summaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/LICM.cpp
blob: 2a790f21a76c761423d311b9ebdb4dc35e615f7f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass performs loop invariant code motion, attempting to remove as much
// code from the body of a loop as possible.  It does this by either hoisting
// code into the preheader block, or by sinking code to the exit blocks if it is
// safe.  This pass also promotes must-aliased memory locations in the loop to
// live in registers, thus hoisting and sinking "invariant" loads and stores.
//
// This pass uses alias analysis for two purposes:
//
//  1. Moving loop invariant loads and calls out of loops.  If we can determine
//     that a load or call inside of a loop never aliases anything stored to,
//     we can hoist it or sink it like any other instruction.
//  2. Scalar Promotion of Memory - If there is a store instruction inside of
//     the loop, we try to move the store to happen AFTER the loop instead of
//     inside of the loop.  This can only happen if a few conditions are true:
//       A. The pointer stored through is loop invariant
//       B. There are no stores or loads in the loop which _may_ alias the
//          pointer.  There are no calls in the loop which mod/ref the pointer.
//     If these conditions are true, we can promote the loads and stores in the
//     loop of the pointer to use a temporary alloca'd variable.  We then use
//     the mem2reg functionality to construct the appropriate SSA form for the
//     variable.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "licm"
#include "llvm/Transforms/Scalar.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Support/CFG.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include <algorithm>
using namespace llvm;

namespace {
  cl::opt<bool>
  DisablePromotion("disable-licm-promotion", cl::Hidden,
                   cl::desc("Disable memory promotion in LICM pass"));

  Statistic<> NumSunk("licm", "Number of instructions sunk out of loop");
  Statistic<> NumHoisted("licm", "Number of instructions hoisted out of loop");
  Statistic<> NumMovedLoads("licm", "Number of load insts hoisted or sunk");
  Statistic<> NumMovedCalls("licm", "Number of call insts hoisted or sunk");
  Statistic<> NumPromoted("licm",
                          "Number of memory locations promoted to registers");

  struct LICM : public FunctionPass {
    virtual bool runOnFunction(Function &F);

    /// This transformation requires natural loop information & requires that
    /// loop preheaders be inserted into the CFG...
    ///
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesCFG();
      AU.addRequiredID(LoopSimplifyID);
      AU.addRequired<LoopInfo>();
      AU.addRequired<DominatorTree>();
      AU.addRequired<DominanceFrontier>();  // For scalar promotion (mem2reg)
      AU.addRequired<AliasAnalysis>();
    }

  private:
    // Various analyses that we use...
    AliasAnalysis *AA;       // Current AliasAnalysis information
    LoopInfo      *LI;       // Current LoopInfo
    DominatorTree *DT;       // Dominator Tree for the current Loop...
    DominanceFrontier *DF;   // Current Dominance Frontier

    // State that is updated as we process loops
    bool Changed;            // Set to true when we change anything.
    BasicBlock *Preheader;   // The preheader block of the current loop...
    Loop *CurLoop;           // The current loop we are working on...
    AliasSetTracker *CurAST; // AliasSet information for the current loop...

    /// visitLoop - Hoist expressions out of the specified loop...
    ///
    void visitLoop(Loop *L, AliasSetTracker &AST);

    /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
    /// dominated by the specified block, and that are in the current loop) in
    /// reverse depth first order w.r.t the DominatorTree.  This allows us to
    /// visit uses before definitions, allowing us to sink a loop body in one
    /// pass without iteration.
    ///
    void SinkRegion(DominatorTree::Node *N);

    /// HoistRegion - Walk the specified region of the CFG (defined by all
    /// blocks dominated by the specified block, and that are in the current
    /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
    /// visit definitions before uses, allowing us to hoist a loop body in one
    /// pass without iteration.
    ///
    void HoistRegion(DominatorTree::Node *N);

    /// inSubLoop - Little predicate that returns true if the specified basic
    /// block is in a subloop of the current one, not the current one itself.
    ///
    bool inSubLoop(BasicBlock *BB) {
      assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
      for (Loop::iterator I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I)
        if ((*I)->contains(BB))
          return true;  // A subloop actually contains this block!
      return false;
    }

    /// isExitBlockDominatedByBlockInLoop - This method checks to see if the
    /// specified exit block of the loop is dominated by the specified block
    /// that is in the body of the loop.  We use these constraints to
    /// dramatically limit the amount of the dominator tree that needs to be
    /// searched.
    bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock,
                                           BasicBlock *BlockInLoop) const {
      // If the block in the loop is the loop header, it must be dominated!
      BasicBlock *LoopHeader = CurLoop->getHeader();
      if (BlockInLoop == LoopHeader)
        return true;

      DominatorTree::Node *BlockInLoopNode = DT->getNode(BlockInLoop);
      DominatorTree::Node *IDom            = DT->getNode(ExitBlock);

      // Because the exit block is not in the loop, we know we have to get _at
      // least_ its immediate dominator.
      do {
        // Get next Immediate Dominator.
        IDom = IDom->getIDom();

        // If we have got to the header of the loop, then the instructions block
        // did not dominate the exit node, so we can't hoist it.
        if (IDom->getBlock() == LoopHeader)
          return false;

      } while (IDom != BlockInLoopNode);

      return true;
    }

    /// sink - When an instruction is found to only be used outside of the loop,
    /// this function moves it to the exit blocks and patches up SSA form as
    /// needed.
    ///
    void sink(Instruction &I);

    /// hoist - When an instruction is found to only use loop invariant operands
    /// that is safe to hoist, this instruction is called to do the dirty work.
    ///
    void hoist(Instruction &I);

    /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
    /// is not a trapping instruction or if it is a trapping instruction and is
    /// guaranteed to execute.
    ///
    bool isSafeToExecuteUnconditionally(Instruction &I);

    /// pointerInvalidatedByLoop - Return true if the body of this loop may
    /// store into the memory location pointed to by V.
    ///
    bool pointerInvalidatedByLoop(Value *V, unsigned Size) {
      // Check to see if any of the basic blocks in CurLoop invalidate *V.
      return CurAST->getAliasSetForPointer(V, Size).isMod();
    }

    bool canSinkOrHoistInst(Instruction &I);
    bool isLoopInvariantInst(Instruction &I);
    bool isNotUsedInLoop(Instruction &I);

    /// PromoteValuesInLoop - Look at the stores in the loop and promote as many
    /// to scalars as we can.
    ///
    void PromoteValuesInLoop();

    /// FindPromotableValuesInLoop - Check the current loop for stores to
    /// definite pointers, which are not loaded and stored through may aliases.
    /// If these are found, create an alloca for the value, add it to the
    /// PromotedValues list, and keep track of the mapping from value to
    /// alloca...
    ///
    void FindPromotableValuesInLoop(
                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
                                    std::map<Value*, AllocaInst*> &Val2AlMap);
  };

  RegisterPass<LICM> X("licm", "Loop Invariant Code Motion");
}

FunctionPass *llvm::createLICMPass() { return new LICM(); }

/// runOnFunction - For LICM, this simply traverses the loop structure of the
/// function, hoisting expressions out of loops if possible.
///
bool LICM::runOnFunction(Function &) {
  Changed = false;

  // Get our Loop and Alias Analysis information...
  LI = &getAnalysis<LoopInfo>();
  AA = &getAnalysis<AliasAnalysis>();
  DF = &getAnalysis<DominanceFrontier>();
  DT = &getAnalysis<DominatorTree>();

  // Hoist expressions out of all of the top-level loops.
  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) {
    AliasSetTracker AST(*AA);
    visitLoop(*I, AST);
  }
  return Changed;
}


/// visitLoop - Hoist expressions out of the specified loop...
///
void LICM::visitLoop(Loop *L, AliasSetTracker &AST) {
  // Recurse through all subloops before we process this loop...
  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
    AliasSetTracker SubAST(*AA);
    visitLoop(*I, SubAST);

    // Incorporate information about the subloops into this loop...
    AST.add(SubAST);
  }
  CurLoop = L;
  CurAST = &AST;

  // Get the preheader block to move instructions into...
  Preheader = L->getLoopPreheader();
  assert(Preheader&&"Preheader insertion pass guarantees we have a preheader!");

  // Loop over the body of this loop, looking for calls, invokes, and stores.
  // Because subloops have already been incorporated into AST, we skip blocks in
  // subloops.
  //
  for (std::vector<BasicBlock*>::const_iterator I = L->getBlocks().begin(),
         E = L->getBlocks().end(); I != E; ++I)
    if (LI->getLoopFor(*I) == L)        // Ignore blocks in subloops...
      AST.add(**I);                     // Incorporate the specified basic block

  // We want to visit all of the instructions in this loop... that are not parts
  // of our subloops (they have already had their invariants hoisted out of
  // their loop, into this loop, so there is no need to process the BODIES of
  // the subloops).
  //
  // Traverse the body of the loop in depth first order on the dominator tree so
  // that we are guaranteed to see definitions before we see uses.  This allows
  // us to sink instructions in one pass, without iteration.  AFter sinking
  // instructions, we perform another pass to hoist them out of the loop.
  //
  SinkRegion(DT->getNode(L->getHeader()));
  HoistRegion(DT->getNode(L->getHeader()));

  // Now that all loop invariants have been removed from the loop, promote any
  // memory references to scalars that we can...
  if (!DisablePromotion)
    PromoteValuesInLoop();

  // Clear out loops state information for the next iteration
  CurLoop = 0;
  Preheader = 0;
}

/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
/// dominated by the specified block, and that are in the current loop) in
/// reverse depth first order w.r.t the DominatorTree.  This allows us to visit
/// uses before definitions, allowing us to sink a loop body in one pass without
/// iteration.
///
void LICM::SinkRegion(DominatorTree::Node *N) {
  assert(N != 0 && "Null dominator tree node?");
  BasicBlock *BB = N->getBlock();

  // If this subregion is not in the top level loop at all, exit.
  if (!CurLoop->contains(BB)) return;

  // We are processing blocks in reverse dfo, so process children first...
  const std::vector<DominatorTree::Node*> &Children = N->getChildren();
  for (unsigned i = 0, e = Children.size(); i != e; ++i)
    SinkRegion(Children[i]);

  // Only need to process the contents of this block if it is not part of a
  // subloop (which would already have been processed).
  if (inSubLoop(BB)) return;

  for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
    Instruction &I = *--II;

    // Check to see if we can sink this instruction to the exit blocks
    // of the loop.  We can do this if the all users of the instruction are
    // outside of the loop.  In this case, it doesn't even matter if the
    // operands of the instruction are loop invariant.
    //
    if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
      ++II;
      sink(I);
    }
  }
}


/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
/// dominated by the specified block, and that are in the current loop) in depth
/// first order w.r.t the DominatorTree.  This allows us to visit definitions
/// before uses, allowing us to hoist a loop body in one pass without iteration.
///
void LICM::HoistRegion(DominatorTree::Node *N) {
  assert(N != 0 && "Null dominator tree node?");
  BasicBlock *BB = N->getBlock();

  // If this subregion is not in the top level loop at all, exit.
  if (!CurLoop->contains(BB)) return;

  // Only need to process the contents of this block if it is not part of a
  // subloop (which would already have been processed).
  if (!inSubLoop(BB))
    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
      Instruction &I = *II++;

      // Try hoisting the instruction out to the preheader.  We can only do this
      // if all of the operands of the instruction are loop invariant and if it
      // is safe to hoist the instruction.
      //
      if (isLoopInvariantInst(I) && canSinkOrHoistInst(I) &&
          isSafeToExecuteUnconditionally(I))
        hoist(I);
      }

  const std::vector<DominatorTree::Node*> &Children = N->getChildren();
  for (unsigned i = 0, e = Children.size(); i != e; ++i)
    HoistRegion(Children[i]);
}

/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
/// instruction.
///
bool LICM::canSinkOrHoistInst(Instruction &I) {
  // Loads have extra constraints we have to verify before we can hoist them.
  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
    if (LI->isVolatile())
      return false;        // Don't hoist volatile loads!

    // Don't hoist loads which have may-aliased stores in loop.
    unsigned Size = 0;
    if (LI->getType()->isSized())
      Size = AA->getTargetData().getTypeSize(LI->getType());
    return !pointerInvalidatedByLoop(LI->getOperand(0), Size);
  } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
    // Handle obvious cases efficiently.
    if (Function *Callee = CI->getCalledFunction()) {
      AliasAnalysis::ModRefBehavior Behavior =AA->getModRefBehavior(Callee, CI);
      if (Behavior == AliasAnalysis::DoesNotAccessMemory)
        return true;
      else if (Behavior == AliasAnalysis::OnlyReadsMemory) {
        // If this call only reads from memory and there are no writes to memory
        // in the loop, we can hoist or sink the call as appropriate.
        bool FoundMod = false;
        for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
             I != E; ++I) {
          AliasSet &AS = *I;
          if (!AS.isForwardingAliasSet() && AS.isMod()) {
            FoundMod = true;
            break;
          }
        }
        if (!FoundMod) return true;
      }
    }

    // FIXME: This should use mod/ref information to see if we can hoist or sink
    // the call.

    return false;
  }

  return isa<BinaryOperator>(I) || isa<ShiftInst>(I) || isa<CastInst>(I) ||
         isa<SelectInst>(I) || isa<GetElementPtrInst>(I);
}

/// isNotUsedInLoop - Return true if the only users of this instruction are
/// outside of the loop.  If this is true, we can sink the instruction to the
/// exit blocks of the loop.
///
bool LICM::isNotUsedInLoop(Instruction &I) {
  for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
    Instruction *User = cast<Instruction>(*UI);
    if (PHINode *PN = dyn_cast<PHINode>(User)) {
      // PHI node uses occur in predecessor blocks!
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
        if (PN->getIncomingValue(i) == &I)
          if (CurLoop->contains(PN->getIncomingBlock(i)))
            return false;
    } else if (CurLoop->contains(User->getParent())) {
      return false;
    }
  }
  return true;
}


/// isLoopInvariantInst - Return true if all operands of this instruction are
/// loop invariant.  We also filter out non-hoistable instructions here just for
/// efficiency.
///
bool LICM::isLoopInvariantInst(Instruction &I) {
  // The instruction is loop invariant if all of its operands are loop-invariant
  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
    if (!CurLoop->isLoopInvariant(I.getOperand(i)))
      return false;

  // If we got this far, the instruction is loop invariant!
  return true;
}

/// sink - When an instruction is found to only be used outside of the loop,
/// this function moves it to the exit blocks and patches up SSA form as needed.
/// This method is guaranteed to remove the original instruction from its
/// position, and may either delete it or move it to outside of the loop.
///
void LICM::sink(Instruction &I) {
  DOUT << "LICM sinking instruction: " << I;

  std::vector<BasicBlock*> ExitBlocks;
  CurLoop->getExitBlocks(ExitBlocks);

  if (isa<LoadInst>(I)) ++NumMovedLoads;
  else if (isa<CallInst>(I)) ++NumMovedCalls;
  ++NumSunk;
  Changed = true;

  // The case where there is only a single exit node of this loop is common
  // enough that we handle it as a special (more efficient) case.  It is more
  // efficient to handle because there are no PHI nodes that need to be placed.
  if (ExitBlocks.size() == 1) {
    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) {
      // Instruction is not used, just delete it.
      CurAST->deleteValue(&I);
      if (!I.use_empty())  // If I has users in unreachable blocks, eliminate.
        I.replaceAllUsesWith(UndefValue::get(I.getType()));
      I.eraseFromParent();
    } else {
      // Move the instruction to the start of the exit block, after any PHI
      // nodes in it.
      I.removeFromParent();

      BasicBlock::iterator InsertPt = ExitBlocks[0]->begin();
      while (isa<PHINode>(InsertPt)) ++InsertPt;
      ExitBlocks[0]->getInstList().insert(InsertPt, &I);
    }
  } else if (ExitBlocks.size() == 0) {
    // The instruction is actually dead if there ARE NO exit blocks.
    CurAST->deleteValue(&I);
    if (!I.use_empty())  // If I has users in unreachable blocks, eliminate.
      I.replaceAllUsesWith(UndefValue::get(I.getType()));
    I.eraseFromParent();
  } else {
    // Otherwise, if we have multiple exits, use the PromoteMem2Reg function to
    // do all of the hard work of inserting PHI nodes as necessary.  We convert
    // the value into a stack object to get it to do this.

    // Firstly, we create a stack object to hold the value...
    AllocaInst *AI = 0;

    if (I.getType() != Type::VoidTy)
      AI = new AllocaInst(I.getType(), 0, I.getName(),
                          I.getParent()->getParent()->front().begin());

    // Secondly, insert load instructions for each use of the instruction
    // outside of the loop.
    while (!I.use_empty()) {
      Instruction *U = cast<Instruction>(I.use_back());

      // If the user is a PHI Node, we actually have to insert load instructions
      // in all predecessor blocks, not in the PHI block itself!
      if (PHINode *UPN = dyn_cast<PHINode>(U)) {
        // Only insert into each predecessor once, so that we don't have
        // different incoming values from the same block!
        std::map<BasicBlock*, Value*> InsertedBlocks;
        for (unsigned i = 0, e = UPN->getNumIncomingValues(); i != e; ++i)
          if (UPN->getIncomingValue(i) == &I) {
            BasicBlock *Pred = UPN->getIncomingBlock(i);
            Value *&PredVal = InsertedBlocks[Pred];
            if (!PredVal) {
              // Insert a new load instruction right before the terminator in
              // the predecessor block.
              PredVal = new LoadInst(AI, "", Pred->getTerminator());
            }

            UPN->setIncomingValue(i, PredVal);
          }

      } else {
        LoadInst *L = new LoadInst(AI, "", U);
        U->replaceUsesOfWith(&I, L);
      }
    }

    // Thirdly, insert a copy of the instruction in each exit block of the loop
    // that is dominated by the instruction, storing the result into the memory
    // location.  Be careful not to insert the instruction into any particular
    // basic block more than once.
    std::set<BasicBlock*> InsertedBlocks;
    BasicBlock *InstOrigBB = I.getParent();

    for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
      BasicBlock *ExitBlock = ExitBlocks[i];

      if (isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB)) {
        // If we haven't already processed this exit block, do so now.
        if (InsertedBlocks.insert(ExitBlock).second) {
          // Insert the code after the last PHI node...
          BasicBlock::iterator InsertPt = ExitBlock->begin();
          while (isa<PHINode>(InsertPt)) ++InsertPt;

          // If this is the first exit block processed, just move the original
          // instruction, otherwise clone the original instruction and insert
          // the copy.
          Instruction *New;
          if (InsertedBlocks.size() == 1) {
            I.removeFromParent();
            ExitBlock->getInstList().insert(InsertPt, &I);
            New = &I;
          } else {
            New = I.clone();
            CurAST->copyValue(&I, New);
            if (!I.getName().empty())
              New->setName(I.getName()+".le");
            ExitBlock->getInstList().insert(InsertPt, New);
          }

          // Now that we have inserted the instruction, store it into the alloca
          if (AI) new StoreInst(New, AI, InsertPt);
        }
      }
    }

    // If the instruction doesn't dominate any exit blocks, it must be dead.
    if (InsertedBlocks.empty()) {
      CurAST->deleteValue(&I);
      I.eraseFromParent();
    }

    // Finally, promote the fine value to SSA form.
    if (AI) {
      std::vector<AllocaInst*> Allocas;
      Allocas.push_back(AI);
      PromoteMemToReg(Allocas, *DT, *DF, AA->getTargetData(), CurAST);
    }
  }
}

/// hoist - When an instruction is found to only use loop invariant operands
/// that is safe to hoist, this instruction is called to do the dirty work.
///
void LICM::hoist(Instruction &I) {
  DOUT << "LICM hoisting to " << Preheader->getName() << ": " << I;

  // Remove the instruction from its current basic block... but don't delete the
  // instruction.
  I.removeFromParent();

  // Insert the new node in Preheader, before the terminator.
  Preheader->getInstList().insert(Preheader->getTerminator(), &I);

  if (isa<LoadInst>(I)) ++NumMovedLoads;
  else if (isa<CallInst>(I)) ++NumMovedCalls;
  ++NumHoisted;
  Changed = true;
}

/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
/// not a trapping instruction or if it is a trapping instruction and is
/// guaranteed to execute.
///
bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
  // If it is not a trapping instruction, it is always safe to hoist.
  if (!Inst.isTrapping()) return true;

  // Otherwise we have to check to make sure that the instruction dominates all
  // of the exit blocks.  If it doesn't, then there is a path out of the loop
  // which does not execute this instruction, so we can't hoist it.

  // If the instruction is in the header block for the loop (which is very
  // common), it is always guaranteed to dominate the exit blocks.  Since this
  // is a common case, and can save some work, check it now.
  if (Inst.getParent() == CurLoop->getHeader())
    return true;

  // It's always safe to load from a global or alloca.
  if (isa<LoadInst>(Inst))
    if (isa<AllocationInst>(Inst.getOperand(0)) ||
        isa<GlobalVariable>(Inst.getOperand(0)))
      return true;

  // Get the exit blocks for the current loop.
  std::vector<BasicBlock*> ExitBlocks;
  CurLoop->getExitBlocks(ExitBlocks);

  // For each exit block, get the DT node and walk up the DT until the
  // instruction's basic block is found or we exit the loop.
  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent()))
      return false;

  return true;
}


/// PromoteValuesInLoop - Try to promote memory values to scalars by sinking
/// stores out of the loop and moving loads to before the loop.  We do this by
/// looping over the stores in the loop, looking for stores to Must pointers
/// which are loop invariant.  We promote these memory locations to use allocas
/// instead.  These allocas can easily be raised to register values by the
/// PromoteMem2Reg functionality.
///
void LICM::PromoteValuesInLoop() {
  // PromotedValues - List of values that are promoted out of the loop.  Each
  // value has an alloca instruction for it, and a canonical version of the
  // pointer.
  std::vector<std::pair<AllocaInst*, Value*> > PromotedValues;
  std::map<Value*, AllocaInst*> ValueToAllocaMap; // Map of ptr to alloca

  FindPromotableValuesInLoop(PromotedValues, ValueToAllocaMap);
  if (ValueToAllocaMap.empty()) return;   // If there are values to promote.

  Changed = true;
  NumPromoted += PromotedValues.size();

  std::vector<Value*> PointerValueNumbers;

  // Emit a copy from the value into the alloca'd value in the loop preheader
  TerminatorInst *LoopPredInst = Preheader->getTerminator();
  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
    Value *Ptr = PromotedValues[i].second;

    // If we are promoting a pointer value, update alias information for the
    // inserted load.
    Value *LoadValue = 0;
    if (isa<PointerType>(cast<PointerType>(Ptr->getType())->getElementType())) {
      // Locate a load or store through the pointer, and assign the same value
      // to LI as we are loading or storing.  Since we know that the value is
      // stored in this loop, this will always succeed.
      for (Value::use_iterator UI = Ptr->use_begin(), E = Ptr->use_end();
           UI != E; ++UI)
        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
          LoadValue = LI;
          break;
        } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
          if (SI->getOperand(1) == Ptr) {
            LoadValue = SI->getOperand(0);
            break;
          }
        }
      assert(LoadValue && "No store through the pointer found!");
      PointerValueNumbers.push_back(LoadValue);  // Remember this for later.
    }

    // Load from the memory we are promoting.
    LoadInst *LI = new LoadInst(Ptr, Ptr->getName()+".promoted", LoopPredInst);

    if (LoadValue) CurAST->copyValue(LoadValue, LI);

    // Store into the temporary alloca.
    new StoreInst(LI, PromotedValues[i].first, LoopPredInst);
  }

  // Scan the basic blocks in the loop, replacing uses of our pointers with
  // uses of the allocas in question.
  //
  const std::vector<BasicBlock*> &LoopBBs = CurLoop->getBlocks();
  for (std::vector<BasicBlock*>::const_iterator I = LoopBBs.begin(),
         E = LoopBBs.end(); I != E; ++I) {
    // Rewrite all loads and stores in the block of the pointer...
    for (BasicBlock::iterator II = (*I)->begin(), E = (*I)->end();
         II != E; ++II) {
      if (LoadInst *L = dyn_cast<LoadInst>(II)) {
        std::map<Value*, AllocaInst*>::iterator
          I = ValueToAllocaMap.find(L->getOperand(0));
        if (I != ValueToAllocaMap.end())
          L->setOperand(0, I->second);    // Rewrite load instruction...
      } else if (StoreInst *S = dyn_cast<StoreInst>(II)) {
        std::map<Value*, AllocaInst*>::iterator
          I = ValueToAllocaMap.find(S->getOperand(1));
        if (I != ValueToAllocaMap.end())
          S->setOperand(1, I->second);    // Rewrite store instruction...
      }
    }
  }

  // Now that the body of the loop uses the allocas instead of the original
  // memory locations, insert code to copy the alloca value back into the
  // original memory location on all exits from the loop.  Note that we only
  // want to insert one copy of the code in each exit block, though the loop may
  // exit to the same block more than once.
  //
  std::set<BasicBlock*> ProcessedBlocks;

  std::vector<BasicBlock*> ExitBlocks;
  CurLoop->getExitBlocks(ExitBlocks);
  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
    if (ProcessedBlocks.insert(ExitBlocks[i]).second) {
      // Copy all of the allocas into their memory locations.
      BasicBlock::iterator BI = ExitBlocks[i]->begin();
      while (isa<PHINode>(*BI))
        ++BI;             // Skip over all of the phi nodes in the block.
      Instruction *InsertPos = BI;
      unsigned PVN = 0;
      for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
        // Load from the alloca.
        LoadInst *LI = new LoadInst(PromotedValues[i].first, "", InsertPos);

        // If this is a pointer type, update alias info appropriately.
        if (isa<PointerType>(LI->getType()))
          CurAST->copyValue(PointerValueNumbers[PVN++], LI);

        // Store into the memory we promoted.
        new StoreInst(LI, PromotedValues[i].second, InsertPos);
      }
    }

  // Now that we have done the deed, use the mem2reg functionality to promote
  // all of the new allocas we just created into real SSA registers.
  //
  std::vector<AllocaInst*> PromotedAllocas;
  PromotedAllocas.reserve(PromotedValues.size());
  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i)
    PromotedAllocas.push_back(PromotedValues[i].first);
  PromoteMemToReg(PromotedAllocas, *DT, *DF, AA->getTargetData(), CurAST);
}

/// FindPromotableValuesInLoop - Check the current loop for stores to definite
/// pointers, which are not loaded and stored through may aliases.  If these are
/// found, create an alloca for the value, add it to the PromotedValues list,
/// and keep track of the mapping from value to alloca.
///
void LICM::FindPromotableValuesInLoop(
                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
                             std::map<Value*, AllocaInst*> &ValueToAllocaMap) {
  Instruction *FnStart = CurLoop->getHeader()->getParent()->begin()->begin();

  // Loop over all of the alias sets in the tracker object.
  for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
       I != E; ++I) {
    AliasSet &AS = *I;
    // We can promote this alias set if it has a store, if it is a "Must" alias
    // set, if the pointer is loop invariant, and if we are not eliminating any
    // volatile loads or stores.
    if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias() &&
        !AS.isVolatile() && CurLoop->isLoopInvariant(AS.begin()->first)) {
      assert(AS.begin() != AS.end() &&
             "Must alias set should have at least one pointer element in it!");
      Value *V = AS.begin()->first;

      // Check that all of the pointers in the alias set have the same type.  We
      // cannot (yet) promote a memory location that is loaded and stored in
      // different sizes.
      bool PointerOk = true;
      for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
        if (V->getType() != I->first->getType()) {
          PointerOk = false;
          break;
        }

      if (PointerOk) {
        const Type *Ty = cast<PointerType>(V->getType())->getElementType();
        AllocaInst *AI = new AllocaInst(Ty, 0, V->getName()+".tmp", FnStart);
        PromotedValues.push_back(std::make_pair(AI, V));

        // Update the AST and alias analysis.
        CurAST->copyValue(V, AI);

        for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
          ValueToAllocaMap.insert(std::make_pair(I->first, AI));

        DOUT << "LICM: Promoting value: " << *V << "\n";
      }
    }
  }
}