summaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/IndVarSimplify.cpp
blob: af2eafc47cbf346f3811addb05bff5498a9a0714 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This transformation analyzes and transforms the induction variables (and
// computations derived from them) into simpler forms suitable for subsequent
// analysis and transformation.
//
// This transformation makes the following changes to each loop with an
// identifiable induction variable:
//   1. All loops are transformed to have a SINGLE canonical induction variable
//      which starts at zero and steps by one.
//   2. The canonical induction variable is guaranteed to be the first PHI node
//      in the loop header block.
//   3. The canonical induction variable is guaranteed to be in a wide enough
//      type so that IV expressions need not be (directly) zero-extended or
//      sign-extended.
//   4. Any pointer arithmetic recurrences are raised to use array subscripts.
//
// If the trip count of a loop is computable, this pass also makes the following
// changes:
//   1. The exit condition for the loop is canonicalized to compare the
//      induction value against the exit value.  This turns loops like:
//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
//   2. Any use outside of the loop of an expression derived from the indvar
//      is changed to compute the derived value outside of the loop, eliminating
//      the dependence on the exit value of the induction variable.  If the only
//      purpose of the loop is to compute the exit value of some derived
//      expression, this transformation will make the loop dead.
//
// This transformation should be followed by strength reduction after all of the
// desired loop transformations have been performed.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "indvars"
#include "llvm/Transforms/Scalar.h"
#include "llvm/BasicBlock.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/LLVMContext.h"
#include "llvm/Type.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/IVUsers.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;

STATISTIC(NumRemoved , "Number of aux indvars removed");
STATISTIC(NumInserted, "Number of canonical indvars added");
STATISTIC(NumReplaced, "Number of exit values replaced");
STATISTIC(NumLFTR    , "Number of loop exit tests replaced");

namespace {
  class IndVarSimplify : public LoopPass {
    IVUsers         *IU;
    LoopInfo        *LI;
    ScalarEvolution *SE;
    DominatorTree   *DT;
    bool Changed;
  public:

    static char ID; // Pass identification, replacement for typeid
    IndVarSimplify() : LoopPass(ID) {}

    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequired<DominatorTree>();
      AU.addRequired<LoopInfo>();
      AU.addRequired<ScalarEvolution>();
      AU.addRequiredID(LoopSimplifyID);
      AU.addRequiredID(LCSSAID);
      AU.addRequired<IVUsers>();
      AU.addPreserved<ScalarEvolution>();
      AU.addPreservedID(LoopSimplifyID);
      AU.addPreservedID(LCSSAID);
      AU.addPreserved<IVUsers>();
      AU.setPreservesCFG();
    }

  private:

    void EliminateIVComparisons();
    void EliminateIVRemainders();
    void RewriteNonIntegerIVs(Loop *L);

    ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
                                   PHINode *IndVar,
                                   BasicBlock *ExitingBlock,
                                   BranchInst *BI,
                                   SCEVExpander &Rewriter);
    void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);

    void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);

    void SinkUnusedInvariants(Loop *L);

    void HandleFloatingPointIV(Loop *L, PHINode *PH);
  };
}

char IndVarSimplify::ID = 0;
INITIALIZE_PASS(IndVarSimplify, "indvars",
                "Canonicalize Induction Variables", false, false);

Pass *llvm::createIndVarSimplifyPass() {
  return new IndVarSimplify();
}

/// LinearFunctionTestReplace - This method rewrites the exit condition of the
/// loop to be a canonical != comparison against the incremented loop induction
/// variable.  This pass is able to rewrite the exit tests of any loop where the
/// SCEV analysis can determine a loop-invariant trip count of the loop, which
/// is actually a much broader range than just linear tests.
ICmpInst *IndVarSimplify::LinearFunctionTestReplace(Loop *L,
                                   const SCEV *BackedgeTakenCount,
                                   PHINode *IndVar,
                                   BasicBlock *ExitingBlock,
                                   BranchInst *BI,
                                   SCEVExpander &Rewriter) {
  // Special case: If the backedge-taken count is a UDiv, it's very likely a
  // UDiv that ScalarEvolution produced in order to compute a precise
  // expression, rather than a UDiv from the user's code. If we can't find a
  // UDiv in the code with some simple searching, assume the former and forego
  // rewriting the loop.
  if (isa<SCEVUDivExpr>(BackedgeTakenCount)) {
    ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
    if (!OrigCond) return 0;
    const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
    R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
    if (R != BackedgeTakenCount) {
      const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
      L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
      if (L != BackedgeTakenCount)
        return 0;
    }
  }

  // If the exiting block is not the same as the backedge block, we must compare
  // against the preincremented value, otherwise we prefer to compare against
  // the post-incremented value.
  Value *CmpIndVar;
  const SCEV *RHS = BackedgeTakenCount;
  if (ExitingBlock == L->getLoopLatch()) {
    // Add one to the "backedge-taken" count to get the trip count.
    // If this addition may overflow, we have to be more pessimistic and
    // cast the induction variable before doing the add.
    const SCEV *Zero = SE->getConstant(BackedgeTakenCount->getType(), 0);
    const SCEV *N =
      SE->getAddExpr(BackedgeTakenCount,
                     SE->getConstant(BackedgeTakenCount->getType(), 1));
    if ((isa<SCEVConstant>(N) && !N->isZero()) ||
        SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
      // No overflow. Cast the sum.
      RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType());
    } else {
      // Potential overflow. Cast before doing the add.
      RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
                                        IndVar->getType());
      RHS = SE->getAddExpr(RHS,
                           SE->getConstant(IndVar->getType(), 1));
    }

    // The BackedgeTaken expression contains the number of times that the
    // backedge branches to the loop header.  This is one less than the
    // number of times the loop executes, so use the incremented indvar.
    CmpIndVar = IndVar->getIncomingValueForBlock(ExitingBlock);
  } else {
    // We have to use the preincremented value...
    RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
                                      IndVar->getType());
    CmpIndVar = IndVar;
  }

  // Expand the code for the iteration count.
  assert(RHS->isLoopInvariant(L) &&
         "Computed iteration count is not loop invariant!");
  Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(), BI);

  // Insert a new icmp_ne or icmp_eq instruction before the branch.
  ICmpInst::Predicate Opcode;
  if (L->contains(BI->getSuccessor(0)))
    Opcode = ICmpInst::ICMP_NE;
  else
    Opcode = ICmpInst::ICMP_EQ;

  DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
               << "      LHS:" << *CmpIndVar << '\n'
               << "       op:\t"
               << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
               << "      RHS:\t" << *RHS << "\n");

  ICmpInst *Cond = new ICmpInst(BI, Opcode, CmpIndVar, ExitCnt, "exitcond");

  Value *OrigCond = BI->getCondition();
  // It's tempting to use replaceAllUsesWith here to fully replace the old
  // comparison, but that's not immediately safe, since users of the old
  // comparison may not be dominated by the new comparison. Instead, just
  // update the branch to use the new comparison; in the common case this
  // will make old comparison dead.
  BI->setCondition(Cond);
  RecursivelyDeleteTriviallyDeadInstructions(OrigCond);

  ++NumLFTR;
  Changed = true;
  return Cond;
}

/// RewriteLoopExitValues - Check to see if this loop has a computable
/// loop-invariant execution count.  If so, this means that we can compute the
/// final value of any expressions that are recurrent in the loop, and
/// substitute the exit values from the loop into any instructions outside of
/// the loop that use the final values of the current expressions.
///
/// This is mostly redundant with the regular IndVarSimplify activities that
/// happen later, except that it's more powerful in some cases, because it's
/// able to brute-force evaluate arbitrary instructions as long as they have
/// constant operands at the beginning of the loop.
void IndVarSimplify::RewriteLoopExitValues(Loop *L,
                                           SCEVExpander &Rewriter) {
  // Verify the input to the pass in already in LCSSA form.
  assert(L->isLCSSAForm(*DT));

  SmallVector<BasicBlock*, 8> ExitBlocks;
  L->getUniqueExitBlocks(ExitBlocks);

  // Find all values that are computed inside the loop, but used outside of it.
  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
  // the exit blocks of the loop to find them.
  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
    BasicBlock *ExitBB = ExitBlocks[i];

    // If there are no PHI nodes in this exit block, then no values defined
    // inside the loop are used on this path, skip it.
    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
    if (!PN) continue;

    unsigned NumPreds = PN->getNumIncomingValues();

    // Iterate over all of the PHI nodes.
    BasicBlock::iterator BBI = ExitBB->begin();
    while ((PN = dyn_cast<PHINode>(BBI++))) {
      if (PN->use_empty())
        continue; // dead use, don't replace it

      // SCEV only supports integer expressions for now.
      if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
        continue;

      // It's necessary to tell ScalarEvolution about this explicitly so that
      // it can walk the def-use list and forget all SCEVs, as it may not be
      // watching the PHI itself. Once the new exit value is in place, there
      // may not be a def-use connection between the loop and every instruction
      // which got a SCEVAddRecExpr for that loop.
      SE->forgetValue(PN);

      // Iterate over all of the values in all the PHI nodes.
      for (unsigned i = 0; i != NumPreds; ++i) {
        // If the value being merged in is not integer or is not defined
        // in the loop, skip it.
        Value *InVal = PN->getIncomingValue(i);
        if (!isa<Instruction>(InVal))
          continue;

        // If this pred is for a subloop, not L itself, skip it.
        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
          continue; // The Block is in a subloop, skip it.

        // Check that InVal is defined in the loop.
        Instruction *Inst = cast<Instruction>(InVal);
        if (!L->contains(Inst))
          continue;

        // Okay, this instruction has a user outside of the current loop
        // and varies predictably *inside* the loop.  Evaluate the value it
        // contains when the loop exits, if possible.
        const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
        if (!ExitValue->isLoopInvariant(L))
          continue;

        Changed = true;
        ++NumReplaced;

        Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);

        DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
                     << "  LoopVal = " << *Inst << "\n");

        PN->setIncomingValue(i, ExitVal);

        // If this instruction is dead now, delete it.
        RecursivelyDeleteTriviallyDeadInstructions(Inst);

        if (NumPreds == 1) {
          // Completely replace a single-pred PHI. This is safe, because the
          // NewVal won't be variant in the loop, so we don't need an LCSSA phi
          // node anymore.
          PN->replaceAllUsesWith(ExitVal);
          RecursivelyDeleteTriviallyDeadInstructions(PN);
        }
      }
      if (NumPreds != 1) {
        // Clone the PHI and delete the original one. This lets IVUsers and
        // any other maps purge the original user from their records.
        PHINode *NewPN = cast<PHINode>(PN->clone());
        NewPN->takeName(PN);
        NewPN->insertBefore(PN);
        PN->replaceAllUsesWith(NewPN);
        PN->eraseFromParent();
      }
    }
  }

  // The insertion point instruction may have been deleted; clear it out
  // so that the rewriter doesn't trip over it later.
  Rewriter.clearInsertPoint();
}

void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
  // First step.  Check to see if there are any floating-point recurrences.
  // If there are, change them into integer recurrences, permitting analysis by
  // the SCEV routines.
  //
  BasicBlock *Header    = L->getHeader();

  SmallVector<WeakVH, 8> PHIs;
  for (BasicBlock::iterator I = Header->begin();
       PHINode *PN = dyn_cast<PHINode>(I); ++I)
    PHIs.push_back(PN);

  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
    if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i]))
      HandleFloatingPointIV(L, PN);

  // If the loop previously had floating-point IV, ScalarEvolution
  // may not have been able to compute a trip count. Now that we've done some
  // re-writing, the trip count may be computable.
  if (Changed)
    SE->forgetLoop(L);
}

void IndVarSimplify::EliminateIVComparisons() {
  SmallVector<WeakVH, 16> DeadInsts;

  // Look for ICmp users.
  for (IVUsers::iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
    IVStrideUse &UI = *I;
    ICmpInst *ICmp = dyn_cast<ICmpInst>(UI.getUser());
    if (!ICmp) continue;

    bool Swapped = UI.getOperandValToReplace() == ICmp->getOperand(1);
    ICmpInst::Predicate Pred = ICmp->getPredicate();
    if (Swapped) Pred = ICmpInst::getSwappedPredicate(Pred);

    // Get the SCEVs for the ICmp operands.
    const SCEV *S = IU->getReplacementExpr(UI);
    const SCEV *X = SE->getSCEV(ICmp->getOperand(!Swapped));

    // Simplify unnecessary loops away.
    const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
    S = SE->getSCEVAtScope(S, ICmpLoop);
    X = SE->getSCEVAtScope(X, ICmpLoop);

    // If the condition is always true or always false, replace it with
    // a constant value.
    if (SE->isKnownPredicate(Pred, S, X))
      ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
    else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X))
      ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
    else
      continue;

    DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
    DeadInsts.push_back(ICmp);
  }

  // Now that we're done iterating through lists, clean up any instructions
  // which are now dead.
  while (!DeadInsts.empty())
    if (Instruction *Inst =
          dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
      RecursivelyDeleteTriviallyDeadInstructions(Inst);
}

void IndVarSimplify::EliminateIVRemainders() {
  SmallVector<WeakVH, 16> DeadInsts;

  // Look for SRem and URem users.
  for (IVUsers::iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
    IVStrideUse &UI = *I;
    BinaryOperator *Rem = dyn_cast<BinaryOperator>(UI.getUser());
    if (!Rem) continue;

    bool isSigned = Rem->getOpcode() == Instruction::SRem;
    if (!isSigned && Rem->getOpcode() != Instruction::URem)
      continue;

    // We're only interested in the case where we know something about
    // the numerator.
    if (UI.getOperandValToReplace() != Rem->getOperand(0))
      continue;

    // Get the SCEVs for the ICmp operands.
    const SCEV *S = SE->getSCEV(Rem->getOperand(0));
    const SCEV *X = SE->getSCEV(Rem->getOperand(1));

    // Simplify unnecessary loops away.
    const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
    S = SE->getSCEVAtScope(S, ICmpLoop);
    X = SE->getSCEVAtScope(X, ICmpLoop);

    // i % n  -->  i  if i is in [0,n).
    if ((!isSigned || SE->isKnownNonNegative(S)) &&
        SE->isKnownPredicate(isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
                             S, X))
      Rem->replaceAllUsesWith(Rem->getOperand(0));
    else {
      // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
      const SCEV *LessOne =
        SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1));
      if ((!isSigned || SE->isKnownNonNegative(LessOne)) &&
          SE->isKnownPredicate(isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
                               LessOne, X)) {
        ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
                                      Rem->getOperand(0), Rem->getOperand(1),
                                      "tmp");
        SelectInst *Sel =
          SelectInst::Create(ICmp,
                             ConstantInt::get(Rem->getType(), 0),
                             Rem->getOperand(0), "tmp", Rem);
        Rem->replaceAllUsesWith(Sel);
      } else
        continue;
    }

    // Inform IVUsers about the new users.
    if (Instruction *I = dyn_cast<Instruction>(Rem->getOperand(0)))
      IU->AddUsersIfInteresting(I);

    DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
    DeadInsts.push_back(Rem);
  }

  // Now that we're done iterating through lists, clean up any instructions
  // which are now dead.
  while (!DeadInsts.empty())
    if (Instruction *Inst =
          dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
      RecursivelyDeleteTriviallyDeadInstructions(Inst);
}

bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
  // If LoopSimplify form is not available, stay out of trouble. Some notes:
  //  - LSR currently only supports LoopSimplify-form loops. Indvars'
  //    canonicalization can be a pessimization without LSR to "clean up"
  //    afterwards.
  //  - We depend on having a preheader; in particular,
  //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
  //    and we're in trouble if we can't find the induction variable even when
  //    we've manually inserted one.
  if (!L->isLoopSimplifyForm())
    return false;

  IU = &getAnalysis<IVUsers>();
  LI = &getAnalysis<LoopInfo>();
  SE = &getAnalysis<ScalarEvolution>();
  DT = &getAnalysis<DominatorTree>();
  Changed = false;

  // If there are any floating-point recurrences, attempt to
  // transform them to use integer recurrences.
  RewriteNonIntegerIVs(L);

  BasicBlock *ExitingBlock = L->getExitingBlock(); // may be null
  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);

  // Create a rewriter object which we'll use to transform the code with.
  SCEVExpander Rewriter(*SE);

  // Check to see if this loop has a computable loop-invariant execution count.
  // If so, this means that we can compute the final value of any expressions
  // that are recurrent in the loop, and substitute the exit values from the
  // loop into any instructions outside of the loop that use the final values of
  // the current expressions.
  //
  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
    RewriteLoopExitValues(L, Rewriter);

  // Simplify ICmp IV users.
  EliminateIVComparisons();

  // Simplify SRem and URem IV users.
  EliminateIVRemainders();

  // Compute the type of the largest recurrence expression, and decide whether
  // a canonical induction variable should be inserted.
  const Type *LargestType = 0;
  bool NeedCannIV = false;
  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
    LargestType = BackedgeTakenCount->getType();
    LargestType = SE->getEffectiveSCEVType(LargestType);
    // If we have a known trip count and a single exit block, we'll be
    // rewriting the loop exit test condition below, which requires a
    // canonical induction variable.
    if (ExitingBlock)
      NeedCannIV = true;
  }
  for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
    const Type *Ty =
      SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
    if (!LargestType ||
        SE->getTypeSizeInBits(Ty) >
          SE->getTypeSizeInBits(LargestType))
      LargestType = Ty;
    NeedCannIV = true;
  }

  // Now that we know the largest of the induction variable expressions
  // in this loop, insert a canonical induction variable of the largest size.
  PHINode *IndVar = 0;
  if (NeedCannIV) {
    // Check to see if the loop already has any canonical-looking induction
    // variables. If any are present and wider than the planned canonical
    // induction variable, temporarily remove them, so that the Rewriter
    // doesn't attempt to reuse them.
    SmallVector<PHINode *, 2> OldCannIVs;
    while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
      if (SE->getTypeSizeInBits(OldCannIV->getType()) >
          SE->getTypeSizeInBits(LargestType))
        OldCannIV->removeFromParent();
      else
        break;
      OldCannIVs.push_back(OldCannIV);
    }

    IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);

    ++NumInserted;
    Changed = true;
    DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');

    // Now that the official induction variable is established, reinsert
    // any old canonical-looking variables after it so that the IR remains
    // consistent. They will be deleted as part of the dead-PHI deletion at
    // the end of the pass.
    while (!OldCannIVs.empty()) {
      PHINode *OldCannIV = OldCannIVs.pop_back_val();
      OldCannIV->insertBefore(L->getHeader()->getFirstNonPHI());
    }
  }

  // If we have a trip count expression, rewrite the loop's exit condition
  // using it.  We can currently only handle loops with a single exit.
  ICmpInst *NewICmp = 0;
  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
      !BackedgeTakenCount->isZero() &&
      ExitingBlock) {
    assert(NeedCannIV &&
           "LinearFunctionTestReplace requires a canonical induction variable");
    // Can't rewrite non-branch yet.
    if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
      NewICmp = LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
                                          ExitingBlock, BI, Rewriter);
  }

  // Rewrite IV-derived expressions. Clears the rewriter cache.
  RewriteIVExpressions(L, Rewriter);

  // The Rewriter may not be used from this point on.

  // Loop-invariant instructions in the preheader that aren't used in the
  // loop may be sunk below the loop to reduce register pressure.
  SinkUnusedInvariants(L);

  // For completeness, inform IVUsers of the IV use in the newly-created
  // loop exit test instruction.
  if (NewICmp)
    IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0)));

  // Clean up dead instructions.
  Changed |= DeleteDeadPHIs(L->getHeader());
  // Check a post-condition.
  assert(L->isLCSSAForm(*DT) && "Indvars did not leave the loop in lcssa form!");
  return Changed;
}

// FIXME: It is an extremely bad idea to indvar substitute anything more
// complex than affine induction variables.  Doing so will put expensive
// polynomial evaluations inside of the loop, and the str reduction pass
// currently can only reduce affine polynomials.  For now just disable
// indvar subst on anything more complex than an affine addrec, unless
// it can be expanded to a trivial value.
static bool isSafe(const SCEV *S, const Loop *L) {
  // Loop-invariant values are safe.
  if (S->isLoopInvariant(L)) return true;

  // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
  // to transform them into efficient code.
  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
    return AR->isAffine();

  // An add is safe it all its operands are safe.
  if (const SCEVCommutativeExpr *Commutative = dyn_cast<SCEVCommutativeExpr>(S)) {
    for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
         E = Commutative->op_end(); I != E; ++I)
      if (!isSafe(*I, L)) return false;
    return true;
  }
  
  // A cast is safe if its operand is.
  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
    return isSafe(C->getOperand(), L);

  // A udiv is safe if its operands are.
  if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
    return isSafe(UD->getLHS(), L) &&
           isSafe(UD->getRHS(), L);

  // SCEVUnknown is always safe.
  if (isa<SCEVUnknown>(S))
    return true;

  // Nothing else is safe.
  return false;
}

void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
  SmallVector<WeakVH, 16> DeadInsts;

  // Rewrite all induction variable expressions in terms of the canonical
  // induction variable.
  //
  // If there were induction variables of other sizes or offsets, manually
  // add the offsets to the primary induction variable and cast, avoiding
  // the need for the code evaluation methods to insert induction variables
  // of different sizes.
  for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
    Value *Op = UI->getOperandValToReplace();
    const Type *UseTy = Op->getType();
    Instruction *User = UI->getUser();

    // Compute the final addrec to expand into code.
    const SCEV *AR = IU->getReplacementExpr(*UI);

    // Evaluate the expression out of the loop, if possible.
    if (!L->contains(UI->getUser())) {
      const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
      if (ExitVal->isLoopInvariant(L))
        AR = ExitVal;
    }

    // FIXME: It is an extremely bad idea to indvar substitute anything more
    // complex than affine induction variables.  Doing so will put expensive
    // polynomial evaluations inside of the loop, and the str reduction pass
    // currently can only reduce affine polynomials.  For now just disable
    // indvar subst on anything more complex than an affine addrec, unless
    // it can be expanded to a trivial value.
    if (!isSafe(AR, L))
      continue;

    // Determine the insertion point for this user. By default, insert
    // immediately before the user. The SCEVExpander class will automatically
    // hoist loop invariants out of the loop. For PHI nodes, there may be
    // multiple uses, so compute the nearest common dominator for the
    // incoming blocks.
    Instruction *InsertPt = User;
    if (PHINode *PHI = dyn_cast<PHINode>(InsertPt))
      for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
        if (PHI->getIncomingValue(i) == Op) {
          if (InsertPt == User)
            InsertPt = PHI->getIncomingBlock(i)->getTerminator();
          else
            InsertPt =
              DT->findNearestCommonDominator(InsertPt->getParent(),
                                             PHI->getIncomingBlock(i))
                    ->getTerminator();
        }

    // Now expand it into actual Instructions and patch it into place.
    Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);

    // Inform ScalarEvolution that this value is changing. The change doesn't
    // affect its value, but it does potentially affect which use lists the
    // value will be on after the replacement, which affects ScalarEvolution's
    // ability to walk use lists and drop dangling pointers when a value is
    // deleted.
    SE->forgetValue(User);

    // Patch the new value into place.
    if (Op->hasName())
      NewVal->takeName(Op);
    User->replaceUsesOfWith(Op, NewVal);
    UI->setOperandValToReplace(NewVal);
    DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
                 << "   into = " << *NewVal << "\n");
    ++NumRemoved;
    Changed = true;

    // The old value may be dead now.
    DeadInsts.push_back(Op);
  }

  // Clear the rewriter cache, because values that are in the rewriter's cache
  // can be deleted in the loop below, causing the AssertingVH in the cache to
  // trigger.
  Rewriter.clear();
  // Now that we're done iterating through lists, clean up any instructions
  // which are now dead.
  while (!DeadInsts.empty())
    if (Instruction *Inst =
          dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
      RecursivelyDeleteTriviallyDeadInstructions(Inst);
}

/// If there's a single exit block, sink any loop-invariant values that
/// were defined in the preheader but not used inside the loop into the
/// exit block to reduce register pressure in the loop.
void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
  BasicBlock *ExitBlock = L->getExitBlock();
  if (!ExitBlock) return;

  BasicBlock *Preheader = L->getLoopPreheader();
  if (!Preheader) return;

  Instruction *InsertPt = ExitBlock->getFirstNonPHI();
  BasicBlock::iterator I = Preheader->getTerminator();
  while (I != Preheader->begin()) {
    --I;
    // New instructions were inserted at the end of the preheader.
    if (isa<PHINode>(I))
      break;

    // Don't move instructions which might have side effects, since the side
    // effects need to complete before instructions inside the loop.  Also don't
    // move instructions which might read memory, since the loop may modify
    // memory. Note that it's okay if the instruction might have undefined
    // behavior: LoopSimplify guarantees that the preheader dominates the exit
    // block.
    if (I->mayHaveSideEffects() || I->mayReadFromMemory())
      continue;

    // Skip debug info intrinsics.
    if (isa<DbgInfoIntrinsic>(I))
      continue;

    // Don't sink static AllocaInsts out of the entry block, which would
    // turn them into dynamic allocas!
    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
      if (AI->isStaticAlloca())
        continue;

    // Determine if there is a use in or before the loop (direct or
    // otherwise).
    bool UsedInLoop = false;
    for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
         UI != UE; ++UI) {
      User *U = *UI;
      BasicBlock *UseBB = cast<Instruction>(U)->getParent();
      if (PHINode *P = dyn_cast<PHINode>(U)) {
        unsigned i =
          PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
        UseBB = P->getIncomingBlock(i);
      }
      if (UseBB == Preheader || L->contains(UseBB)) {
        UsedInLoop = true;
        break;
      }
    }

    // If there is, the def must remain in the preheader.
    if (UsedInLoop)
      continue;

    // Otherwise, sink it to the exit block.
    Instruction *ToMove = I;
    bool Done = false;

    if (I != Preheader->begin()) {
      // Skip debug info intrinsics.
      do {
        --I;
      } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());

      if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
        Done = true;
    } else {
      Done = true;
    }

    ToMove->moveBefore(InsertPt);
    if (Done) break;
    InsertPt = ToMove;
  }
}

/// ConvertToSInt - Convert APF to an integer, if possible.
static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
  bool isExact = false;
  if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
    return false;
  // See if we can convert this to an int64_t
  uint64_t UIntVal;
  if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
                           &isExact) != APFloat::opOK || !isExact)
    return false;
  IntVal = UIntVal;
  return true;
}

/// HandleFloatingPointIV - If the loop has floating induction variable
/// then insert corresponding integer induction variable if possible.
/// For example,
/// for(double i = 0; i < 10000; ++i)
///   bar(i)
/// is converted into
/// for(int i = 0; i < 10000; ++i)
///   bar((double)i);
///
void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
  unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
  unsigned BackEdge     = IncomingEdge^1;

  // Check incoming value.
  ConstantFP *InitValueVal =
    dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));

  int64_t InitValue;
  if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
    return;

  // Check IV increment. Reject this PN if increment operation is not
  // an add or increment value can not be represented by an integer.
  BinaryOperator *Incr =
    dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
  if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
  
  // If this is not an add of the PHI with a constantfp, or if the constant fp
  // is not an integer, bail out.
  ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
  int64_t IncValue;
  if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
      !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
    return;

  // Check Incr uses. One user is PN and the other user is an exit condition
  // used by the conditional terminator.
  Value::use_iterator IncrUse = Incr->use_begin();
  Instruction *U1 = cast<Instruction>(*IncrUse++);
  if (IncrUse == Incr->use_end()) return;
  Instruction *U2 = cast<Instruction>(*IncrUse++);
  if (IncrUse != Incr->use_end()) return;

  // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
  // only used by a branch, we can't transform it.
  FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
  if (!Compare)
    Compare = dyn_cast<FCmpInst>(U2);
  if (Compare == 0 || !Compare->hasOneUse() ||
      !isa<BranchInst>(Compare->use_back()))
    return;
  
  BranchInst *TheBr = cast<BranchInst>(Compare->use_back());

  // We need to verify that the branch actually controls the iteration count
  // of the loop.  If not, the new IV can overflow and no one will notice.
  // The branch block must be in the loop and one of the successors must be out
  // of the loop.
  assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
  if (!L->contains(TheBr->getParent()) ||
      (L->contains(TheBr->getSuccessor(0)) &&
       L->contains(TheBr->getSuccessor(1))))
    return;
  
  
  // If it isn't a comparison with an integer-as-fp (the exit value), we can't
  // transform it.
  ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
  int64_t ExitValue;
  if (ExitValueVal == 0 ||
      !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
    return;
  
  // Find new predicate for integer comparison.
  CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
  switch (Compare->getPredicate()) {
  default: return;  // Unknown comparison.
  case CmpInst::FCMP_OEQ:
  case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
  case CmpInst::FCMP_ONE:
  case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
  case CmpInst::FCMP_OGT:
  case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
  case CmpInst::FCMP_OGE:
  case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
  case CmpInst::FCMP_OLT:
  case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
  case CmpInst::FCMP_OLE:
  case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
  }
  
  // We convert the floating point induction variable to a signed i32 value if
  // we can.  This is only safe if the comparison will not overflow in a way
  // that won't be trapped by the integer equivalent operations.  Check for this
  // now.
  // TODO: We could use i64 if it is native and the range requires it.
  
  // The start/stride/exit values must all fit in signed i32.
  if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
    return;

  // If not actually striding (add x, 0.0), avoid touching the code.
  if (IncValue == 0)
    return;

  // Positive and negative strides have different safety conditions.
  if (IncValue > 0) {
    // If we have a positive stride, we require the init to be less than the
    // exit value and an equality or less than comparison.
    if (InitValue >= ExitValue ||
        NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE)
      return;
    
    uint32_t Range = uint32_t(ExitValue-InitValue);
    if (NewPred == CmpInst::ICMP_SLE) {
      // Normalize SLE -> SLT, check for infinite loop.
      if (++Range == 0) return;  // Range overflows.
    }
    
    unsigned Leftover = Range % uint32_t(IncValue);
    
    // If this is an equality comparison, we require that the strided value
    // exactly land on the exit value, otherwise the IV condition will wrap
    // around and do things the fp IV wouldn't.
    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
        Leftover != 0)
      return;
    
    // If the stride would wrap around the i32 before exiting, we can't
    // transform the IV.
    if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
      return;
    
  } else {
    // If we have a negative stride, we require the init to be greater than the
    // exit value and an equality or greater than comparison.
    if (InitValue >= ExitValue ||
        NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE)
      return;
    
    uint32_t Range = uint32_t(InitValue-ExitValue);
    if (NewPred == CmpInst::ICMP_SGE) {
      // Normalize SGE -> SGT, check for infinite loop.
      if (++Range == 0) return;  // Range overflows.
    }
    
    unsigned Leftover = Range % uint32_t(-IncValue);
    
    // If this is an equality comparison, we require that the strided value
    // exactly land on the exit value, otherwise the IV condition will wrap
    // around and do things the fp IV wouldn't.
    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
        Leftover != 0)
      return;
    
    // If the stride would wrap around the i32 before exiting, we can't
    // transform the IV.
    if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
      return;
  }
  
  const IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());

  // Insert new integer induction variable.
  PHINode *NewPHI = PHINode::Create(Int32Ty, PN->getName()+".int", PN);
  NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
                      PN->getIncomingBlock(IncomingEdge));

  Value *NewAdd =
    BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
                              Incr->getName()+".int", Incr);
  NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));

  ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
                                      ConstantInt::get(Int32Ty, ExitValue),
                                      Compare->getName());

  // In the following deletions, PN may become dead and may be deleted.
  // Use a WeakVH to observe whether this happens.
  WeakVH WeakPH = PN;

  // Delete the old floating point exit comparison.  The branch starts using the
  // new comparison.
  NewCompare->takeName(Compare);
  Compare->replaceAllUsesWith(NewCompare);
  RecursivelyDeleteTriviallyDeadInstructions(Compare);

  // Delete the old floating point increment.
  Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
  RecursivelyDeleteTriviallyDeadInstructions(Incr);

  // If the FP induction variable still has uses, this is because something else
  // in the loop uses its value.  In order to canonicalize the induction
  // variable, we chose to eliminate the IV and rewrite it in terms of an
  // int->fp cast.
  //
  // We give preference to sitofp over uitofp because it is faster on most
  // platforms.
  if (WeakPH) {
    Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
                                 PN->getParent()->getFirstNonPHI());
    PN->replaceAllUsesWith(Conv);
    RecursivelyDeleteTriviallyDeadInstructions(PN);
  }

  // Add a new IVUsers entry for the newly-created integer PHI.
  IU->AddUsersIfInteresting(NewPHI);
}