summaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/LoopUnroll.cpp
blob: 0cdef0f8a392b1fe45a21aecd53192d5484ffca6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
//===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass implements a simple loop unroller.  It works best when loops have
// been canonicalized by the -indvars pass, allowing it to determine the trip
// counts of loops easily.
//
// This pass will multi-block loops only if they contain no non-unrolled 
// subloops.  The process of unrolling can produce extraneous basic blocks 
// linked with unconditional branches.  This will be corrected in the future.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "loop-unroll"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/IntrinsicInst.h"
#include <cstdio>
#include <algorithm>
using namespace llvm;

STATISTIC(NumUnrolled, "Number of loops completely unrolled");

namespace {
  cl::opt<unsigned>
  UnrollThreshold("unroll-threshold", cl::init(100), cl::Hidden,
                  cl::desc("The cut-off point for loop unrolling"));

  class VISIBILITY_HIDDEN LoopUnroll : public LoopPass {
    LoopInfo *LI;  // The current loop information
  public:
    static const int ID; // Pass ID, replacement for typeid
    LoopUnroll()  : LoopPass((intptr_t)&ID) {}

    bool runOnLoop(Loop *L, LPPassManager &LPM);
    BasicBlock* FoldBlockIntoPredecessor(BasicBlock* BB);

    /// This transformation requires natural loop information & requires that
    /// loop preheaders be inserted into the CFG...
    ///
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequiredID(LoopSimplifyID);
      AU.addRequiredID(LCSSAID);
      AU.addRequired<LoopInfo>();
      AU.addPreservedID(LCSSAID);
      AU.addPreserved<LoopInfo>();
    }
  };
  const int LoopUnroll::ID = 0;
  RegisterPass<LoopUnroll> X("loop-unroll", "Unroll loops");
}

LoopPass *llvm::createLoopUnrollPass() { return new LoopUnroll(); }

/// ApproximateLoopSize - Approximate the size of the loop after it has been
/// unrolled.
static unsigned ApproximateLoopSize(const Loop *L) {
  unsigned Size = 0;
  for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
    BasicBlock *BB = L->getBlocks()[i];
    Instruction *Term = BB->getTerminator();
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
      if (isa<PHINode>(I) && BB == L->getHeader()) {
        // Ignore PHI nodes in the header.
      } else if (I->hasOneUse() && I->use_back() == Term) {
        // Ignore instructions only used by the loop terminator.
      } else if (isa<DbgInfoIntrinsic>(I)) {
        // Ignore debug instructions
      } else {
        ++Size;
      }

      // TODO: Ignore expressions derived from PHI and constants if inval of phi
      // is a constant, or if operation is associative.  This will get induction
      // variables.
    }
  }

  return Size;
}

// RemapInstruction - Convert the instruction operands from referencing the
// current values into those specified by ValueMap.
//
static inline void RemapInstruction(Instruction *I,
                                    DenseMap<const Value *, Value*> &ValueMap) {
  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
    Value *Op = I->getOperand(op);
    DenseMap<const Value *, Value*>::iterator It = ValueMap.find(Op);
    if (It != ValueMap.end()) Op = It->second;
    I->setOperand(op, Op);
  }
}

// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
// only has one predecessor, and that predecessor only has one successor.
// Returns the new combined block.
BasicBlock* LoopUnroll::FoldBlockIntoPredecessor(BasicBlock* BB) {
  // Merge basic blocks into their predecessor if there is only one distinct
  // pred, and if there is only one distinct successor of the predecessor, and
  // if there are no PHI nodes.
  //
  BasicBlock *OnlyPred = BB->getSinglePredecessor();
  if (!OnlyPred) return 0;

  if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
    return 0;

  DOUT << "Merging: " << *BB << "into: " << *OnlyPred;

  // Resolve any PHI nodes at the start of the block.  They are all
  // guaranteed to have exactly one entry if they exist, unless there are
  // multiple duplicate (but guaranteed to be equal) entries for the
  // incoming edges.  This occurs when there are multiple edges from
  // OnlyPred to OnlySucc.
  //
  while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
    PN->replaceAllUsesWith(PN->getIncomingValue(0));
    BB->getInstList().pop_front();  // Delete the phi node...
  }

  // Delete the unconditional branch from the predecessor...
  OnlyPred->getInstList().pop_back();

  // Move all definitions in the successor to the predecessor...
  OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());

  // Make all PHI nodes that referred to BB now refer to Pred as their
  // source...
  BB->replaceAllUsesWith(OnlyPred);

  std::string OldName = BB->getName();

  // Erase basic block from the function...
  LI->removeBlock(BB);
  BB->eraseFromParent();

  // Inherit predecessors name if it exists...
  if (!OldName.empty() && !OnlyPred->hasName())
    OnlyPred->setName(OldName);

  return OnlyPred;
}

bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
  bool Changed = false;
  LI = &getAnalysis<LoopInfo>();

  BasicBlock* Header = L->getHeader();
  BasicBlock* LatchBlock = L->getLoopLatch();

  BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
  if (BI == 0) return Changed;  // Must end in a conditional branch

  ConstantInt *TripCountC = dyn_cast_or_null<ConstantInt>(L->getTripCount());
  if (!TripCountC) return Changed;  // Must have constant trip count!

  // Guard against huge trip counts. This also guards against assertions in
  // APInt from the use of getZExtValue, below.
  if (TripCountC->getValue().getActiveBits() > 32)
    return Changed; // More than 2^32 iterations???

  uint64_t TripCountFull = TripCountC->getZExtValue();
  if (TripCountFull == 0)
    return Changed; // Zero iteraitons?

  unsigned LoopSize = ApproximateLoopSize(L);
  DOUT << "Loop Unroll: F[" << Header->getParent()->getName()
       << "] Loop %" << Header->getName() << " Loop Size = "
       << LoopSize << " Trip Count = " << TripCountFull << " - ";
  uint64_t Size = (uint64_t)LoopSize*TripCountFull;
  if (Size > UnrollThreshold) {
    DOUT << "TOO LARGE: " << Size << ">" << UnrollThreshold << "\n";
    return Changed;
  }
  DOUT << "UNROLLING!\n";

  std::vector<BasicBlock*> LoopBlocks = L->getBlocks();

  unsigned TripCount = (unsigned)TripCountFull;

  BasicBlock *LoopExit = BI->getSuccessor(L->contains(BI->getSuccessor(0))); 

  // For the first iteration of the loop, we should use the precloned values for
  // PHI nodes.  Insert associations now.
  DenseMap<const Value*, Value*> LastValueMap;
  std::vector<PHINode*> OrigPHINode;
  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
    PHINode *PN = cast<PHINode>(I);
    OrigPHINode.push_back(PN);
    if (Instruction *I = 
                dyn_cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock)))
      if (L->contains(I->getParent()))
        LastValueMap[I] = I;
  }

  // Remove the exit branch from the loop
  LatchBlock->getInstList().erase(BI);
  
  std::vector<BasicBlock*> Headers;
  std::vector<BasicBlock*> Latches;
  Headers.push_back(Header);
  Latches.push_back(LatchBlock);

  assert(TripCount != 0 && "Trip count of 0 is impossible!");
  for (unsigned It = 1; It != TripCount; ++It) {
    char SuffixBuffer[100];
    sprintf(SuffixBuffer, ".%d", It);
    
    std::vector<BasicBlock*> NewBlocks;
    
    for (std::vector<BasicBlock*>::iterator BB = LoopBlocks.begin(),
         E = LoopBlocks.end(); BB != E; ++BB) {
      DenseMap<const Value*, Value*> ValueMap;
      BasicBlock *New = CloneBasicBlock(*BB, ValueMap, SuffixBuffer);
      Header->getParent()->getBasicBlockList().push_back(New);

      // Loop over all of the PHI nodes in the block, changing them to use the
      // incoming values from the previous block.
      if (*BB == Header)
        for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
          PHINode *NewPHI = cast<PHINode>(ValueMap[OrigPHINode[i]]);
          Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
          if (Instruction *InValI = dyn_cast<Instruction>(InVal))
            if (It > 1 && L->contains(InValI->getParent()))
              InVal = LastValueMap[InValI];
          ValueMap[OrigPHINode[i]] = InVal;
          New->getInstList().erase(NewPHI);
        }

      // Update our running map of newest clones
      LastValueMap[*BB] = New;
      for (DenseMap<const Value*, Value*>::iterator VI = ValueMap.begin(),
           VE = ValueMap.end(); VI != VE; ++VI)
        LastValueMap[VI->first] = VI->second;

      L->addBasicBlockToLoop(New, *LI);

      // Add phi entries for newly created values to all exit blocks except
      // the successor of the latch block.  The successor of the exit block will
      // be updated specially after unrolling all the way.
      if (*BB != LatchBlock)
        for (Value::use_iterator UI = (*BB)->use_begin(), UE = (*BB)->use_end();
             UI != UE; ++UI) {
          Instruction* UseInst = cast<Instruction>(*UI);
          if (isa<PHINode>(UseInst) && !L->contains(UseInst->getParent())) {
            PHINode* phi = cast<PHINode>(UseInst);
            Value* Incoming = phi->getIncomingValueForBlock(*BB);
            if (isa<Instruction>(Incoming))
              Incoming = LastValueMap[Incoming];
          
            phi->addIncoming(Incoming, New);
          }
        }

      // Keep track of new headers and latches as we create them, so that
      // we can insert the proper branches later.
      if (*BB == Header)
        Headers.push_back(New);
      if (*BB == LatchBlock)
        Latches.push_back(New);

      NewBlocks.push_back(New);
    }
    
    // Remap all instructions in the most recent iteration
    for (unsigned i = 0; i < NewBlocks.size(); ++i)
      for (BasicBlock::iterator I = NewBlocks[i]->begin(),
           E = NewBlocks[i]->end(); I != E; ++I)
        RemapInstruction(I, LastValueMap);
  }

  
 
  // Update PHI nodes that reference the final latch block
  if (TripCount > 1) {
    SmallPtrSet<PHINode*, 8> Users;
    for (Value::use_iterator UI = LatchBlock->use_begin(),
         UE = LatchBlock->use_end(); UI != UE; ++UI)
      if (PHINode* phi = dyn_cast<PHINode>(*UI))
        Users.insert(phi);
        
    for (SmallPtrSet<PHINode*,8>::iterator SI = Users.begin(), SE = Users.end();
         SI != SE; ++SI) {
      Value* InVal = (*SI)->getIncomingValueForBlock(LatchBlock);
      if (isa<Instruction>(InVal))
        InVal = LastValueMap[InVal];
      (*SI)->removeIncomingValue(LatchBlock, false);
      if (InVal)
        (*SI)->addIncoming(InVal, cast<BasicBlock>(LastValueMap[LatchBlock]));
      if ((*SI)->getNumIncomingValues() == 0) {
        // Remove this phi node.
        // If anyone is using this PHI, make them use a dummy value instead...
        (*SI)->replaceAllUsesWith(UndefValue::get((*SI)->getType()));
        (*SI)->eraseFromParent();
      }
    }
  }

  // Now loop over the PHI nodes in the original block, setting them to their
  // incoming values.
  BasicBlock *Preheader = L->getLoopPreheader();
  for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
    PHINode *PN = OrigPHINode[i];
    PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
    Header->getInstList().erase(PN);
  }
  
  //  Insert the branches that link the different iterations together
  for (unsigned i = 0; i < Latches.size()-1; ++i) {
    new BranchInst(Headers[i+1], Latches[i]);
    if(BasicBlock* Fold = FoldBlockIntoPredecessor(Headers[i+1])) {
      std::replace(Latches.begin(), Latches.end(), Headers[i+1], Fold);
      std::replace(Headers.begin(), Headers.end(), Headers[i+1], Fold);
    }
  }
  
  // Finally, add an unconditional branch to the block to continue into the exit
  // block.
  new BranchInst(LoopExit, Latches[Latches.size()-1]);
  FoldBlockIntoPredecessor(LoopExit);
  
  // At this point, the code is well formed.  We now do a quick sweep over the
  // inserted code, doing constant propagation and dead code elimination as we
  // go.
  const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
  for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
       BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
      Instruction *Inst = I++;

      if (isInstructionTriviallyDead(Inst))
        (*BB)->getInstList().erase(Inst);
      else if (Constant *C = ConstantFoldInstruction(Inst)) {
        Inst->replaceAllUsesWith(C);
        (*BB)->getInstList().erase(Inst);
      }
    }

  // Update the loop information for this loop.
  // Remove the loop from the parent.
  LPM.deleteLoopFromQueue(L);

  ++NumUnrolled;
  return true;
}