printf("%s\n",str) -> puts(str)
new CallInst(SLC.get_puts(), CastToCStr(CI->getOperand(2), CI),
CI->getName(), CI);
return ReplaceCallWith(CI, 0);
case 'c': {
// printf("%c",c) -> putchar(c)
if (FormatStr.size() != 2 || CI->getNumOperands() < 3)
return false;
Value *V = CI->getOperand(2);
if (!isa<IntegerType>(V->getType()) ||
cast<IntegerType>(V->getType())->getBitWidth() > 32)
return false;
V = CastInst::createZExtOrBitCast(V, Type::Int32Ty, CI->getName()+".int",
CI);
new CallInst(SLC.get_putchar(), V, "", CI);
return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 1));
}
}
}
} PrintfOptimizer;
/// This LibCallOptimization will simplify calls to the "fprintf" library
/// function. It looks for cases where the result of fprintf is not used and the
/// operation can be reduced to something simpler.
/// @brief Simplify the fprintf library function.
struct VISIBILITY_HIDDEN FPrintFOptimization : public LibCallOptimization {
public:
/// @brief Default Constructor
FPrintFOptimization() : LibCallOptimization("fprintf",
"Number of 'fprintf' calls simplified") {}
/// @brief Make sure that the "fprintf" function has the right prototype
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
const FunctionType *FT = F->getFunctionType();
return FT->getNumParams() == 2 && // two fixed arguments.
FT->getParamType(1) == PointerType::get(Type::Int8Ty) &&
isa<PointerType>(FT->getParamType(0)) &&
isa<IntegerType>(FT->getReturnType());
}
/// @brief Perform the fprintf optimization.
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
// If the call has more than 3 operands, we can't optimize it
if (CI->getNumOperands() != 3 && CI->getNumOperands() != 4)
return false;
// All the optimizations depend on the format string.
std::string FormatStr;
if (!GetConstantStringInfo(CI->getOperand(2), FormatStr))
return false;
// If this is just a format string, turn it into fwrite.
if (CI->getNumOperands() == 3) {
for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
if (FormatStr[i] == '%')
return false; // we found a format specifier
// fprintf(file,fmt) -> fwrite(fmt,strlen(fmt),file)
const Type *FILEty = CI->getOperand(1)->getType();
Value *FWriteArgs[] = {
CI->getOperand(2),
ConstantInt::get(SLC.getIntPtrType(), FormatStr.size()),
ConstantInt::get(SLC.getIntPtrType(), 1),
CI->getOperand(1)
};
new CallInst(SLC.get_fwrite(FILEty), FWriteArgs, 4, CI->getName(), CI);
return ReplaceCallWith(CI, ConstantInt::get(CI->getType(),
FormatStr.size()));
}
// The remaining optimizations require the format string to be length 2:
// "%s" or "%c".
if (FormatStr.size() != 2 || FormatStr[0] != '%')
return false;
// Get the second character and switch on its value
switch (FormatStr[1]) {
case 'c': {
// fprintf(file,"%c",c) -> fputc(c,file)
const Type *FILETy = CI->getOperand(1)->getType();
Value *C = CastInst::createZExtOrBitCast(CI->getOperand(3), Type::Int32Ty,
CI->getName()+".int", CI);
new CallInst(SLC.get_fputc(FILETy), C, CI->getOperand(1), "", CI);
return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 1));
}
case 's': {
const Type *FILETy = CI->getOperand(1)->getType();
// If the result of the fprintf call is used, we can't do this.
// TODO: we should insert a strlen call.
if (!CI->use_empty())
return false;
// fprintf(file,"%s",str) -> fputs(str,file)
new CallInst(SLC.get_fputs(FILETy), CastToCStr(CI->getOperand(3), CI),
CI->getOperand(1), CI->getName(), CI);
return ReplaceCallWith(CI, 0);
}
default:
return false;
}
}
} FPrintFOptimizer;
/// This LibCallOptimization will simplify calls to the "sprintf" library
/// function. It looks for cases where the result of sprintf is not used and the
/// operation can be reduced to something simpler.
/// @brief Simplify the sprintf library function.
struct VISIBILITY_HIDDEN SPrintFOptimization : public LibCallOptimization {
public:
/// @brief Default Constructor
SPrintFOptimization() : LibCallOptimization("sprintf",
"Number of 'sprintf' calls simplified") {}
/// @brief Make sure that the "sprintf" function has the right prototype
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
const FunctionType *FT = F->getFunctionType();
return FT->getNumParams() == 2 && // two fixed arguments.
FT->getParamType(1) == PointerType::get(Type::Int8Ty) &&
FT->getParamType(0) == FT->getParamType(1) &&
isa<IntegerType>(FT->getReturnType());
}
/// @brief Perform the sprintf optimization.
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
// If the call has more than 3 operands, we can't optimize it
if (CI->getNumOperands() != 3 && CI->getNumOperands() != 4)
return false;
std::string FormatStr;
if (!GetConstantStringInfo(CI->getOperand(2), FormatStr))
return false;
if (CI->getNumOperands() == 3) {
// Make sure there's no % in the constant array
for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
if (FormatStr[i] == '%')
return false; // we found a format specifier
// sprintf(str,fmt) -> llvm.memcpy(str,fmt,strlen(fmt),1)
Value *MemCpyArgs[] = {
CI->getOperand(1), CI->getOperand(2),
ConstantInt::get(SLC.getIntPtrType(),
FormatStr.size()+1), // Copy the nul byte.
ConstantInt::get(Type::Int32Ty, 1)
};
new CallInst(SLC.get_memcpy(), MemCpyArgs, 4, "", CI);
return ReplaceCallWith(CI, ConstantInt::get(CI->getType(),
FormatStr.size()));
}
// The remaining optimizations require the format string to be "%s" or "%c".
if (FormatStr.size() != 2 || FormatStr[0] != '%')
return false;
// Get the second character and switch on its value
switch (FormatStr[1]) {
case 'c': {
// sprintf(dest,"%c",chr) -> store chr, dest
Value *V = CastInst::createTruncOrBitCast(CI->getOperand(3),
Type::Int8Ty, "char", CI);
new StoreInst(V, CI->getOperand(1), CI);
Value *Ptr = new GetElementPtrInst(CI->getOperand(1),
ConstantInt::get(Type::Int32Ty, 1),
CI->getOperand(1)->getName()+".end",
CI);
new StoreInst(ConstantInt::get(Type::Int8Ty,0), Ptr, CI);
return ReplaceCallWith(CI, ConstantInt::get(Type::Int32Ty, 1));
}
case 's': {
// sprintf(dest,"%s",str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
Value *Len = new CallInst(SLC.get_strlen(),
CastToCStr(CI->getOperand(3), CI),
CI->getOperand(3)->getName()+".len", CI);
Value *UnincLen = Len;
Len = BinaryOperator::createAdd(Len, ConstantInt::get(Len->getType(), 1),
Len->getName()+"1", CI);
Value *MemcpyArgs[4] = {
CI->getOperand(1),
CastToCStr(CI->getOperand(3), CI),
Len,
ConstantInt::get(Type::Int32Ty, 1)
};
new CallInst(SLC.get_memcpy(), MemcpyArgs, 4, "", CI);
// The strlen result is the unincremented number of bytes in the string.
if (!CI->use_empty()) {
if (UnincLen->getType() != CI->getType())
UnincLen = CastInst::createIntegerCast(UnincLen, CI->getType(), false,
Len->getName(), CI);
CI->replaceAllUsesWith(UnincLen);
}
return ReplaceCallWith(CI, 0);
}
}
return false;
}
} SPrintFOptimizer;
/// This LibCallOptimization will simplify calls to the "fputs" library
/// function. It looks for cases where the result of fputs is not used and the
/// operation can be reduced to something simpler.
/// @brief Simplify the fputs library function.
struct VISIBILITY_HIDDEN FPutsOptimization : public LibCallOptimization {
public:
/// @brief Default Constructor
FPutsOptimization() : LibCallOptimization("fputs",
"Number of 'fputs' calls simplified") {}
/// @brief Make sure that the "fputs" function has the right prototype
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
// Just make sure this has 2 arguments
return F->arg_size() == 2;
}
/// @brief Perform the fputs optimization.
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
// If the result is used, none of these optimizations work.
if (!CI->use_empty())
return false;
// All the optimizations depend on the length of the first argument and the
// fact that it is a constant string array. Check that now
std::string Str;
if (!GetConstantStringInfo(CI->getOperand(1), Str))
return false;
const Type *FILETy = CI->getOperand(2)->getType();
// fputs(s,F) -> fwrite(s,1,len,F) (if s is constant and strlen(s) > 1)
Value *FWriteParms[4] = {
CI->getOperand(1),
ConstantInt::get(SLC.getIntPtrType(), Str.size()),
ConstantInt::get(SLC.getIntPtrType(), 1),
CI->getOperand(2)
};
new CallInst(SLC.get_fwrite(FILETy), FWriteParms, 4, "", CI);
return ReplaceCallWith(CI, 0); // Known to have no uses (see above).
}
} FPutsOptimizer;
/// This LibCallOptimization will simplify calls to the "fwrite" function.
struct VISIBILITY_HIDDEN FWriteOptimization : public LibCallOptimization {
public:
/// @brief Default Constructor
FWriteOptimization() : LibCallOptimization("fwrite",
"Number of 'fwrite' calls simplified") {}
/// @brief Make sure that the "fputs" function has the right prototype
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
const FunctionType *FT = F->getFunctionType();
return FT->getNumParams() == 4 &&
FT->getParamType(0) == PointerType::get(Type::Int8Ty) &&
FT->getParamType(1) == FT->getParamType(2) &&
isa<IntegerType>(FT->getParamType(1)) &&
isa<PointerType>(FT->getParamType(3)) &&
isa<IntegerType>(FT->getReturnType());
}
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
// Get the element size and count.
uint64_t EltSize, EltCount;
if (ConstantInt *C = dyn_cast<ConstantInt>(CI->getOperand(2)))
EltSize = C->getZExtValue();
else
return false;
if (ConstantInt *C = dyn_cast<ConstantInt>(CI->getOperand(3)))
EltCount = C->getZExtValue();
else
return false;
// If this is writing zero records, remove the call (it's a noop).
if (EltSize * EltCount == 0)
return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0));
// If this is writing one byte, turn it into fputc.
if (EltSize == 1 && EltCount == 1) {
// fwrite(s,1,1,F) -> fputc(s[0],F)
Value *Ptr = CI->getOperand(1);
Value *Val = new LoadInst(Ptr, Ptr->getName()+".byte", CI);
Val = new ZExtInst(Val, Type::Int32Ty, Val->getName()+".int", CI);
const Type *FILETy = CI->getOperand(4)->getType();
new CallInst(SLC.get_fputc(FILETy), Val, CI->getOperand(4), "", CI);
return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 1));
}
return false;
}
} FWriteOptimizer;
/// This LibCallOptimization will simplify calls to the "isdigit" library
/// function. It simply does range checks the parameter explicitly.
/// @brief Simplify the isdigit library function.
struct VISIBILITY_HIDDEN isdigitOptimization : public LibCallOptimization {
public:
isdigitOptimization() : LibCallOptimization("isdigit",
"Number of 'isdigit' calls simplified") {}
/// @brief Make sure that the "isdigit" function has the right prototype
virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC){
// Just make sure this has 1 argument
return (f->arg_size() == 1);
}
/// @brief Perform the toascii optimization.
virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &SLC) {
if (ConstantInt* CI = dyn_cast<ConstantInt>(ci->getOperand(1))) {
// isdigit(c) -> 0 or 1, if 'c' is constant
uint64_t val = CI->getZExtValue();
if (val >= '0' && val <= '9')
return ReplaceCallWith(ci, ConstantInt::get(Type::Int32Ty, 1));
else
return ReplaceCallWith(ci, ConstantInt::get(Type::Int32Ty, 0));
}
// isdigit(c) -> (unsigned)c - '0' <= 9
CastInst* cast = CastInst::createIntegerCast(ci->getOperand(1),
Type::Int32Ty, false/*ZExt*/, ci->getOperand(1)->getName()+".uint", ci);
BinaryOperator* sub_inst = BinaryOperator::createSub(cast,
ConstantInt::get(Type::Int32Ty,0x30),
ci->getOperand(1)->getName()+".sub",ci);
ICmpInst* setcond_inst = new ICmpInst(ICmpInst::ICMP_ULE,sub_inst,
ConstantInt::get(Type::Int32Ty,9),
ci->getOperand(1)->getName()+".cmp",ci);
CastInst* c2 = new ZExtInst(setcond_inst, Type::Int32Ty,
ci->getOperand(1)->getName()+".isdigit", ci);
return ReplaceCallWith(ci, c2);
}
} isdigitOptimizer;
struct VISIBILITY_HIDDEN isasciiOptimization : public LibCallOptimization {
public:
isasciiOptimization()
: LibCallOptimization("isascii", "Number of 'isascii' calls simplified") {}
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
return F->arg_size() == 1 && F->arg_begin()->getType()->isInteger() &&
F->getReturnType()->isInteger();
}
/// @brief Perform the isascii optimization.
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
// isascii(c) -> (unsigned)c < 128
Value *V = CI->getOperand(1);
Value *Cmp = new ICmpInst(ICmpInst::ICMP_ULT, V,
ConstantInt::get(V->getType(), 128),
V->getName()+".isascii", CI);
if (Cmp->getType() != CI->getType())
Cmp = new ZExtInst(Cmp, CI->getType(), Cmp->getName(), CI);
return ReplaceCallWith(CI, Cmp);
}
} isasciiOptimizer;
/// This LibCallOptimization will simplify calls to the "toascii" library
/// function. It simply does the corresponding and operation to restrict the
/// range of values to the ASCII character set (0-127).
/// @brief Simplify the toascii library function.
struct VISIBILITY_HIDDEN ToAsciiOptimization : public LibCallOptimization {
public:
/// @brief Default Constructor
ToAsciiOptimization() : LibCallOptimization("toascii",
"Number of 'toascii' calls simplified") {}
/// @brief Make sure that the "fputs" function has the right prototype
virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC){
// Just make sure this has 2 arguments
return (f->arg_size() == 1);
}
/// @brief Perform the toascii optimization.
virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &SLC) {
// toascii(c) -> (c & 0x7f)
Value *chr = ci->getOperand(1);
Value *and_inst = BinaryOperator::createAnd(chr,
ConstantInt::get(chr->getType(),0x7F),ci->getName()+".toascii",ci);
return ReplaceCallWith(ci, and_inst);
}
} ToAsciiOptimizer;
/// This LibCallOptimization will simplify calls to the "ffs" library
/// calls which find the first set bit in an int, long, or long long. The
/// optimization is to compute the result at compile time if the argument is
/// a constant.
/// @brief Simplify the ffs library function.
struct VISIBILITY_HIDDEN FFSOptimization : public LibCallOptimization {
protected:
/// @brief Subclass Constructor
FFSOptimization(const char* funcName, const char* description)
: LibCallOptimization(funcName, description) {}
public:
/// @brief Default Constructor
FFSOptimization() : LibCallOptimization("ffs",
"Number of 'ffs' calls simplified") {}
/// @brief Make sure that the "ffs" function has the right prototype
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
// Just make sure this has 2 arguments
return F->arg_size() == 1 && F->getReturnType() == Type::Int32Ty;
}
/// @brief Perform the ffs optimization.
virtual bool OptimizeCall(CallInst *TheCall, SimplifyLibCalls &SLC) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(TheCall->getOperand(1))) {
// ffs(cnst) -> bit#
// ffsl(cnst) -> bit#
// ffsll(cnst) -> bit#
uint64_t val = CI->getZExtValue();
int result = 0;
if (val) {
++result;
while ((val & 1) == 0) {
++result;
val >>= 1;
}
}
return ReplaceCallWith(TheCall, ConstantInt::get(Type::Int32Ty, result));
}
// ffs(x) -> x == 0 ? 0 : llvm.cttz(x)+1
// ffsl(x) -> x == 0 ? 0 : llvm.cttz(x)+1
// ffsll(x) -> x == 0 ? 0 : llvm.cttz(x)+1
const Type *ArgType = TheCall->getOperand(1)->getType();
const char *CTTZName;
assert(ArgType->getTypeID() == Type::IntegerTyID &&
"llvm.cttz argument is not an integer?");
unsigned BitWidth = cast<IntegerType>(ArgType)->getBitWidth();
if (BitWidth == 8)
CTTZName = "llvm.cttz.i8";
else if (BitWidth == 16)
CTTZName = "llvm.cttz.i16";
else if (BitWidth == 32)
CTTZName = "llvm.cttz.i32";
else {
assert(BitWidth == 64 && "Unknown bitwidth");
CTTZName = "llvm.cttz.i64";
}
Constant *F = SLC.getModule()->getOrInsertFunction(CTTZName, ArgType,
ArgType, NULL);
Value *V = CastInst::createIntegerCast(TheCall->getOperand(1), ArgType,
false/*ZExt*/, "tmp", TheCall);
Value *V2 = new CallInst(F, V, "tmp", TheCall);
V2 = CastInst::createIntegerCast(V2, Type::Int32Ty, false/*ZExt*/,
"tmp", TheCall);
V2 = BinaryOperator::createAdd(V2, ConstantInt::get(Type::Int32Ty, 1),
"tmp", TheCall);
Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, V,
Constant::getNullValue(V->getType()), "tmp",
TheCall);
V2 = new SelectInst(Cond, ConstantInt::get(Type::Int32Ty, 0), V2,
TheCall->getName(), TheCall);
return ReplaceCallWith(TheCall, V2);
}
} FFSOptimizer;
/// This LibCallOptimization will simplify calls to the "ffsl" library
/// calls. It simply uses FFSOptimization for which the transformation is
/// identical.
/// @brief Simplify the ffsl library function.
struct VISIBILITY_HIDDEN FFSLOptimization : public FFSOptimization {
public:
/// @brief Default Constructor
FFSLOptimization() : FFSOptimization("ffsl",
"Number of 'ffsl' calls simplified") {}
} FFSLOptimizer;
/// This LibCallOptimization will simplify calls to the "ffsll" library
/// calls. It simply uses FFSOptimization for which the transformation is
/// identical.
/// @brief Simplify the ffsl library function.
struct VISIBILITY_HIDDEN FFSLLOptimization : public FFSOptimization {
public:
/// @brief Default Constructor
FFSLLOptimization() : FFSOptimization("ffsll",
"Number of 'ffsll' calls simplified") {}
} FFSLLOptimizer;
/// This optimizes unary functions that take and return doubles.
struct UnaryDoubleFPOptimizer : public LibCallOptimization {
UnaryDoubleFPOptimizer(const char *Fn, const char *Desc)
: LibCallOptimization(Fn, Desc) {}
// Make sure that this function has the right prototype
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
return F->arg_size() == 1 && F->arg_begin()->getType() == Type::DoubleTy &&
F->getReturnType() == Type::DoubleTy;
}
/// ShrinkFunctionToFloatVersion - If the input to this function is really a
/// float, strength reduce this to a float version of the function,
/// e.g. floor((double)FLT) -> (double)floorf(FLT). This can only be called
/// when the target supports the destination function and where there can be
/// no precision loss.
static bool ShrinkFunctionToFloatVersion(CallInst *CI, SimplifyLibCalls &SLC,
Constant *(SimplifyLibCalls::*FP)()){
if (FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getOperand(1)))
if (Cast->getOperand(0)->getType() == Type::FloatTy) {
Value *New = new CallInst((SLC.*FP)(), Cast->getOperand(0),
CI->getName(), CI);
New = new FPExtInst(New, Type::DoubleTy, CI->getName(), CI);
CI->replaceAllUsesWith(New);
CI->eraseFromParent();
if (Cast->use_empty())
Cast->eraseFromParent();
return true;
}
return false;
}
};
struct VISIBILITY_HIDDEN FloorOptimization : public UnaryDoubleFPOptimizer {
FloorOptimization()
: UnaryDoubleFPOptimizer("floor", "Number of 'floor' calls simplified") {}
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
#ifdef HAVE_FLOORF
// If this is a float argument passed in, convert to floorf.
if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_floorf))
return true;
#endif
return false; // opt failed
}
} FloorOptimizer;
struct VISIBILITY_HIDDEN CeilOptimization : public UnaryDoubleFPOptimizer {
CeilOptimization()
: UnaryDoubleFPOptimizer("ceil", "Number of 'ceil' calls simplified") {}
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
#ifdef HAVE_CEILF
// If this is a float argument passed in, convert to ceilf.
if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_ceilf))
return true;
#endif
return false; // opt failed
}
} CeilOptimizer;
struct VISIBILITY_HIDDEN RoundOptimization : public UnaryDoubleFPOptimizer {
RoundOptimization()
: UnaryDoubleFPOptimizer("round", "Number of 'round' calls simplified") {}
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
#ifdef HAVE_ROUNDF
// If this is a float argument passed in, convert to roundf.
if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_roundf))
return true;
#endif
return false; // opt failed
}
} RoundOptimizer;
struct VISIBILITY_HIDDEN RintOptimization : public UnaryDoubleFPOptimizer {
RintOptimization()
: UnaryDoubleFPOptimizer("rint", "Number of 'rint' calls simplified") {}
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
#ifdef HAVE_RINTF
// If this is a float argument passed in, convert to rintf.
if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_rintf))
return true;
#endif
return false; // opt failed
}
} RintOptimizer;
struct VISIBILITY_HIDDEN NearByIntOptimization : public UnaryDoubleFPOptimizer {
NearByIntOptimization()
: UnaryDoubleFPOptimizer("nearbyint",
"Number of 'nearbyint' calls simplified") {}
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
#ifdef HAVE_NEARBYINTF
// If this is a float argument passed in, convert to nearbyintf.
if (ShrinkFunctionToFloatVersion(CI, SLC,&SimplifyLibCalls::get_nearbyintf))
return true;
#endif
return false; // opt failed
}
} NearByIntOptimizer;
/// GetConstantStringInfo - This function computes the length of a
/// null-terminated constant array of integers. This function can't rely on the
/// size of the constant array because there could be a null terminator in the
/// middle of the array.
///
/// We also have to bail out if we find a non-integer constant initializer
/// of one of the elements or if there is no null-terminator. The logic
/// below checks each of these conditions and will return true only if all
/// conditions are met. If the conditions aren't met, this returns false.
///
/// If successful, the \p Array param is set to the constant array being
/// indexed, the \p Length parameter is set to the length of the null-terminated
/// string pointed to by V, the \p StartIdx value is set to the first
/// element of the Array that V points to, and true is returned.
static bool GetConstantStringInfo(Value *V, std::string &Str) {
// Look through noop bitcast instructions.
if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
if (BCI->getType() == BCI->getOperand(0)->getType())
return GetConstantStringInfo(BCI->getOperand(0), Str);
return false;
}
// If the value is not a GEP instruction nor a constant expression with a
// GEP instruction, then return false because ConstantArray can't occur
// any other way
User *GEP = 0;
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
GEP = GEPI;
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
if (CE->getOpcode() != Instruction::GetElementPtr)
return false;
GEP = CE;
} else {
return false;
}
// Make sure the GEP has exactly three arguments.
if (GEP->getNumOperands() != 3)
return false;
// Check to make sure that the first operand of the GEP is an integer and
// has value 0 so that we are sure we're indexing into the initializer.
if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
if (!Idx->isZero())
return false;
} else
return false;
// If the second index isn't a ConstantInt, then this is a variable index
// into the array. If this occurs, we can't say anything meaningful about
// the string.
uint64_t StartIdx = 0;
if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
StartIdx = CI->getZExtValue();
else
return false;
// The GEP instruction, constant or instruction, must reference a global
// variable that is a constant and is initialized. The referenced constant
// initializer is the array that we'll use for optimization.
GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
if (!GV || !GV->isConstant() || !GV->hasInitializer())
return false;
Constant *GlobalInit = GV->getInitializer();
// Handle the ConstantAggregateZero case
if (isa<ConstantAggregateZero>(GlobalInit)) {
// This is a degenerate case. The initializer is constant zero so the
// length of the string must be zero.
Str.clear();
return true;
}
// Must be a Constant Array
ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
if (!Array) return false;
// Get the number of elements in the array
uint64_t NumElts = Array->getType()->getNumElements();
// Traverse the constant array from StartIdx (derived above) which is
// the place the GEP refers to in the array.
for (unsigned i = StartIdx; i < NumElts; ++i) {
Constant *Elt = Array->getOperand(i);
ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
if (!CI) // This array isn't suitable, non-int initializer.
return false;
if (CI->isZero())
return true; // we found end of string, success!
Str += (char)CI->getZExtValue();
}
return false; // The array isn't null terminated.
}
/// CastToCStr - Return V if it is an sbyte*, otherwise cast it to sbyte*,
/// inserting the cast before IP, and return the cast.
/// @brief Cast a value to a "C" string.
static Value *CastToCStr(Value *V, Instruction *IP) {
assert(isa<PointerType>(V->getType()) &&
"Can't cast non-pointer type to C string type");
const Type *SBPTy = PointerType::get(Type::Int8Ty);
if (V->getType() != SBPTy)
return new BitCastInst(V, SBPTy, V->getName(), IP);
return V;
}
// TODO:
// Additional cases that we need to add to this file:
//
// cbrt:
// * cbrt(expN(X)) -> expN(x/3)
// * cbrt(sqrt(x)) -> pow(x,1/6)
// * cbrt(sqrt(x)) -> pow(x,1/9)
//
// cos, cosf, cosl:
// * cos(-x) -> cos(x)
//
// exp, expf, expl:
// * exp(log(x)) -> x
//
// log, logf, logl:
// * log(exp(x)) -> x
// * log(x**y) -> y*log(x)
// * log(exp(y)) -> y*log(e)
// * log(exp2(y)) -> y*log(2)
// * log(exp10(y)) -> y*log(10)
// * log(sqrt(x)) -> 0.5*log(x)
// * log(pow(x,y)) -> y*log(x)
//
// lround, lroundf, lroundl:
// * lround(cnst) -> cnst'
//
// memcmp:
// * memcmp(x,y,l) -> cnst
// (if all arguments are constant and strlen(x) <= l and strlen(y) <= l)
//
// memmove:
// * memmove(d,s,l,a) -> memcpy(d,s,l,a)
// (if s is a global constant array)
//
// pow, powf, powl:
// * pow(exp(x),y) -> exp(x*y)
// * pow(sqrt(x),y) -> pow(x,y*0.5)
// * pow(pow(x,y),z)-> pow(x,y*z)
//
// puts:
// * puts("") -> putchar("\n")
//
// round, roundf, roundl:
// * round(cnst) -> cnst'
//
// signbit:
// * signbit(cnst) -> cnst'
// * signbit(nncst) -> 0 (if pstv is a non-negative constant)
//
// sqrt, sqrtf, sqrtl:
// * sqrt(expN(x)) -> expN(x*0.5)
// * sqrt(Nroot(x)) -> pow(x,1/(2*N))
// * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
//
// stpcpy:
// * stpcpy(str, "literal") ->
// llvm.memcpy(str,"literal",strlen("literal")+1,1)
// strrchr:
// * strrchr(s,c) -> reverse_offset_of_in(c,s)
// (if c is a constant integer and s is a constant string)
// * strrchr(s1,0) -> strchr(s1,0)
//
// strncat:
// * strncat(x,y,0) -> x
// * strncat(x,y,0) -> x (if strlen(y) = 0)
// * strncat(x,y,l) -> strcat(x,y) (if y and l are constants an l > strlen(y))
//
// strncpy:
// * strncpy(d,s,0) -> d
// * strncpy(d,s,l) -> memcpy(d,s,l,1)
// (if s and l are constants)
//
// strpbrk:
// * strpbrk(s,a) -> offset_in_for(s,a)
// (if s and a are both constant strings)
// * strpbrk(s,"") -> 0
// * strpbrk(s,a) -> strchr(s,a[0]) (if a is constant string of length 1)
//
// strspn, strcspn:
// * strspn(s,a) -> const_int (if both args are constant)
// * strspn("",a) -> 0
// * strspn(s,"") -> 0
// * strcspn(s,a) -> const_int (if both args are constant)
// * strcspn("",a) -> 0
// * strcspn(s,"") -> strlen(a)
//
// strstr:
// * strstr(x,x) -> x
// * strstr(s1,s2) -> offset_of_s2_in(s1)
// (if s1 and s2 are constant strings)
//
// tan, tanf, tanl:
// * tan(atan(x)) -> x
//
// trunc, truncf, truncl:
// * trunc(cnst) -> cnst'
//
//
}
|