summaryrefslogtreecommitdiffstats
path: root/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
blob: a58124d7032e0c046a00e3f389146270ae641939 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
//===- InstCombineVectorOps.cpp -------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements instcombine for ExtractElement, InsertElement and
// ShuffleVector.
//
//===----------------------------------------------------------------------===//

#include "InstCombine.h"
using namespace llvm;

/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
/// is to leave as a vector operation.
static bool CheapToScalarize(Value *V, bool isConstant) {
  if (isa<ConstantAggregateZero>(V)) 
    return true;
  if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
    if (isConstant) return true;
    // If all elts are the same, we can extract.
    Constant *Op0 = C->getOperand(0);
    for (unsigned i = 1; i < C->getNumOperands(); ++i)
      if (C->getOperand(i) != Op0)
        return false;
    return true;
  }
  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return false;
  
  // Insert element gets simplified to the inserted element or is deleted if
  // this is constant idx extract element and its a constant idx insertelt.
  if (I->getOpcode() == Instruction::InsertElement && isConstant &&
      isa<ConstantInt>(I->getOperand(2)))
    return true;
  if (I->getOpcode() == Instruction::Load && I->hasOneUse())
    return true;
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
    if (BO->hasOneUse() &&
        (CheapToScalarize(BO->getOperand(0), isConstant) ||
         CheapToScalarize(BO->getOperand(1), isConstant)))
      return true;
  if (CmpInst *CI = dyn_cast<CmpInst>(I))
    if (CI->hasOneUse() &&
        (CheapToScalarize(CI->getOperand(0), isConstant) ||
         CheapToScalarize(CI->getOperand(1), isConstant)))
      return true;
  
  return false;
}

/// Read and decode a shufflevector mask.
///
/// It turns undef elements into values that are larger than the number of
/// elements in the input.
static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
  unsigned NElts = SVI->getType()->getNumElements();
  if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
    return std::vector<unsigned>(NElts, 0);
  if (isa<UndefValue>(SVI->getOperand(2)))
    return std::vector<unsigned>(NElts, 2*NElts);
  
  std::vector<unsigned> Result;
  const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
  for (User::const_op_iterator i = CP->op_begin(), e = CP->op_end(); i!=e; ++i)
    if (isa<UndefValue>(*i))
      Result.push_back(NElts*2);  // undef -> 8
    else
      Result.push_back(cast<ConstantInt>(*i)->getZExtValue());
  return Result;
}

/// FindScalarElement - Given a vector and an element number, see if the scalar
/// value is already around as a register, for example if it were inserted then
/// extracted from the vector.
static Value *FindScalarElement(Value *V, unsigned EltNo) {
  assert(V->getType()->isVectorTy() && "Not looking at a vector?");
  const VectorType *PTy = cast<VectorType>(V->getType());
  unsigned Width = PTy->getNumElements();
  if (EltNo >= Width)  // Out of range access.
    return UndefValue::get(PTy->getElementType());
  
  if (isa<UndefValue>(V))
    return UndefValue::get(PTy->getElementType());
  if (isa<ConstantAggregateZero>(V))
    return Constant::getNullValue(PTy->getElementType());
  if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
    return CP->getOperand(EltNo);
  
  if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
    // If this is an insert to a variable element, we don't know what it is.
    if (!isa<ConstantInt>(III->getOperand(2))) 
      return 0;
    unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
    
    // If this is an insert to the element we are looking for, return the
    // inserted value.
    if (EltNo == IIElt) 
      return III->getOperand(1);
    
    // Otherwise, the insertelement doesn't modify the value, recurse on its
    // vector input.
    return FindScalarElement(III->getOperand(0), EltNo);
  }
  
  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
    unsigned LHSWidth =
    cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
    unsigned InEl = getShuffleMask(SVI)[EltNo];
    if (InEl < LHSWidth)
      return FindScalarElement(SVI->getOperand(0), InEl);
    else if (InEl < LHSWidth*2)
      return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
    else
      return UndefValue::get(PTy->getElementType());
  }
  
  // Otherwise, we don't know.
  return 0;
}

Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
  // If vector val is undef, replace extract with scalar undef.
  if (isa<UndefValue>(EI.getOperand(0)))
    return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
  
  // If vector val is constant 0, replace extract with scalar 0.
  if (isa<ConstantAggregateZero>(EI.getOperand(0)))
    return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
  
  if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
    // If vector val is constant with all elements the same, replace EI with
    // that element. When the elements are not identical, we cannot replace yet
    // (we do that below, but only when the index is constant).
    Constant *op0 = C->getOperand(0);
    for (unsigned i = 1; i != C->getNumOperands(); ++i)
      if (C->getOperand(i) != op0) {
        op0 = 0; 
        break;
      }
    if (op0)
      return ReplaceInstUsesWith(EI, op0);
  }
  
  // If extracting a specified index from the vector, see if we can recursively
  // find a previously computed scalar that was inserted into the vector.
  if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
    unsigned IndexVal = IdxC->getZExtValue();
    unsigned VectorWidth = EI.getVectorOperandType()->getNumElements();
    
    // If this is extracting an invalid index, turn this into undef, to avoid
    // crashing the code below.
    if (IndexVal >= VectorWidth)
      return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
    
    // This instruction only demands the single element from the input vector.
    // If the input vector has a single use, simplify it based on this use
    // property.
    if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
      APInt UndefElts(VectorWidth, 0);
      APInt DemandedMask(VectorWidth, 0);
      DemandedMask.set(IndexVal);
      if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
                                                DemandedMask, UndefElts)) {
        EI.setOperand(0, V);
        return &EI;
      }
    }
    
    if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
      return ReplaceInstUsesWith(EI, Elt);
    
    // If the this extractelement is directly using a bitcast from a vector of
    // the same number of elements, see if we can find the source element from
    // it.  In this case, we will end up needing to bitcast the scalars.
    if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
      if (const VectorType *VT = 
          dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
        if (VT->getNumElements() == VectorWidth)
          if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
            return new BitCastInst(Elt, EI.getType());
    }
  }
  
  if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
    // Push extractelement into predecessor operation if legal and
    // profitable to do so
    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
      if (I->hasOneUse() &&
          CheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) {
        Value *newEI0 =
        Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
                                      EI.getName()+".lhs");
        Value *newEI1 =
        Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
                                      EI.getName()+".rhs");
        return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
      }
    } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
      // Extracting the inserted element?
      if (IE->getOperand(2) == EI.getOperand(1))
        return ReplaceInstUsesWith(EI, IE->getOperand(1));
      // If the inserted and extracted elements are constants, they must not
      // be the same value, extract from the pre-inserted value instead.
      if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) {
        Worklist.AddValue(EI.getOperand(0));
        EI.setOperand(0, IE->getOperand(0));
        return &EI;
      }
    } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
      // If this is extracting an element from a shufflevector, figure out where
      // it came from and extract from the appropriate input element instead.
      if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
        unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
        Value *Src;
        unsigned LHSWidth =
        cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
        
        if (SrcIdx < LHSWidth)
          Src = SVI->getOperand(0);
        else if (SrcIdx < LHSWidth*2) {
          SrcIdx -= LHSWidth;
          Src = SVI->getOperand(1);
        } else {
          return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
        }
        return ExtractElementInst::Create(Src,
                                          ConstantInt::get(Type::getInt32Ty(EI.getContext()),
                                                           SrcIdx, false));
      }
    }
    // FIXME: Canonicalize extractelement(bitcast) -> bitcast(extractelement)
  }
  return 0;
}

/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
/// elements from either LHS or RHS, return the shuffle mask and true. 
/// Otherwise, return false.
static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
                                         std::vector<Constant*> &Mask) {
  assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
         "Invalid CollectSingleShuffleElements");
  unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
  
  if (isa<UndefValue>(V)) {
    Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
    return true;
  }
  
  if (V == LHS) {
    for (unsigned i = 0; i != NumElts; ++i)
      Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
    return true;
  }
  
  if (V == RHS) {
    for (unsigned i = 0; i != NumElts; ++i)
      Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
                                      i+NumElts));
    return true;
  }
  
  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
    // If this is an insert of an extract from some other vector, include it.
    Value *VecOp    = IEI->getOperand(0);
    Value *ScalarOp = IEI->getOperand(1);
    Value *IdxOp    = IEI->getOperand(2);
    
    if (!isa<ConstantInt>(IdxOp))
      return false;
    unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
    
    if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
      // Okay, we can handle this if the vector we are insertinting into is
      // transitively ok.
      if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
        // If so, update the mask to reflect the inserted undef.
        Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
        return true;
      }      
    } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
      if (isa<ConstantInt>(EI->getOperand(1)) &&
          EI->getOperand(0)->getType() == V->getType()) {
        unsigned ExtractedIdx =
        cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
        
        // This must be extracting from either LHS or RHS.
        if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
          // Okay, we can handle this if the vector we are insertinting into is
          // transitively ok.
          if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
            // If so, update the mask to reflect the inserted value.
            if (EI->getOperand(0) == LHS) {
              Mask[InsertedIdx % NumElts] = 
              ConstantInt::get(Type::getInt32Ty(V->getContext()),
                               ExtractedIdx);
            } else {
              assert(EI->getOperand(0) == RHS);
              Mask[InsertedIdx % NumElts] = 
              ConstantInt::get(Type::getInt32Ty(V->getContext()),
                               ExtractedIdx+NumElts);
              
            }
            return true;
          }
        }
      }
    }
  }
  // TODO: Handle shufflevector here!
  
  return false;
}

/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
/// RHS of the shuffle instruction, if it is not null.  Return a shuffle mask
/// that computes V and the LHS value of the shuffle.
static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
                                     Value *&RHS) {
  assert(V->getType()->isVectorTy() && 
         (RHS == 0 || V->getType() == RHS->getType()) &&
         "Invalid shuffle!");
  unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
  
  if (isa<UndefValue>(V)) {
    Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
    return V;
  } else if (isa<ConstantAggregateZero>(V)) {
    Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
    return V;
  } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
    // If this is an insert of an extract from some other vector, include it.
    Value *VecOp    = IEI->getOperand(0);
    Value *ScalarOp = IEI->getOperand(1);
    Value *IdxOp    = IEI->getOperand(2);
    
    if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
      if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
          EI->getOperand(0)->getType() == V->getType()) {
        unsigned ExtractedIdx =
        cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
        unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
        
        // Either the extracted from or inserted into vector must be RHSVec,
        // otherwise we'd end up with a shuffle of three inputs.
        if (EI->getOperand(0) == RHS || RHS == 0) {
          RHS = EI->getOperand(0);
          Value *V = CollectShuffleElements(VecOp, Mask, RHS);
          Mask[InsertedIdx % NumElts] = 
          ConstantInt::get(Type::getInt32Ty(V->getContext()),
                           NumElts+ExtractedIdx);
          return V;
        }
        
        if (VecOp == RHS) {
          Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
          // Everything but the extracted element is replaced with the RHS.
          for (unsigned i = 0; i != NumElts; ++i) {
            if (i != InsertedIdx)
              Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()),
                                         NumElts+i);
          }
          return V;
        }
        
        // If this insertelement is a chain that comes from exactly these two
        // vectors, return the vector and the effective shuffle.
        if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
          return EI->getOperand(0);
      }
    }
  }
  // TODO: Handle shufflevector here!
  
  // Otherwise, can't do anything fancy.  Return an identity vector.
  for (unsigned i = 0; i != NumElts; ++i)
    Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
  return V;
}

Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
  Value *VecOp    = IE.getOperand(0);
  Value *ScalarOp = IE.getOperand(1);
  Value *IdxOp    = IE.getOperand(2);
  
  // Inserting an undef or into an undefined place, remove this.
  if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
    ReplaceInstUsesWith(IE, VecOp);
  
  // If the inserted element was extracted from some other vector, and if the 
  // indexes are constant, try to turn this into a shufflevector operation.
  if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
    if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
        EI->getOperand(0)->getType() == IE.getType()) {
      unsigned NumVectorElts = IE.getType()->getNumElements();
      unsigned ExtractedIdx =
      cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
      unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
      
      if (ExtractedIdx >= NumVectorElts) // Out of range extract.
        return ReplaceInstUsesWith(IE, VecOp);
      
      if (InsertedIdx >= NumVectorElts)  // Out of range insert.
        return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
      
      // If we are extracting a value from a vector, then inserting it right
      // back into the same place, just use the input vector.
      if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
        return ReplaceInstUsesWith(IE, VecOp);      
      
      // If this insertelement isn't used by some other insertelement, turn it
      // (and any insertelements it points to), into one big shuffle.
      if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
        std::vector<Constant*> Mask;
        Value *RHS = 0;
        Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
        if (RHS == 0) RHS = UndefValue::get(LHS->getType());
        // We now have a shuffle of LHS, RHS, Mask.
        return new ShuffleVectorInst(LHS, RHS,
                                     ConstantVector::get(Mask));
      }
    }
  }
  
  unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements();
  APInt UndefElts(VWidth, 0);
  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
  if (SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts))
    return &IE;
  
  return 0;
}


Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
  Value *LHS = SVI.getOperand(0);
  Value *RHS = SVI.getOperand(1);
  std::vector<unsigned> Mask = getShuffleMask(&SVI);
  
  bool MadeChange = false;
  
  // Undefined shuffle mask -> undefined value.
  if (isa<UndefValue>(SVI.getOperand(2)))
    return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
  
  unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
  
  if (VWidth != cast<VectorType>(LHS->getType())->getNumElements())
    return 0;
  
  APInt UndefElts(VWidth, 0);
  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
  if (SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
    LHS = SVI.getOperand(0);
    RHS = SVI.getOperand(1);
    MadeChange = true;
  }
  
  // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
  // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
  if (LHS == RHS || isa<UndefValue>(LHS)) {
    if (isa<UndefValue>(LHS) && LHS == RHS) {
      // shuffle(undef,undef,mask) -> undef.
      return ReplaceInstUsesWith(SVI, LHS);
    }
    
    // Remap any references to RHS to use LHS.
    std::vector<Constant*> Elts;
    for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
      if (Mask[i] >= 2*e)
        Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
      else {
        if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
            (Mask[i] <  e && isa<UndefValue>(LHS))) {
          Mask[i] = 2*e;     // Turn into undef.
          Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
        } else {
          Mask[i] = Mask[i] % e;  // Force to LHS.
          Elts.push_back(ConstantInt::get(Type::getInt32Ty(SVI.getContext()),
                                          Mask[i]));
        }
      }
    }
    SVI.setOperand(0, SVI.getOperand(1));
    SVI.setOperand(1, UndefValue::get(RHS->getType()));
    SVI.setOperand(2, ConstantVector::get(Elts));
    LHS = SVI.getOperand(0);
    RHS = SVI.getOperand(1);
    MadeChange = true;
  }
  
  // Analyze the shuffle, are the LHS or RHS and identity shuffles?
  bool isLHSID = true, isRHSID = true;
  
  for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
    if (Mask[i] >= e*2) continue;  // Ignore undef values.
    // Is this an identity shuffle of the LHS value?
    isLHSID &= (Mask[i] == i);
    
    // Is this an identity shuffle of the RHS value?
    isRHSID &= (Mask[i]-e == i);
  }
  
  // Eliminate identity shuffles.
  if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
  if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
  
  // If the LHS is a shufflevector itself, see if we can combine it with this
  // one without producing an unusual shuffle.  Here we are really conservative:
  // we are absolutely afraid of producing a shuffle mask not in the input
  // program, because the code gen may not be smart enough to turn a merged
  // shuffle into two specific shuffles: it may produce worse code.  As such,
  // we only merge two shuffles if the result is one of the two input shuffle
  // masks.  In this case, merging the shuffles just removes one instruction,
  // which we know is safe.  This is good for things like turning:
  // (splat(splat)) -> splat.
  if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
    if (isa<UndefValue>(RHS)) {
      std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
      
      if (LHSMask.size() == Mask.size()) {
        std::vector<unsigned> NewMask;
        for (unsigned i = 0, e = Mask.size(); i != e; ++i)
          if (Mask[i] >= e)
            NewMask.push_back(2*e);
          else
            NewMask.push_back(LHSMask[Mask[i]]);
        
        // If the result mask is equal to the src shuffle or this
        // shuffle mask, do the replacement.
        if (NewMask == LHSMask || NewMask == Mask) {
          unsigned LHSInNElts =
          cast<VectorType>(LHSSVI->getOperand(0)->getType())->
          getNumElements();
          std::vector<Constant*> Elts;
          for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
            if (NewMask[i] >= LHSInNElts*2) {
              Elts.push_back(UndefValue::get(
                                             Type::getInt32Ty(SVI.getContext())));
            } else {
              Elts.push_back(ConstantInt::get(
                                              Type::getInt32Ty(SVI.getContext()),
                                              NewMask[i]));
            }
          }
          return new ShuffleVectorInst(LHSSVI->getOperand(0),
                                       LHSSVI->getOperand(1),
                                       ConstantVector::get(Elts));
        }
      }
    }
  }
  
  return MadeChange ? &SVI : 0;
}